1
|
Block A, Widhalm JR, Fatihi A, Cahoon RE, Wamboldt Y, Elowsky C, Mackenzie SA, Cahoon EB, Chapple C, Dudareva N, Basset GJ. The Origin and Biosynthesis of the Benzenoid Moiety of Ubiquinone (Coenzyme Q) in Arabidopsis. THE PLANT CELL 2014; 26:1938-1948. [PMID: 24838974 PMCID: PMC4079360 DOI: 10.1105/tpc.114.125807] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 05/18/2023]
Abstract
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA mutants indicated that acyl-activating enzyme encoded by At4g19010 contributes to the biosynthesis of ubiquinone specifically from phenylalanine. CoA ligase assays verified that At4g19010 prefers para-coumarate, ferulate, and caffeate as substrates. Feeding experiments demonstrated that the at4g19010 knockout cannot use para-coumarate for ubiquinone biosynthesis and that the supply of 4-hydroxybenzoate, the side-chain shortened version of para-coumarate, can bypass this blockage. Furthermore, a trans-cinnamate 4-hydroxylase mutant, which is impaired in the conversion of trans-cinnamate into para-coumarate, displayed similar defects in ubiquinone biosynthesis to that of the at4g19010 knockout. Green fluorescent protein fusion experiments demonstrated that At4g19010 occurs in peroxisomes, resulting in an elaborate biosynthetic architecture where phenylpropanoid intermediates have to be transported from the cytosol to peroxisomes and then to mitochondria where ubiquinone is assembled. Collectively, these results demonstrate that At4g19010 activates the propyl side chain of para-coumarate for its subsequent β-oxidative shortening. Evidence is shown that the peroxisomal ABCD transporter (PXA1) plays a critical role in this branch.
Collapse
Affiliation(s)
- Anna Block
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Joshua R Widhalm
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Abdelhak Fatihi
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Yashitola Wamboldt
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Christian Elowsky
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Sally A Mackenzie
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Gilles J Basset
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
2
|
Marbois BN, Clarke CF. The COQ7 gene encodes a protein in saccharomyces cerevisiae necessary for ubiquinone biosynthesis. J Biol Chem 1996; 271:2995-3004. [PMID: 8621692 DOI: 10.1074/jbc.271.6.2995] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ubiquinone (coenzyme Q) is a lipid that transports electrons in the respiratory chains of both prokaryotes and eukaryotes. Mutants of Saccharomyces cerevisiae deficient in ubiquinone biosynthesis fail to grow on nonfermentable carbon sources and have been classified into eight complementation groups (coq1 coq8; Tzagoloff, A., and Dieckmann, C. L.(1990) Microbiol. Rev. 54, 211-225). In this study we show that although yeast coq7 mutants lack detectable ubiquinone, the coq7 1 mutant does synthesize demethoxyubiquinone (2-hexaprenyl-3-methyl-6-methoxy-1,4-benzoquinone), a ubiquinone biosynthetic intermediate. The corresponding wild-type COQ7 gene was isolated, sequenced, and found to restore growth on nonfermentable carbon sources and the synthesis of ubiquinone. The sequence predicts a polypeptide of 272 amino acids which is 40% identical to a previously reported Caenorhabditis elegans open reading frame. Deletion of the chromosomal COQ7 gene generates respiration defective yeast mutants deficient in ubiquinone. Analysis of several coq7 deletion strains indicates that, unlike the coq7 1 mutant, demethoxyubiquinone is not produced. Both coq7 1 and coq7 deletion mutants, like other coq mutants, accumulate an early intermediate in the ubiquinone biosynthetic pathway, 3-hexaprenyl-4-hydroxybenzoate. The data suggest that the yeast COQ7 gene may encode a protein involved in one or more monoxygenase or hydroxylase steps of ubiquinone biosynthesis.
Collapse
Affiliation(s)
- B N Marbois
- Department of Chemistry and Biochemistry, School of Medicine, University of California, Los Angeles, 90095, USA
| | | |
Collapse
|
3
|
Takizawa K, Fukushima K, Maebayashi Y, Okada K, Nishimura K, Miyaji M. Isolation and structural elucidation of a dihydroubiquinone-9 from the fungusAureobasidium pullulans. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05246.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Thomas G, Threlfall DR. Polyprenyl pyrophosphate-p-hydroxybenzoate polyprenyltransferase activity in mitochondria of broad-bean seeds and yeast. Biochem J 1973; 134:811-4. [PMID: 4356126 PMCID: PMC1177878 DOI: 10.1042/bj1340811] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-free homogenates prepared from broad-bean seeds and yeast cells are capable of synthesizing 4-carboxy-2-polyprenylphenols from p-hydroxybenzoate and either isopentenyl pyrophosphate or protein-bound polyprenyl pyrophosphates (produced by incubating a Micrococcus lysodeikticus extract with isopentenyl pyrophosphate). The mitochondria contained all the polyprenyl pyrophosphate-p-hydroxybenzoate polyprenyltransferase activity; however, unlike the homogenates they could not synthesize a side chain from isopentenyl pyrophosphate and had to be provided with protein-bound polyprenyl pyrophosphates.
Collapse
|
8
|
Young IG, Stroobant P, Macdonald CG, Gibson F. Pathway for ubiquinone biosynthesis in Escherichia coli K-12: gene-enzyme relationships and intermediates. J Bacteriol 1973; 114:42-52. [PMID: 4572721 PMCID: PMC251738 DOI: 10.1128/jb.114.1.42-52.1973] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seven ubiquinone-deficient mutants of Escherichia coli, each of which accumulates two phenolic precursors of ubiquinone, have been characterized, and the accumulated compounds have been identified. The mutants accumulate small quantities of 2-octaprenyl-6-methoxyphenol, which was isolated and characterized by nuclear magnetic resonance and mass spectrometry, and relatively large amounts of 2-octaprenylphenol, a compound previously identified from E. coli. They also accumulate small quantities of a compound identified as 2-(hydroxyoctaprenyl)phenol although the relevance of this compound to the biosynthesis of ubiquinone is not clear. The results of genetic analysis suggest that each of the mutants carries a mutation in a gene (designated ubiH) which is located at about min 56 on the E. coli chromosome and is co-transducible with the serA and lysB genes. Based on information obtained from this and previous studies with ubiquinone-deficient mutants, a pathway is proposed for ubiquinone biosynthesis in E. coli, and a summary of the known gene-enzyme relationships is given.
Collapse
|
9
|
|