1
|
Meyer M. Processing of collagen based biomaterials and the resulting materials properties. Biomed Eng Online 2019; 18:24. [PMID: 30885217 PMCID: PMC6423854 DOI: 10.1186/s12938-019-0647-0] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Collagen, the most abundant extracellular matrix protein in animal kingdom belongs to a family of fibrous proteins, which transfer load in tissues and which provide a highly biocompatible environment for cells. This high biocompatibility makes collagen a perfect biomaterial for implantable medical products and scaffolds for in vitro testing systems. To manufacture collagen based solutions, porous sponges, membranes and threads for surgical and dental purposes or cell culture matrices, collagen rich tissues as skin and tendon of mammals are intensively processed by physical and chemical means. Other tissues such as pericardium and intestine are more gently decellularized while maintaining their complex collagenous architectures. Tissue processing technologies are organized as a series of steps, which are combined in different ways to manufacture structurally versatile materials with varying properties in strength, stability against temperature and enzymatic degradation and cellular response. Complex structures are achieved by combined technologies. Different drying techniques are performed with sterilisation steps and the preparation of porous structures simultaneously. Chemical crosslinking is combined with casting steps as spinning, moulding or additive manufacturing techniques. Important progress is expected by using collagen based bio-inks, which can be formed into 3D structures and combined with live cells. This review will give an overview of the technological principles of processing collagen rich tissues down to collagen hydrolysates and the methods to rebuild differently shaped products. The effects of the processing steps on the final materials properties are discussed especially with regard to the thermal and the physical properties and the susceptibility to enzymatic degradation. These properties are key features for biological and clinical application, handling and metabolization.
Collapse
Affiliation(s)
- Michael Meyer
- Research Institute for Leather and Plastic Sheeting, Meissner Ring 1-5, 09599, Freiberg, Germany.
| |
Collapse
|
2
|
Effects of lyotropic anions on thermodynamic stability and dynamics of horse cytochrome c. Biophys Chem 2018; 240:88-97. [DOI: 10.1016/j.bpc.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 11/19/2022]
|
3
|
Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:163-171. [PMID: 27524008 DOI: 10.1016/j.msec.2016.05.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023]
Abstract
Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- M B Fauzi
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Y Lokanathan
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - B S Aminuddin
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia; Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, 68000 Ampang, Selangor, Malaysia
| | - B H I Ruszymah
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia; Department of Physiology, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - S R Chowdhury
- Tissue Engineering Centre, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
High concentration of propanol does not significantly alter the triple helical structure of type I collagen. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Alliraja C, Rao JR, Thanikaivelan P. Magnetic collagen fibers stabilized using functional iron oxide nanoparticles in non-aqueous medium. RSC Adv 2015. [DOI: 10.1039/c4ra16181e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermostable magnetic collagen fibers prepared using functional iron oxide nanoparticles in heptane medium provide avenues for applications in environmental protection and leather making.
Collapse
Affiliation(s)
- C. Alliraja
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai 600020
- India
| | - J. Raghava Rao
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai 600020
- India
| | - P. Thanikaivelan
- Central Leather Research Institute (Council of Scientific and Industrial Research)
- Chennai 600020
- India
| |
Collapse
|
6
|
Zha Z, Teng W, Markle V, Dai Z, Wu X. Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers 2012; 97:1026-36. [PMID: 22987593 DOI: 10.1002/bip.22120] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrospinning of natural polymer nanofibers useful for biomedical applications often requires the use of cytotoxic organic solvents. In this study, gelatin nanofibers are electrospun from phosphate buffer saline/ethanol binary mixtures as a benign solvent at ambient temperature. The influences of ionic strength, ethanol concentration, and gelatin concentration on the electrospinnability of gelatin solutions and the fiber microarchitectures are analyzed. The electrospun scaffolds retain their morphologies during vapor-phase crosslinking with glutaraldehyde in ethanol and the subsequent removal of salts contained in the nanofibers via water rinsing. When fully hydrated, the mechanically preconditioned scaffolds display a Young's modulus of 25.5 ± 5.3 kPa, tensile strength of 55.5 ± 13.9 kPa, deformability of 160 ± 15%, and resilience of 89.9 ± 1.8%. When cultured on the gelatin scaffolds, 3T3 fibroblasts displayed spindle-like morphology, similar to the cell's normal morphology in a 3D extracellular matrix.
Collapse
Affiliation(s)
- Zhengbao Zha
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
7
|
Dong Z, Wu Y, Clark RL. Thermodynamic modeling and investigation of the formation of electrospun collagen fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12417-12422. [PMID: 21823663 DOI: 10.1021/la201859c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electrospun type I collagen fibers are very promising materials for tissue scaffold applications, but are typically fabricated from toxic solvents. Recently, electrospinning of type I collagen fibers by using environmentally friendly phosphate buffer saline (PBS)/ethanol solution has been explored. PBS/ethanol solvent systems offer better cell compatibility, but the high surface tension and high boiling point of the solvent system make the collagen difficult to electrospin and can cause inferior fiber morphology. In this study, the influence of solvent surface tension on the morphology of electrospun collagen fibers has been experimentally investigated and analyzed from a thermodynamics perspective. The analytical results indicate that solvents with high surface tension drive the formation of beads along the smaller, thinner fibers. In addition, beads with relatively small angular eccentricity were thermodynamically favorable. The experimental results presented herein corroborate the theoretical analysis and conclusions drawn from this study. The surface tension of the solvent has significant influence on the bead formation, especially in an aqueous system. The environmental humidity for the electrospinning process and the collagen concentration were also investigated. These parameters may result in variations of the evaporation-solidification rates, which consequently impact the formation and morphologies of electrospun collagen fibers. According to the thermodynamic analysis, uniform electrospun collagen fibers without beads can be obtained by manipulating solvent surface tension during the electrospinning process.
Collapse
Affiliation(s)
- Zexuan Dong
- Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
8
|
The effects of salt-curing and salting procedures on the microstructure of cod (Gadus morhua) muscle. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.085] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
CHANG HAIJUN, WANG QIANG, ZHOU GUANGHONG, XU XINGLIAN, LI CHUNBAO. INFLUENCE OF WEAK ORGANIC ACIDS AND SODIUM CHLORIDE MARINATION ON CHARACTERISTICS OF CONNECTIVE TISSUE COLLAGEN AND TEXTURAL PROPERTIES OF BEEF SEMITENDINOSUS MUSCLE. J Texture Stud 2010. [DOI: 10.1111/j.1745-4603.2010.00226.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Gawron K, Jensen DA, Steplewski A, Fertala A. Reducing the effects of intracellular accumulation of thermolabile collagen II mutants by increasing their thermostability in cell culture conditions. Biochem Biophys Res Commun 2010; 396:213-8. [PMID: 20394730 DOI: 10.1016/j.bbrc.2010.04.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022]
Abstract
Mutations in collagen II are associated with spondyloepiphyseal dysplasia, a group of heritable diseases whose common features include aberrations of skeletal growth. The mechanisms through which mutations in collagen II affect the cartilaginous tissues are complex and include both intracellular and extracellular processes. One of those mechanisms involves cellular stress caused by excessive accumulation of misfolded collagen II mutants. We investigated whether stabilizing the structure of thermolabile R789C and R992C collagen II mutants would improve their secretion from cells, thereby reducing cellular stress and apoptosis. Employing glycerol and trimethylamine N-oxide (TMAO), chemicals that increase the thermostability of collagen triple helices, we demonstrated that those compounds function as chaperones and stabilize the R789C and R992C mutants, accelerate their secretion, and improve cell survival. Our study provides a scientific basis for considering misfolded triple helices of collagen mutants a target for reducing the deleterious effects caused by their excessive intracellular accumulation.
Collapse
Affiliation(s)
- Katarzyna Gawron
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
11
|
Dong B, Arnoult O, Smith ME, Wnek GE. Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents. Macromol Rapid Commun 2009; 30:539-42. [DOI: 10.1002/marc.200800634] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/10/2008] [Accepted: 12/18/2008] [Indexed: 11/06/2022]
|
12
|
Toniolo C, Bonora GM, Fontana A. Polyhydric alcohols: structure-supporting solvents for polypeptides and proteins. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 2009; 6:283-5. [PMID: 4372189 DOI: 10.1111/j.1399-3011.1974.tb02386.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Wells PB, Yeh AT, Humphrey JD. Influence of Glycerol on the Mechanical Reversibility and Thermal Damage Susceptibility of Collagenous Tissues. IEEE Trans Biomed Eng 2006; 53:747-53. [PMID: 16602582 DOI: 10.1109/tbme.2006.870232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical procedures wherein supraphysiologic temperatures must be achieved in deep layers of tissue via light are often compromised by optical scattering and absorption. Optical clearing of tissue superficial to the target improves the efficacy of such procedures. Glycerol is an attractive chemical agent for achieving dramatic reductions in tissue turbidity, but its net effects on healthy tissue are not fully understood. In this paper, we investigate possible alterations of biaxial mechanical properties in a model collagenous tissue, bovine epicardium, induced by glycerol. Furthermore, we examine the effects of glycerol on the biaxial thermomechanical properties of epicardium constrained at near-physiologic length. It is seen that mechanical changes induced by glycerol are fully reversed upon rehydration in normal saline. Moreover, glycerol protects cleared tissue by increasing its thermal stability and minimizing thermal alterations of mechanical properties.
Collapse
Affiliation(s)
- Paul B Wells
- Texas A&M University, College Station, TX 7784, USA.
| | | | | |
Collapse
|
14
|
Yeh AT, Hirshburg J. Molecular interactions of exogenous chemical agents with collagen--implications for tissue optical clearing. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:014003. [PMID: 16526880 DOI: 10.1117/1.2166381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Reduction of optical scattering in turbid biological tissues using nonreactive chemical agents has potential applications for light-based diagnostics and therapeutics. Optical clearing effects by exogenous chemical agents, in particular sugars and sugar alcohols, have been found to be temporary with tissue rehydration. Applications with dermatologic laser therapies are now being investigated, but suffer from the inability of studied agents to penetrate the superficial layers of human skin. Selection, design, and refinement of topically effective chemical agents are hindered by a lack of fundamental understanding of tissue clearing mechanisms. We present recent work, particularly from the biochemistry community, detailing molecular interactions between chemical agents and collagen. This body of work demonstrates the perturbative effects of sugars and sugar alcohols on collagen high-order structures at micro- and nanometer length scales by screening noncovalent bonding forces. In addition, these studies emphasize the nonreactive nature of agent-collagen interactions and the ability of noncovalent bonding forces to recover with agent removal and drive reassembly of destabilized collagen structures. A mechanism of tissue optical clearing is proposed based on agent destabilization of high-order collagen structures.
Collapse
Affiliation(s)
- Alvin T Yeh
- Texas A&M University, Department of Biomedical Engineering, 337 Zachry Engineering Center, 3120 TAMU, College Station, Texas 77843, USA.
| | | |
Collapse
|
15
|
Aktaş N, Kaya M. Influence of weak organic acids and salts on the denaturation characteristics of intramuscular connective tissue. A differential scanning calorimetry study. Meat Sci 2001; 58:413-9. [DOI: 10.1016/s0309-1740(01)00044-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2000] [Revised: 11/30/2000] [Accepted: 01/16/2001] [Indexed: 10/18/2022]
|
16
|
Brown EM, Farrell HM, Wildermuth RJ. Influence of neutral salts on the hydrothermal stability of acid-soluble collagen. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:85-92. [PMID: 10945432 DOI: 10.1023/a:1007074314686] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The thermal stability of acid-soluble collagens was studied by circular dichroism (CD) spectroscopy. Adult bovine dermal collagen (BDC), rat-tail tendon collagen (RTC), and calf skin collagen (CSC) were compared. Despite some variability in amino acid composition and apparent molecular weight, the CD spectra for helical and unordered collagen structures were essentially the same for all the sources. The melting of these collagens occurs as a two-stage process characterized by a pretransition (Tp) followed by complete denaturation (Td). The characteristic temperatures vary with the source of the collagen; for mature collagens (BDC, RTC) Tp = 30 degrees C and Td = 36 degrees C, and for CSC Tp = 34 degrees C and Td = 40 degrees C. Neutral salts, NaCl or KCl, at low concentrations (0.02-0.2 M) appear to bind to the collagens and shift the thermal transitions of these collagens to lower temperatures.
Collapse
Affiliation(s)
- E M Brown
- Eastern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
17
|
|
18
|
Komsa-Penkova R, Koynova R, Kostov G, Tenchov BG. Thermal stability of calf skin collagen type I in salt solutions. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1297:171-81. [PMID: 8917619 DOI: 10.1016/s0167-4838(96)00092-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The thermal stability of acid-soluble collagen type I from calf skin in salt solutions is studied by high-sensitivity differential scanning calorimetry. Three concentration ranges have been clearly distinguished in the dependence of collagen thermal stability on ion concentration. At concentrations below 20 mM, all studied salts reduce the temperature of collagen denaturation with a factor of about 0.2 degree C per 1 mM. This effect is attributed to screening of electrostatic interactions leading to collagen stabilisation. At higher concentrations, roughly in the range 20-500 mM, the different salts either slightly stabilise or further destabilise the collagen molecule in salt-specific way that correlates with their position in the lyotropic series. The effect of anions is dominating and follows the order H2PO4- > or = SO4(2-) > Cl- > SCN-, with sign inversion at about SO4(2-). This effect, generally known as the Hofmeister effect, is associated with indirect protein-salt interactions exerted via competition for water molecules between ions and the protein surface. At still higher salt concentrations (onset concentrations between 200 and 800 mM for the different salts), the temperature of collagen denaturation and solution opacity markedly increase for all studied salts due to protein salting out and aggregation. The ability of salts to salt out collagen also correlates with their position in the lyotropic series and increases for chaotropic ions. The SO4(2-) anions interact specifically with collagen - they induce splitting of the protein denaturation peak into two components in the range 100-150 mM Na2SO4 and 300-750 mM Li2SO4. The variations of the collagen denaturation enthalpy at low and intermediate salt concentrations are consistent with a weak linear increase of the enthalpy with denaturation temperature. Its derivative, d(delta H)/dT, is approximately equal to the independently measured difference in the heat capacities of the denatured and native states, delta Cp = Cp(D) - Cp(N) approximately 0.1 cal.g-1 K-1.
Collapse
Affiliation(s)
- R Komsa-Penkova
- Department of Biochemistry, Medical University of Pleven, Bulgaria
| | | | | | | |
Collapse
|
19
|
Chachra D, Gratzer PF, Pereira CA, Lee JM. Effect of applied uniaxial stress on rate and mechanical effects of cross-linking in tissue-derived biomaterials. Biomaterials 1996; 17:1865-75. [PMID: 8889066 DOI: 10.1016/0142-9612(95)00305-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Conformational changes in collagen fibrils, and indeed the triple helix, can be produced by application of mechanical stress or strain. We have demonstrated that the rate of cross-linking in glutaraldehyde and epoxide homobifunctional reagents can be modulated by uniaxial stress (strain). Two poly(glycidyl ether) epoxides were used: Denacol EX-810 (a small bifunctional reagent), and Denacol EX-512 (a large polyfunctional reagent). To prevent any possible effect from being masked by saturation of cross-linking sites, bovine pericardium was cross-linked to such an extent that the increase in collagen denaturation temperature, Td, was one-half of the maximal rise achievable with each reagent. Uniaxial tensile stress of 0, 15, 124 or 233 kPa was applied during cross-linking. Cross-linking rate (as observed by increase in Td) increased with increasing stress to a maximum at 124 kPa in glutaraldehyde at pH 7 but decreased in EX-810 at pH 7. In each case, the effect was small but statistically significant. No effect was observed with the larger EX-512. Cross-linking under increasing stress also showed systematic effects on mechanical properties: decreasing extensibility and plastic strain while increasing tensile strength. In each case, the effects of the epoxides were slightly different from those of glutaraldehyde. In preparation for the above experiments, studies of the effect of pH, temperature, and exposure time were carried out for each epoxide and (to a lesser extent) for glutaraldehyde. Again, systematic changes in mechanical properties were observed with increasing Td. Conformational changes in collagen produced by mechanical stress (strain) modulate the rate of cross-linking and the resulting mechanical properties; however, the effects are sensitive to the reagent employed.
Collapse
Affiliation(s)
- D Chachra
- Centre for Biomaterials, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
20
|
Gratzer PF, Pereira CA, Lee JM. Solvent environment modulates effects of glutaraldehyde crosslinking on tissue-derived biomaterials. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1996; 31:533-43. [PMID: 8836851 DOI: 10.1002/(sici)1097-4636(199608)31:4<533::aid-jbm14>3.0.co;2-h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bioprosthetic materials utilized in the construction of heart valves and vascular grafts possess limited performance and viability in vivo. This is due (in part) to the failure of these materials to mimic the mechanical properties of the host tissue they replace. If bioprosthetic materials could be engineered to meet the mechanical performance required in vivo, the functional lifetime of implants would be increased. In this study, glutaraldehyde/solvent solutions of decreasing dielectric constant (polarity) were utilized to modify the properties of crosslinked collagen in whole bovine pericardial tissue. Solvents included phosphate buffer, methanol, 95% (w/w) ethanol, n-propanol, and n-butanol. Exogenous crosslinking was verified in collagen by thermal denaturation tests and amino acid analyses. Tensile mechanical behavior of collagenous pericardial samples was found to depend upon the dielectric constant (polarity) of the glutaraldehyde/solvent solutions employed; however, treatment in the solvents alone had little, if any, effect. As the dielectric constant of the solvents decreased, three mechanical properties were systematically altered: plastic strain fell from a mean of 8.9 +/- 1.5% (buffer) to 1.6 +/- 0.4% (n-butanol); strain at fracture increased from 32.2 +/- 2.6% (buffer) to 55.6 +/- 4.6% (n-butanol); and percent stress remaining after 1000-s stress relaxation from an 80-g initial load fell from 86.3 +/- 1.1% (buffer) to 76.9 +/- 1.0% (n-butanol). Crosslinking using a glutaraldehyde/n-butanol solution produced materials with tensile mechanical behavior that was very close to that of fresh tissue; however, the flexural properties of the treated tissue were different from those of fresh tissue. This decoupling of the flexural and tensile mechanical behaviors of crosslinked bioprosthetic materials is unique to this form of treatment. The observed phenomena may be the results of conformational changes in collagen facilitated by polar/nonpolar interactions with the solvent that are "locked in" by the action of glutaraldehyde. This technique may aid in the "customized" design of mechanical properties in tissue-derived biomaterials.
Collapse
Affiliation(s)
- P F Gratzer
- Centre for Biomaterials, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Shambaugh N, Fujimori E. Fluorescent-labeled crosslinks in collagen: pyrenebutyrylhydrazine. Biopolymers 1982; 21:79-88. [PMID: 7055636 DOI: 10.1002/bip.360210107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Karube I, Nishida T. Effect of alcohols on the collagen-phosphatidylcholine interaction. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 581:106-13. [PMID: 508788 DOI: 10.1016/0005-2795(79)90226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of phosphatidylcholine dispersions with acid soluble collagen separated from the skin of one month-old swine was studied to define the conditions facilitating the association of the collagen with lipids. When acid soluble collagen and phosphatidylcholine dispersions were incubated in 75 mM citrate buffer of pH 3.7 at 25 degrees C, the reisolated collagen fibrils did not contain appreciable amounts of phosphatidylcholine. However, the presence of n-propanol greatly promoted the retention of phosphatidylcholine, the amount of phosphatidylcholine associated being nearly 30% of collagen on a weight basis under optimal conditions. In contrast, methanol, ethanol, isopropanol, and n-butanol did not appreciably enhance the association of phosphatidylcholine with collagen. A limited inhibition of phosphatidylcholine retention was observed upon addition of sodium chloride to the propanol medium. The interaction of phosphatidylcholine with acid soluble collagen decreased sharply when temperature was increased above 30 degrees C; almost no phosphatidylcholine-collagen association occured at 40 degrees C. It appears that the enhanced association in the presence of n-propanol is due to a looseing of the collagen triple helix that exposes hydrophobic sites necessary for the interaction. However, the conversion of the triple helical structure to the random coil conformation by heating prevents the association of phosphatidylcholine with acid soluble collagen.
Collapse
|
23
|
Snowden JM, Swann DA. The formation and thermal stability of in vitro assembled fibrils from acid-soluble and pepsin-treated collagens. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 580:372-81. [PMID: 42446 DOI: 10.1016/0005-2795(79)90149-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of the non-helical regions of the collagen molecule in fibrillogenesis has been investigated by comparing the kinetics of fibril formation of pepsin-treated acid-soluble collagen, acid-soluble collagen and mixtures of the two and by comparison of the thermal stabilities of the fibrils formed. The acid-soluble collagen was found to aggregate more rapidly than the pepsin-treated collagen under physiological conditions of pH and ionic strength. Variations in ionic strength, at physiological pH, were found to have differing effects on the aggregation of these two forms of soluble collagen. Fibrils formed from the pepsinized-collagen had a lower thermal stability tha n those formed from the intact collagen. The behavior observed with mixtures of acid-soluble and pepsin-treated collagens was found to be quantitatively consistent with the pepsinized collagen being able to utilize the nuclei formed by the acid-soluble collagen for subsequent growth. However, the use of the acid-soluble nuclei by the pepsinized collagen for growth did not enhance its rate of precipitation during the growth phase, nor did it enhance the thermal stability of the fibrils formed from the pepsinized collagen.
Collapse
|
24
|
Zvanut C, Rodriguez F. Modulus jump and degradation of collagen gels: dependence on concentration and pH. POLYMER 1977. [DOI: 10.1016/0032-3861(77)90163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Franks F, Eagland D. The role of solvent interactions in protein conformation. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1975; 3:165-219. [PMID: 1100317 DOI: 10.3109/10409237509102556] [Citation(s) in RCA: 138] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Bonora GM, Toniolo C. Sequential oligopeptides. Conformational studies of the oligopeptides and a polypeptide with the repeating sequence L-norvalyl-glycyl-L-proline. Biopolymers 1974; 13:1067-78. [PMID: 4854246 DOI: 10.1002/bip.1974.360130519] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Russell AE. Effect of pH on thermal stability of collagen in the dispersed and aggregated states. Biochem J 1974; 139:277-80. [PMID: 4478066 PMCID: PMC1166277 DOI: 10.1042/bj1390277] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Thermal stabilities of mature insoluble collagen, salt-precipitated fibrils of acid-soluble collagen and acid-soluble collagen in solution were compared as a function of acid pH. Both insoluble and precipitated collagens showed large parallel destabilization with decrease in pH, whereas the intrinsic stability of individual collagen molecules in dilute solution was comparatively unaffected.
Collapse
|
28
|
Russell AE. Differential anion effects on thermal stability of collagen in the dispersed and aggregated states. Biochem J 1974; 137:599-602. [PMID: 4472752 PMCID: PMC1166163 DOI: 10.1042/bj1370599] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The effects of KCNS and KI on thermal transition temperatures of calf skin collagen molecules in dilute acid solution and precipitated collagen fibrils from the same source were compared as a function of salt concentration and pH. The two salts produced qualitatively similar effects on each collagen form, but the response shown by single collagen molecules in dilute solution differed from that observed for molecular aggregates present in native-type fibrils.
Collapse
|