1
|
Alharbi HO, Sugden PH, Clerk A. Mitogen-activated protein kinase signalling in rat hearts during postnatal development: MAPKs, MAP3Ks, MAP4Ks and DUSPs. Cell Signal 2024; 124:111397. [PMID: 39251052 DOI: 10.1016/j.cellsig.2024.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Mammalian cardiomyocytes become terminally-differentiated during the perinatal period. In rodents, cytokinesis ceases after a final division cycle immediately after birth. Nuclear division continues and most cardiomyocytes become binucleated by ∼11 days. Subsequent growth results from an increase in cardiomyocyte size. The mechanisms involved remain under investigation. Mitogen-activated protein kinases (MAPKs) regulate cell growth/death: extracellular signal-regulated kinases 1/2 (ERK1/2) promote proliferation, whilst c-Jun N-terminal kinases (JNKs) and p38-MAPKs respond to cellular stresses. We assessed their regulation in rat hearts during postnatal development (2, 7, 14, and 28 days, 12 weeks) during which time there was rapid, substantial downregulation of mitosis/cytokinesis genes (Cenpa/e/f, Aurkb, Anln, Cdca8, Orc6) with lesser downregulation of DNA replication genes (Orcs1-5, Mcms2-7). MAPK activation was assessed by immunoblotting for total and phosphorylated (activated) kinases. Total ERK1/2 was downregulated, but not JNKs or p38-MAPKs, whilst phosphorylation of all MAPKs increased relative to total protein albeit transiently for JNKs. These profiles differed from activation of Akt (also involved in cardiomyocyte growth). Dual-specificity phosphatases, upstream MAPK kinase kinases (MAP3Ks), and MAP3K kinases (MAP4Ks) identified in neonatal rat cardiomyocytes by RNASeq were differentially regulated during postnatal cardiac development. The MAP3Ks that we could assess by immunoblotting (RAF kinases and Map3k3) showed greater downregulation of the protein than mRNA. MAP3K2/MAP3K3/MAP4K5 were upregulated in human failing heart samples and may be part of the "foetal gene programme" of re-expressed genes in disease. Thus, MAPKs, along with kinases and phosphatases that regulate them, potentially play a significant role in postnatal remodelling of the heart.
Collapse
Affiliation(s)
- Hajed O Alharbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Quassim University, Buraydah, Saudi Arabia; School of Biological Sciences, University of Reading, Reading, UK
| | - Peter H Sugden
- School of Biological Sciences, University of Reading, Reading, UK
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
2
|
Hansen J, Xiong Y, Siddiq MM, Dhanan P, Hu B, Shewale B, Yadaw AS, Jayaraman G, Tolentino RE, Chen Y, Martinez P, Beaumont KG, Sebra R, Vidovic D, Schürer SC, Goldfarb J, Gallo JM, Birtwistle MR, Sobie EA, Azeloglu EU, Berger SI, Chan A, Schaniel C, Dubois NC, Iyengar R. Multiscale mapping of transcriptomic signatures for cardiotoxic drugs. Nat Commun 2024; 15:7968. [PMID: 39261481 PMCID: PMC11390749 DOI: 10.1038/s41467-024-52145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Drug-induced gene expression profiles can identify potential mechanisms of toxicity. We focus on obtaining signatures for cardiotoxicity of FDA-approved tyrosine kinase inhibitors (TKIs) in human induced-pluripotent-stem-cell-derived cardiomyocytes, using bulk transcriptomic profiles. We use singular value decomposition to identify drug-selective patterns across cell lines obtained from multiple healthy human subjects. Cellular pathways affected by cardiotoxic TKIs include energy metabolism, contractile, and extracellular matrix dynamics. Projecting these pathways to published single cell expression profiles indicates that TKI responses can be evoked in both cardiomyocytes and fibroblasts. Integration of transcriptomic outlier analysis with whole genomic sequencing of our six cell lines enables us to correctly reidentify a genomic variant causally linked to anthracycline-induced cardiotoxicity and predict genomic variants potentially associated with TKI-induced cardiotoxicity. We conclude that mRNA expression profiles when integrated with publicly available genomic, pathway, and single cell transcriptomic datasets, provide multiscale signatures for cardiotoxicity that could be used for drug development and patient stratification.
Collapse
Affiliation(s)
- Jens Hansen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Yuguang Xiong
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mustafa M Siddiq
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Priyanka Dhanan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Hu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavana Shewale
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arjun S Yadaw
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gomathi Jayaraman
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosa E Tolentino
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yibang Chen
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pedro Martinez
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dusica Vidovic
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Stephan C Schürer
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL, 33146, USA
| | - Joseph Goldfarb
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James M Gallo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- School of Pharmacy and Pharmaceutical Sciences, University of Buffalo SUNY System, Buffalo, NY, 14260, USA
| | - Marc R Birtwistle
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Eric A Sobie
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Evren U Azeloglu
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New, York, NY, 10029, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, 20012, USA
| | - Angel Chan
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiology Division, Department of Medicine, Memorial Sloan Kettering Cancer Center New York, New York, NY, 10065, USA
| | - Christoph Schaniel
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole C Dubois
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Ravi Iyengar
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Brosinsky P, Heger J, Sydykov A, Weiss A, Klatt S, Czech L, Kraut S, Schermuly RT, Schlüter KD, Schulz R. Does Cell-Type-Specific Silencing of Monoamine Oxidase B Interfere with the Development of Right Ventricle (RV) Hypertrophy or Right Ventricle Failure in Pulmonary Hypertension? Int J Mol Sci 2024; 25:6212. [PMID: 38892401 PMCID: PMC11172614 DOI: 10.3390/ijms25116212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Increased mitochondrial reactive oxygen species (ROS) formation is important for the development of right ventricular (RV) hypertrophy (RVH) and failure (RVF) during pulmonary hypertension (PH). ROS molecules are produced in different compartments within the cell, with mitochondria known to produce the strongest ROS signal. Among ROS-forming mitochondrial proteins, outer-mitochondrial-membrane-located monoamine oxidases (MAOs, type A or B) are capable of degrading neurotransmitters, thereby producing large amounts of ROS. In mice, MAO-B is the dominant isoform, which is present in almost all cell types within the heart. We analyzed the effect of an inducible cardiomyocyte-specific knockout of MAO-B (cmMAO-B KO) for the development of RVH and RVF in mice. Right ventricular hypertrophy was induced by pulmonary artery banding (PAB). RV dimensions and function were measured through echocardiography. ROS production (dihydroethidium staining), protein kinase activity (PamStation device), and systemic hemodynamics (in vivo catheterization) were assessed. A significant decrease in ROS formation was measured in cmMAO-B KO mice during PAB compared to Cre-negative littermates, which was associated with reduced activity of protein kinases involved in hypertrophic growth. In contrast to littermates in which the RV was dilated and hypertrophied following PAB, RV dimensions were unaffected in response to PAB in cmMAO-B KO mice, and no decline in RV systolic function otherwise seen in littermates during PAB was measured in cmMAO-B KO mice. In conclusion, cmMAO-B KO mice are protected against RV dilatation, hypertrophy, and dysfunction following RV pressure overload compared to littermates. These results support the hypothesis that cmMAO-B is a key player in causing RV hypertrophy and failure during PH.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Disease Models, Animal
- Heart Failure/metabolism
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Ventricles/pathology
- Heart Ventricles/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/pathology
- Mice, Knockout
- Monoamine Oxidase/genetics
- Monoamine Oxidase/metabolism
- Monoamine Oxidase/deficiency
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Reactive Oxygen Species/metabolism
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/pathology
Collapse
Affiliation(s)
- Paulin Brosinsky
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Jacqueline Heger
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Akylbek Sydykov
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Astrid Weiss
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Stephan Klatt
- Vascular Research Centre, Goethe Universität, 60590 Frankfurt, Germany;
| | - Laureen Czech
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Simone Kraut
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Ralph Theo Schermuly
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-Universität, 35392 Gießen, Germany; (A.S.); (A.W.); (S.K.); (R.T.S.)
| | - Klaus-Dieter Schlüter
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany; (J.H.); (L.C.); (K.-D.S.); (R.S.)
| |
Collapse
|
4
|
Cull J, Cooper S, Alharbi H, Chothani S, Rackham O, Meijles D, Dash P, Kerkelä R, Ruparelia N, Sugden P, Clerk A. Striatin plays a major role in angiotensin II-induced cardiomyocyte and cardiac hypertrophy in mice in vivo. Clin Sci (Lond) 2024; 138:573-597. [PMID: 38718356 PMCID: PMC11130554 DOI: 10.1042/cs20240496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The three striatins (STRN, STRN3, STRN4) form the core of STRiatin-Interacting Phosphatase and Kinase (STRIPAK) complexes. These place protein phosphatase 2A (PP2A) in proximity to protein kinases thereby restraining kinase activity and regulating key cellular processes. Our aim was to establish if striatins play a significant role in cardiac remodelling associated with cardiac hypertrophy and heart failure. All striatins were expressed in control human hearts, with up-regulation of STRN and STRN3 in failing hearts. We used mice with global heterozygote gene deletion to assess the roles of STRN and STRN3 in cardiac remodelling induced by angiotensin II (AngII; 7 days). Using echocardiography, we detected no differences in baseline cardiac function or dimensions in STRN+/- or STRN3+/- male mice (8 weeks) compared with wild-type littermates. Heterozygous gene deletion did not affect cardiac function in mice treated with AngII, but the increase in left ventricle mass induced by AngII was inhibited in STRN+/- (but not STRN3+/-) mice. Histological staining indicated that cardiomyocyte hypertrophy was inhibited. To assess the role of STRN in cardiomyocytes, we converted the STRN knockout line for inducible cardiomyocyte-specific gene deletion. There was no effect of cardiomyocyte STRN knockout on cardiac function or dimensions, but the increase in left ventricle mass induced by AngII was inhibited. This resulted from inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. The data indicate that cardiomyocyte striatin is required for early remodelling of the heart by AngII and identify the striatin-based STRIPAK system as a signalling paradigm in the development of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Sonia P. Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
| | - Owen J.L. Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore
- School of Biological Sciences, University of Southampton, Southampton, U.K
| | - Daniel N. Meijles
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Philip R. Dash
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Risto Kerkelä
- Research Unit of Biomedicine and Internal Medicine, Medical Research Centre Oulu (Oulu University Hospital) and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Neil Ruparelia
- School of Biological Sciences, University of Reading, Reading, U.K
- Department of Cardiology, Royal Berkshire Hospital, Reading, U.K
| | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|
5
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
6
|
Claridge B, Rai A, Lees JG, Fang H, Lim SY, Greening DW. Cardiomyocyte intercellular signalling increases oxidative stress and reprograms the global- and phospho-proteome of cardiac fibroblasts. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e125. [PMID: 38938901 PMCID: PMC11080892 DOI: 10.1002/jex2.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 06/29/2024]
Abstract
Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA+) and oxidative stress mediated by the secretome of TGFβ-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape. Within the fibroblast global proteome there was a striking dysregulation of proteins implicated in extracellular matrix, protein localisation/metabolism, KEAP1-NFE2L2 pathway, lysosomes, carbohydrate metabolism, and transcriptional regulation. Kinase substrate enrichment analysis of phosphopeptides revealed potential role of kinases (CK2, CDK2, PKC, GSK3B) during this remodelling. We verified upregulated activity of casein kinase 2 (CK2) in secretome-treated fibroblasts, and pharmacological CK2 inhibitor TBB (4,5,6,7-Tetrabromobenzotriazole) significantly abrogated fibroblast activation and oxidative stress. Our data provides molecular insights into cardiomyocyte to cardiac fibroblast crosstalk, and the potential role of CK2 in regulating cardiac fibroblast activation and oxidative stress.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
| | - Alin Rai
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Jarmon G. Lees
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
| | - Haoyun Fang
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Shiang Y. Lim
- O'Brien Institute DepartmentSt Vincent's Institute of Medical ResearchFitzroyVictoriaAustralia
- Department of Surgery and MedicineUniversity of MelbourneMelbourneVictoriaAustralia
- National Heart Research Institute SingaporeNational Heart CentreSingaporeSingapore
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - David W. Greening
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
- Baker Department of Cardiovascular Research Translation and ImplementationLa Trobe UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityMelbourneVictoriaAustralia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneMelbourneVictoriaAustralia
- Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
7
|
Altara R, Booz G. Central role for BRAF in cardiac hypertrophy: rethinking the pathological-physiological divide. Clin Sci (Lond) 2023; 137:143-148. [PMID: 36651286 PMCID: PMC9873497 DOI: 10.1042/cs20220776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
The RAF/MEK/ERK1/2 signaling cascade has been implicated in pathological cardiac hypertrophy downstream of some Gq-coupled receptors. The RAF family of kinases consists of three isoforms (ARAF, BRAF, and CRAF) and until recently most studies on this signaling pathway in the heart have focused on RAF1 (CRAF). In a recent issue of Clinical Science, Alharbi et al. utilized an inducible cardiac myocyte targeted knockout mouse model to define the role of BRAF in pathological versus physiological hypertrophy using angiotensin II and phenylephrine (PE) infusion, respectively. They reported that loss of BRAF attenuated both pathological cardiac hypertrophy and interstitial fibrosis. BRAF knockout decreased cardiac function with PE in male mice and enhanced both interstitial and perivascular cardiac fibrosis but had no effect on hypertrophy. In contrast, loss of BRAF attenuated physiological hypertrophy in female mice but had no effect on fibrosis or contractility. These observations extend those previously made by this group assessing the consequences of expressing an inducible activating mutant of BRAF in the heart and the benefit of enhancing RAF/MEK/ERK1/2 signaling by exploiting the 'RAF paradox'. Additional studies are needed to better define the role of BRAF under conditions reflective of chronic stress on the heart due to the biomechanical stimulation exerted by hypertension. In addition, the role of BRAF and its activation in overt heart failure remains to be established. Nevertheless, the new findings highlight the potential importance of additional signaling events, perhaps related to RAF1 or ERK1/2 activation, in shaping BRAF signaling in a sex- and context-dependent manner.
Collapse
Affiliation(s)
- Raffaele Altara
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, U.S.A
- Department of Anatomy and Embryology, Maastricht University, Maastricht, The Netherlands
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS, U.S.A
- Correspondence: George W. Booz ()
| |
Collapse
|
8
|
Kumar S, Shih CM, Tsai LW, Dubey R, Gupta D, Chakraborty T, Sharma N, Singh AV, Swarup V, Singh HN. Transcriptomic Profiling Unravels Novel Deregulated Gene Signatures Associated with Acute Myocardial Infarction: A Bioinformatics Approach. Genes (Basel) 2022; 13:genes13122321. [PMID: 36553589 PMCID: PMC9777571 DOI: 10.3390/genes13122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction (AMI) is a severe disease with elevated morbidity and mortality rate worldwide. This is attributed to great losses of cardiomyocytes, which can trigger the alteration of gene expression patterns. Although several attempts have been made to assess the AMI biomarkers, to date their role in rescuing myocardial injury remains unclear. Therefore, the current study investigated three independent microarray-based gene expression datasets from AMI patients (n = 85) and their age-sex-matched healthy controls (n = 70), to identify novel gene signatures that might be involved in cardioprotection. The differentially expressed genes (DEGs) were analyzed using 'GEO2R', and weighted gene correlation network analysis (WGCNA) was performed to identify biomarkers/modules. We found 91 DEGs, of which the number of upregulated and downregulated genes were 22 and 5, respectively. Specifically, we found that the deregulated genes such as ADOR-A3, BMP6, VPS8, and GPx3, may be associated with AMI. WGCNA revealed four highly preserved modules among all datasets. The 'Enrichr' unveiled the presence of miR-660 and STAT1, which is known to affect AMI severity. Conclusively, these genes and miRNA might play a crucial role the rescue of cardiomyocytes from severe damage, which could be helpful in developing appropriate therapeutic strategies for the management of AMI.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park-III, Greater Noida 201310, India
| | - Chun-Ming Shih
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 111031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 111031, Taiwan
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei 111031, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei 11031, Taiwan
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 111031, Taiwan
| | - Deepika Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tanmoy Chakraborty
- Department of Chemistry and Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park-III, Greater Noida 201310, India
| | - Naveen Sharma
- Biomedical Informatics Division, Indian Council of Medical Research, New Delhi 110029, India
| | | | - Vishnu Swarup
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
- Correspondence: (V.S.); or (H.N.S.)
| | - Himanshu Narayan Singh
- Department of System Biology, University of Columbia Irving Medical Center, New York, NY 10032, USA
- Correspondence: (V.S.); or (H.N.S.)
| |
Collapse
|
9
|
Alharbi H, Hardyman M, Cull J, Markou T, Cooper S, Glennon P, Fuller S, Sugden P, Clerk A. Cardiomyocyte BRAF is a key signalling intermediate in cardiac hypertrophy in mice. Clin Sci (Lond) 2022; 136:1661-1681. [PMID: 36331065 PMCID: PMC9679367 DOI: 10.1042/cs20220607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 04/21/2024]
Abstract
Cardiac hypertrophy is necessary for the heart to accommodate an increase in workload. Physiological, compensated hypertrophy (e.g. with exercise) is reversible and largely due to cardiomyocyte hypertrophy. Pathological hypertrophy (e.g. with hypertension) is associated with additional features including increased fibrosis and can lead to heart failure. RAF kinases (ARAF/BRAF/RAF1) integrate signals into the extracellular signal-regulated kinase 1/2 cascade, a pathway implicated in cardiac hypertrophy, and activation of BRAF in cardiomyocytes promotes compensated hypertrophy. Here, we used mice with tamoxifen-inducible cardiomyocyte-specific BRAF knockout (CM-BRAFKO) to assess the role of BRAF in hypertension-associated cardiac hypertrophy induced by angiotensin II (AngII; 0.8 mg/kg/d, 7 d) and physiological hypertrophy induced by phenylephrine (40 mg/kg/d, 7 d). Cardiac dimensions/functions were measured by echocardiography with histological assessment of cellular changes. AngII promoted cardiomyocyte hypertrophy and increased fibrosis within the myocardium (interstitial) and around the arterioles (perivascular) in male mice; cardiomyocyte hypertrophy and interstitial (but not perivascular) fibrosis were inhibited in mice with CM-BRAFKO. Phenylephrine had a limited effect on fibrosis but promoted cardiomyocyte hypertrophy and increased contractility in male mice; cardiomyocyte hypertrophy was unaffected in mice with CM-BRAFKO, but the increase in contractility was suppressed and fibrosis increased. Phenylephrine induced a modest hypertrophic response in female mice and, in contrast with the males, tamoxifen-induced loss of cardiomyocyte BRAF reduced cardiomyocyte size, had no effect on fibrosis and increased contractility. The data identify BRAF as a key signalling intermediate in both physiological and pathological hypertrophy in male mice, and highlight the need for independent assessment of gene function in females.
Collapse
Affiliation(s)
- Hajed O. Alharbi
- School of Biological Sciences, University of Reading, Reading, U.K
| | | | - Joshua J. Cull
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Thomais Markou
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Susanna T.E. Cooper
- Molecular and Clinical Sciences Institute, St. George’s University of London, London, U.K
| | - Peter E. Glennon
- University Hospitals Coventry and Warwickshire, University Hospital Cardiology Department, Clifford Bridge Road, Coventry, U.K
| | | | - Peter H. Sugden
- School of Biological Sciences, University of Reading, Reading, U.K
| | - Angela Clerk
- School of Biological Sciences, University of Reading, Reading, U.K
| |
Collapse
|