1
|
Pylkkänen R, Mohammadi P, Liljeström V, Płaziński W, Beaune G, Timonen JVI, Penttilä M. β-1,3-Glucan synthesis, novel supramolecular self-assembly, characterization and application. NANOSCALE 2022; 14:15533-15541. [PMID: 36194159 DOI: 10.1039/d2nr02731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
β-1,3-Glucans are ubiquitously observed in various biological systems with diverse physio-ecological functions, yet their underlying assembly mechanism and multiscale complexation in vitro remains poorly understood. Here, we provide for the first-time evidence of unidentified β-1,3-glucan supramolecular complexation into intricate hierarchical architectures over several length scales. We mediated these unique assemblies using a recombinantly produced β-1,3-glucan phosphorylase (Ta1,3BGP) by fine-tuning solution conditions during particle nucleation and growth. We report a synthesis of interconnected parallel hexagonal lamellae composed of 8 nm thick sheets of highly expanded paracrystals. The architecture consists of β-1,3-glucan triple-helices with considerable inter-intra hydrogen bonding within, as well as in between adjacent triple-helices. The results extend our understanding of β-1,3-glucan molecular organization and shed light on different aspects of the crystallization processes of biomolecules into structures unseen by nature. The presented versatile synthesis yields new materials for diverse medical and industrial applications.
Collapse
Affiliation(s)
- Robert Pylkkänen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| | | | - Ville Liljeström
- Nanomicroscopy Center, OtaNano, Aalto University, FI-00076 Aalto, Finland
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krakow, Poland
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grégory Beaune
- Nanomicroscopy Center, OtaNano, Aalto University, FI-00076 Aalto, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, School of Science, Aalto University, FI-00076 Aalto, Finland
| | - Merja Penttilä
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
- VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
| |
Collapse
|
2
|
Škodová-Sveráková I, Prokopchuk G, Peña-Diaz P, Záhonová K, Moos M, Horváth A, Šimek P, Lukeš J. Unique Dynamics of Paramylon Storage in the Marine Euglenozoan Diplonema papillatum. Protist 2020; 171:125717. [PMID: 32087573 DOI: 10.1016/j.protis.2020.125717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/07/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Diplonemids belong to the most diverse and abundant marine protists, which places them among the key players of the oceanic ecosystem. Under in vitro conditions, their best-known representative Diplonema papillatum accumulates in its cytoplasm a crystalline polymer. When grown under the nutrient-poor conditions, but not nutrient-rich conditions, D. papillatum synthesizes a β-1,3-glucan polymer, also known as paramylon. This phenomenon is unexpected, as it is in striking contrast to the accumulation of paramylon in euglenids, since these related flagellates synthesize this polymer solely under nutrient-rich conditions. The capacity of D. papillatum to store an energy source in the form of polysaccharides when the environment is poor in nutrients is unexpected and may contribute to the wide distribution of these protists in the ocean.
Collapse
Affiliation(s)
- Ingrid Škodová-Sveráková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Šimek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
3
|
Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci 2017; 18:ijms18091906. [PMID: 28872611 PMCID: PMC5618555 DOI: 10.3390/ijms18091906] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
β-Glucans are a group of biologically-active fibers or polysaccharides from natural sources with proven medical significance. β-Glucans are known to have antitumor, anti-inflammatory, anti-obesity, anti-allergic, anti-osteoporotic, and immunomodulating activities. β-Glucans are natural bioactive compounds and can be taken orally, as a food supplement, or as part of a daily diet, and are considered safe to use. The medical significance and efficiency of β-glucans are confirmed in vitro, as well as using animal- and human-based clinical studies. However, systematic study on the clinical and physiological significance of β-glucans is scarce. In this review, we not only discuss the clinical and physiological importance of β-glucans, we also compare their biological activities through the existing in vitro and animal-based in vivo studies. This review provides extensive data on the clinical study of β-glucans.
Collapse
|
4
|
Bull AT, Chesters CG. The biochemistry of laminarin and the nature of laminarinase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 28:325-64. [PMID: 5334063 DOI: 10.1002/9780470122730.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Andersen RA. Biology and systematics of heterokont and haptophyte algae. AMERICAN JOURNAL OF BOTANY 2004; 91:1508-1522. [PMID: 21652306 DOI: 10.3732/ajb.91.10.1508] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classified into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed significantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heterokont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas).
Collapse
Affiliation(s)
- Robert A Andersen
- Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA
| |
Collapse
|
6
|
Ukai S, Yokoyama S, Hara C, Kiho T. Structure of an alkali-soluble polysaccharide from the fruit body of Ganoderma japonicum Lloyd. Carbohydr Res 1982. [DOI: 10.1016/s0008-6215(00)84971-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Howard RJ, Wright SW, Grant BR. Structure and Some Properties of Soluble 1,3-beta-Glucan Isolated from the Green Alga Caulerpa simpliciuscula. PLANT PHYSIOLOGY 1976; 58:459-63. [PMID: 16659697 PMCID: PMC543239 DOI: 10.1104/pp.58.4.459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The properties of the soluble beta-glucans formed during photosynthesis of the green siphonous alga Caulerpa simpliciuscula are described. There are two components in the soluble beta-glucan fraction. One has an apparent degree of polymerization of 37 glucose units and the other of 270 glucose units. The beta-glucan with the lower apparent molecular weight accounts for most of the mass in the beta-glucan fraction and is similar in properties to soluble laminarins reported in other algal and fungal species. The beta-glucan with the high apparent molecular weight contains most of the radioactivity accumulated in the beta-glucan fraction during short periods of photosynthesis.
Collapse
Affiliation(s)
- R J Howard
- Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria, 3052, Australia
| | | | | |
Collapse
|
8
|
Marshall JJ. Application of enzymic methods to the structural analysis of polysaccharides: part I. Adv Carbohydr Chem Biochem 1974; 30:257-370. [PMID: 4620244 DOI: 10.1016/s0065-2318(08)60267-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
|
10
|
|
11
|
Manners DJ, Ryley JF, Stark JR. Studies on the metabolism of the protozoa. The molecular structure of the reserve polysaccharide from Astasia ocellata. Biochem J 1966; 101:323-7. [PMID: 4290721 PMCID: PMC1270112 DOI: 10.1042/bj1010323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. The flagellate Astasia ocellata synthesizes as reserve carbohydrate a water-insoluble polysaccharide (paramylon) containing chains of beta-(1-->3)-linked d-glucose residues. 2. The average chain length, determined by methylation analysis, is about 43, and the minimum degree of polymerization from periodate oxidation data is 50-55. Most of the molecules are therefore essentially linear.
Collapse
|
12
|
Williams BL, Goodwin TW, Ryley JF. The sterol content of some protozoa. THE JOURNAL OF PROTOZOOLOGY 1966; 13:227-30. [PMID: 5953843 DOI: 10.1111/j.1550-7408.1966.tb01898.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Manners DJ, Mercer GA, Stark JR, Ryley JF. Studies on the metabolism of the protozoa. The molecular structure of a starch-type polysaccharide from Polytoma uvella. Biochem J 1965; 96:530-2. [PMID: 5837791 PMCID: PMC1207071 DOI: 10.1042/bj0960530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. Polytoma uvella, when grown in an acetate-containing medium, synthesizes a starch-type polysaccharide. 2. The starch differs from normal plant starches in having a lower iodine affinity, and in being relatively insoluble; this latter property makes fractionation difficult. 3. The starch contains about 16% of amylose, and on fractionation yields a branched amylopectin component that is similar in structure to a typical plant starch amylopectin.
Collapse
|
14
|
Marechal LR, Goldemberg SH. Uridine Diphosphate Glucose-β-1,3-Glucan β-3-Glucosyltransferase from Euglena gracilis. J Biol Chem 1964. [DOI: 10.1016/s0021-9258(18)97699-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|