1
|
Van de Poel B, de Vries J. Evolution of ethylene as an abiotic stress hormone in streptophytes. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2023; 214:105456. [PMID: 37780400 PMCID: PMC10518463 DOI: 10.1016/j.envexpbot.2023.105456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023]
Abstract
All land plants modulate their growth and physiology through intricate signaling cascades. The majority of these are at least modulated-and often triggered-by phytohormones. Over the past decade, it has become apparent that some phytohormones have an evolutionary origin that runs deeper than plant terrestrialization-many emerged in the streptophyte algal progenitors of land plants. Ethylene is such a case. Here we synthesize the current knowledge on the evolution of the phytohormone ethylene and speculate about its deeply conserved role in adjusting stress responses of streptophytes for more than half a billion years of evolution.
Collapse
Affiliation(s)
- Bram Van de Poel
- Molecular Plant Hormone Physiology lab, Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| |
Collapse
|
2
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020; 15:e0240886. [PMID: 33064769 PMCID: PMC7567356 DOI: 10.1371/journal.pone.0240886] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| |
Collapse
|
3
|
Ballester AR, González-Candelas L. EFE-Mediated Ethylene Synthesis Is the Major Pathway in the Citrus Postharvest Pathogen Penicillium digitatum during Fruit Infection. J Fungi (Basel) 2020; 6:jof6030175. [PMID: 32957714 PMCID: PMC7558865 DOI: 10.3390/jof6030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Penicillium digitatum is the main fungal postharvest pathogen of citrus fruit under Mediterranean climate conditions. The role of ethylene in the P. digitatum-citrus fruit interaction is unclear and controversial. We analyzed the involvement of the 2-oxoglutarate-dependent ethylene-forming enzyme (EFE)-encoding gene (efeA) of P. digitatum on the pathogenicity of the fungus. The expression of P. digitatumefeA parallels ethylene production during growth on PDA medium, with maximum levels reached during sporulation. We generated ΔefeA knockout mutants in P. digitatum strain Pd1. These mutants showed no significant defect on mycelial growth or sporulation compared to the parental strain. However, the knockout mutants did not produce ethylene in vitro. Citrus pathogenicity assays showed no differences in virulence between the parental and ΔefeA knockout mutant strains, despite a lack of ethylene production by the knockout mutant throughout the infection process. This result suggests that ethylene plays no role in P. digitatum pathogenicity. Our results clearly show that EFE-mediated ethylene synthesis is the major ethylene synthesis pathway in the citrus postharvest pathogen P. digitatum during both in vitro growth on PDA medium and the infection process, and that this hormone is not necessary for establishing P. digitatum infection in citrus fruit. However, our results also indicate that ethylene produced by P. digitatum during sporulation on the fruit surface may influence the development of secondary fungal infections.
Collapse
|
4
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020. [PMID: 33064769 DOI: 10.1101/2020.06.11.146126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| |
Collapse
|
5
|
Guo H, Liu A, Wang Y, Wang T, Zhang W, Zhu P, Xu L. Measuring light-induced fungal ethylene production enables non-destructive diagnosis of disease occurrence in harvested fruits. Food Chem 2019; 310:125827. [PMID: 31734011 DOI: 10.1016/j.foodchem.2019.125827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/05/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023]
Abstract
Pathogenic fungi cause enormous losses to fruits, and ethylene (ET) is associated with disease development in fruit crops. In this study, ET production of several fungal pathogens was enhanced by light, probably through the free radicals produced by photochemical reactions. Real-time gas analysis showed a sharp increase in ET production when fungal cultures were moved from dark-to-light (DTL). Similarly, light accelerated ET production in the Botrytis cinerea-infected Arabidopsis thaliana plants even when pyrazinamide, the inhibitor for plant ET synthesis, was applied, suggesting that the fungus is responsible for ET production during host invasion. Furthermore, a sharp increase in ET production after DTL transition was observed in B. cinerea-infected tomatoes and grapes, but not in healthy or physically wounded fruits. Taken together, these findings indicate that the DTL-induced ET is specific to the plant materials with fungal infection, and thus represents a candidate marker for non-destructive disease diagnosis of harvested fruits.
Collapse
Affiliation(s)
- Han Guo
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Anran Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yunrui Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Tan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
6
|
Tsolakidou MD, Pantelides LS, Tzima AK, Kang S, Paplomatas EJ, Tsaltas D. Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:639-653. [PMID: 30520678 DOI: 10.1094/mpmi-07-18-0203-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It has been suggested that some microorganisms, including plant growth-promoting rhizobacteria, manipulate the level of ethylene in plants by degrading 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene precursor, into α-ketobutyrate and ammonia, using ACC deaminase (ACCd). Here, we investigated whether ACCd of Verticillium dahliae, a soil-borne fungal pathogen of many important crops, is involved in causing vascular wilt disease. Overexpression of the V. dahliae gene encoding this enzyme, labeled as ACCd, significantly increased virulence in both tomato and eggplant, while disruption of ACCd reduced virulence. Both types of mutant produced more ethylene than a wild-type (70V-WT) strain, although they significantly differed in ACC content. Overexpression strains lowered ACC levels in the roots of infected plants, while the amount of ACC in the roots of plants infected with deletion mutants increased. To test the hypothesis that ACC acts as a signal for controlling defense, roots of WT and Never-ripe (Nr) tomato plants were treated with ACC before V. dahliae inoculation. Plants pretreated with ACC displayed less severe symptoms than untreated controls. Collectively, our results suggest a novel role of ACC as a regulator of both plant defense and pathogen virulence.
Collapse
Affiliation(s)
- Maria-Dimitra Tsolakidou
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Lakovos S Pantelides
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Aliki K Tzima
- 2 Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece; and
| | - Seogchan Kang
- 3 Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Epaminondas J Paplomatas
- 2 Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece; and
| | - Dimitris Tsaltas
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| |
Collapse
|
7
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
8
|
Efficiency of indoleacetic acid, gibberellic acid and ethylene synthesized in vitro by Fusarium culmorum strains with different effects on cereal growth. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-013-0328-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Fun HK, Quah CK, Shetty S, Kalluraya B. Ethyl 2-[(2,4-difluoro-phen-yl)hydrazinyl-idene]-3-oxobutano-ate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o422. [PMID: 22347036 PMCID: PMC3275180 DOI: 10.1107/s1600536812000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/09/2012] [Indexed: 11/17/2022]
Abstract
The asymmetric unit of the title compound, C(12)H(12)F(2)N(2)O(3), contains two mol-ecules, both of which exist in an E conformation with respect to their C=N bonds [1.321 (6) and 1.310 (6) Å]. The mol-ecular conformations are supported by intra-molecular N-H⋯O hydrogen bonds, which generate S(6) rings. In the crystal, mol-ecules are linked by C-H⋯O and C-H⋯F hydrogen bonds into layers lying parallel to (001). The crystal studied was an inversion twin with a 0.58 (1):0.42 (1) domain ratio.
Collapse
Affiliation(s)
- Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Shobhitha Shetty
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
| | - Balakrishna Kalluraya
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
| |
Collapse
|
10
|
Fun HK, Asik SIJ, Razak IA, Shetty S, Kalluraya B. Ethyl 2-[2-(3-meth-oxy-phen-yl)hydrazinyl-idene]-3-oxobutano-ate. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o2809. [PMID: 22065239 PMCID: PMC3201266 DOI: 10.1107/s1600536811039444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 11/10/2022]
Abstract
The title compound, C(13)H(16)N(2)O(4), is approximately planar (r.m.s. deviation = 0.065 Å for the 19 non-H atoms). An intra-molecular N-H⋯O hydrogen bond generates an S(6) ring motif and the mol-ecule adopts an E conformation with respect to the central C=N double bond. In the crystal, pairs of inter-molecular C-H⋯O hydrogen bonds link adjacent mol-ecules into inversion dimers. The crystal structure also features weak C-H⋯π inter-actions.
Collapse
Affiliation(s)
- Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Safra Izuani Jama Asik
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ibrahim Abdul Razak
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Shobhitha Shetty
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
| | - Balakrishna Kalluraya
- Department of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
| |
Collapse
|
11
|
Weingart H, Volksch B. Ethylene Production by Pseudomonas syringae Pathovars In Vitro and In Planta. Appl Environ Microbiol 2010; 63:156-61. [PMID: 16535480 PMCID: PMC1389095 DOI: 10.1128/aem.63.1.156-161.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated.
Collapse
|
12
|
Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A. Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiol Ecol 2009; 40:143-9. [PMID: 19709221 DOI: 10.1111/j.1574-6941.2002.tb00946.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ethylene is often released during plant pathogenesis. Enhanced ethylene biosynthesis by the attacked plant, and formation of ethylene by the attacking pathogen may be involved. We defined the biosynthetic pathway of ethylene in the pathogenic fungus Botrytis cinerea, and characterized the conditions that affect ethylene production in vitro. During the first 48 h of culture the fungus uses methionine to produce alpha-keto gamma-methylthiobutyric acid (KMBA) and secretes it to the medium. In darkness, KMBA accumulates in the medium. In light KMBA is photo-oxidized and ethylene is released. The photo-oxidation reaction is spontaneous and does not involve any enzymatic activity. Low levels of ethylene are produced in darkness between 48 and 96 h of culture. Adding peroxidase to dark-grown cultures induced ethylene formation. The results suggest that formation and secretion of KMBA by B. cinerea may affect ethylene levels during plant infection.
Collapse
Affiliation(s)
- Véronique Chagué
- Department of Plant sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
13
|
Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. PLANT PHYSIOLOGY 2009; 150:2018-29. [PMID: 19535471 PMCID: PMC2719122 DOI: 10.1104/pp.109.141325] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/12/2009] [Indexed: 05/18/2023]
Abstract
Truffles are symbiotic fungi that form ectomycorrhizas with plant roots. Here we present evidence that at an early stage of the interaction, i.e. prior to physical contact, mycelia of the white truffle Tuber borchii and the black truffle Tuber melanopsorum induce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana; i.e. primary root shortening, lateral root formation, root hair stimulation). This was most likely due to the production of indole-3-acetic acid (IAA) and ethylene by the mycelium. Application of a mixture of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and IAA fully mimicked the root morphology induced by the mycelium for both host and nonhost plants. Application of the single hormones only partially mimicked it. Furthermore, primary root growth was not inhibited in the Arabidopsis auxin transport mutant aux1-7 by truffle metabolites while root branching was less effected in the ethylene-insensitive mutant ein2-LH. The double mutant aux1-7;ein2-LH displayed reduced sensitivity to fungus-induced primary root shortening and branching. In agreement with the signaling nature of truffle metabolites, increased expression of the auxin response reporter DR5GFP in Arabidopsis root meristems subjected to the mycelium could be observed, confirming that truffles modify the endogenous hormonal balance of plants. Last, we demonstrate that truffles synthesize ethylene from l-methionine probably through the alpha-keto-gamma-(methylthio)butyric acid pathway. Taken together, these results establish the central role of IAA and ethylene as signal molecules in truffle/plant interactions.
Collapse
Affiliation(s)
- Richard Splivallo
- Department of Crop Sciences, Molecular Phytopathology and Mycotoxin Research , Georg-August University, D-37077 Goettingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Fun HK, Jebas SR, Padaki M, Hegde C, Isloor AM. Ethyl 2-[(2,6-dimethylphenyl)hydrazono]-3-oxobutanoate. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o1541-2. [PMID: 21582829 PMCID: PMC2969439 DOI: 10.1107/s160053680902131x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/04/2009] [Indexed: 11/10/2022]
Abstract
The title compound, C14H18N2O3, crystallizes with two independent molecules in the asymmetric unit, having closely comparable geometries. Both molecules are essentially planar [maximum deviations from the mean plane of 0.069 (1) and 0.068 (1) Å for the two molecules] and contain an intramolecular N—H⋯O hydrogen bond which generates a ring with graph-set motif S(6). In the crystal, the molecules are linked into chains along the c axis by intermolecular C—H⋯O hydrogen bonds, and intermolecular C—H⋯π interactions are also present.
Collapse
|
15
|
Fun HK, Chantrapromma S, Padaki M, Radhika, Isloor AM. Ethyl 2-[(4-chloro-phen-yl)hydrazono]-3-oxobutanoate. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o1029. [PMID: 21583848 PMCID: PMC2977712 DOI: 10.1107/s1600536809012951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 11/15/2022]
Abstract
The mol-ecule of the title oxobutanoate derivative, C(12)H(13)ClN(2)O(3), is nearly planar; the inter-planar angle between the benzene ring and the mean plane through the hydrazono-3-oxobutanoate unit is 2.69 (3)°. An intra-molecular N-H⋯O hydrogen bond generates an S(6) ring motif. In the crystal packing, C-H⋯O(3-oxo) inter-actions link mol-ecules into dimers. The dimers thus formed are linked through C-H⋯O(carboxyl-ate C=O) inter-actions, leading to the formation of ribbons along the [01] direction, which are stabilized via Cl⋯Cl [3.2916 (3) Å] contacts. The ribbons are stacked via C⋯O contacts [3.2367 (12)-3.3948 (12) Å].
Collapse
Affiliation(s)
- Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Suchada Chantrapromma
- Crystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Mahesh Padaki
- Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
| | - Radhika
- Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
| | - Arun M. Isloor
- Department of Chemistry, National Institute of Technology–Karnataka, Surathkal, Mangalore 575 025, India
| |
Collapse
|
16
|
Billington DC, Golding BT, Kebbell MJ, Nassereddin IK. Synthesis of methionines specifically labelled with 2H or 13C. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580181210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI. Hormones and hormone-like substances of microorganisms: A review. APPL BIOCHEM MICRO+ 2006. [DOI: 10.1134/s000368380603001x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Altered root hair morphogenesis in Phaseolus vulgaris in response to bacterial coinoculation and the presence of aminoethoxy vinyl glycine (AVG). Microbiol Res 1997. [DOI: 10.1016/s0944-5013(97)80006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Affiliation(s)
- H Fukuda
- Department of Applied Microbial Technology, Kumamoto Institute of Technology, Japan
| | | | | |
Collapse
|
20
|
Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0922-338x(92)90221-f] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
The Role of NADH:Fe(III)EDTA Oxidoreductase in Ethylene Formation from 2-Keto-4-Methylthiobutyrate. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0922-338x(90)90107-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Hartmans S, Bont J, Harder W. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03399.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Fukuda H, Takahashi M, Fujii T, Ogawa T. Ethylene production from l-methionine by Cryptococcus albidus. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0922-338x(89)90117-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Abstract
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.
Collapse
|
25
|
Abstract
Growth of Escherichia coli strain B SPAO on a medium containing glucose, NH4Cl and methionine resulted in production of ethylene into the culture headspace. When methionine was excluded from the medium there was little formation of ethylene. Ethylene formation in methionine-containing medium occurred for a brief period at the end of exponential growth. Ethylene formation was stimulated by increasing the medium concentration of Fe3+ when it was chelated to EDTA. Lowering the medium phosphate concentration also appeared to stimulate ethylene formation. Ethylene formation was inhibited in cultures where NH4Cl remained in the stationary phase. Synthesis of the ethylene-forming enzyme system was determined by harvesting bacteria at various stages of growth and assaying the capacity of the bacteria to form ethylene from methionine. Ethylene forming capacity was greatest in cultures harvested immediately before and during the period of optimal ethylene formation. It is concluded that ethylene production by E. coli exhibits the typical properties of secondary metabolism.
Collapse
|
26
|
Dijkhuizen L, Keijer L, Waddell V, Primrose S, Barstow D, Atkinson A. The rapid isolation of mutants of some Gram-positive bacteria. FEMS Microbiol Lett 1981. [DOI: 10.1111/j.1574-6968.1981.tb07610.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|