1
|
Cui L, Yang L, Lai B, Luo L, Deng H, Chen Z, Wang Z. Integrative and comprehensive pan-cancer analysis of ubiquitin specific peptidase 11 ( USP11) as a prognostic and immunological biomarker. Heliyon 2024; 10:e34523. [PMID: 39114046 PMCID: PMC11305246 DOI: 10.1016/j.heliyon.2024.e34523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
The significance of USP11 as a critical regulator in cancer has garnered substantial attention, primarily due to its catalytic activity as a deubiquitinating enzyme. Nonetheless, a thorough evaluation of USP11 across various cancer types in pan-cancer studies remains absent. Our analysis integrates data from a variety of sources, including five immunotherapy cohorts, thirty-three cohorts from The Cancer Genome Atlas (TCGA), and sixteen cohorts from the Gene Expression Omnibus (GEO), two of which involve single-cell transcriptomic data. Our findings indicate that aberrant USP11 expression is predictive of survival outcomes across various cancer types. The highest frequency of genomic alterations was observed in uterine corpus endometrial carcinoma (UCEC), with single-cell transcriptome analysis revealing significantly higher USP11 expression in plasmacytoid dendritic cells and mast cells. Notably, USP11 expression was associated with the infiltration levels of CD8+ T cells and natural killer (NK) activated cells. Additionally, in the skin cutaneous melanoma (SKCM) phs000452 cohort, patients with higher USP11 mRNA levels during immunotherapy experienced a significantly shorter median progression-free survival. USP11 emerges as a promising molecular biomarker with significant potential for predicting patient prognosis and immunoreactivity across various cancer types.
Collapse
Affiliation(s)
- Lijuan Cui
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Ling Yang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Boan Lai
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Lingzhi Luo
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Haoyue Deng
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zhongyi Chen
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| | - Zixing Wang
- Pathology Department, Suining Central Hospital, Suining, Sichuan, 629000, China
| |
Collapse
|
2
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
3
|
Li T, Huang J, Zeng A, Yu N, Long X. Ubiquitin-specific peptidase 11 promotes development of keloid derived fibroblasts by de-ubiquitinating TGF-β receptorII. Burns 2024; 50:641-652. [PMID: 38097445 DOI: 10.1016/j.burns.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 04/08/2024]
Abstract
BACKGROUND Keloid scars occur as a result of abnormal wound healing caused by trauma or inflammation of the skin. The progression of keloids is dependent on genetic and environmental influences. The incidence is more prevalent in people with darker skin tones (African, Asian and Hispanic origin). Studies have demonstrated that transforming growth factor (TGF) β/Smad signalling has an essential function in keloid as well as that USP11 could modulate the activation of TGFβ/Smad signalling and impact the progression of the fibrotic disease. Nonetheless, the potential mechanisms of USP11 in keloid were still unclear. The authors postulated that USP11 up-regulates and augments the ability of proliferation, invasion, migration and collagen deposition of keloid-derived fibroblasts (KFBs) through deubiquitinating TGF-β receptor II (TβRII). METHODS Fibroblast cells were isolated from keloid scars in vitro. Lentivirus infection was utilized to knockdown and over-express the USP11 in KFBs. Influence of USP11 on proliferation, invasion and migration of KFBs, and expression level of TβRII, Smad2, Smad3, α-SMA, collagen1 and collagen3 were assayed by CCK8, scratching, transwell, Western blot and real-time quantitative polymerase chain reaction. The interactions between USP11 and TβRII were examined using ubiquitination assays and co-immunoprecipitation. To further confirm the role of USP11 in keloid growth, we performed animal experiments. RESULTS Results show that down-regulated USP11 markedly suppressed the ability of proliferation, invasion and migration of keloid derived-fibroblasts in vitro and reduce the expression of TβRII, Smad2, Smad3, αSMA, collagen1 and collagen3. In addition, over-expression of USP11 demonstrated the contrary tendency. Ubiquitination experiments and co-immunoprecipitation demonstrated that USP11 was interacting with TβRII and deubiquitinated TβRII. Interferences with USP11 inhibited growth of keloid in vivo. Additionally, we have verified that knockdown of USP11 has no significant effect on normal skin fibroblasts. CONCLUSION USP11 elevates the ability of proliferation, collagen deposition, invasion and migration of keloid-derived fibroblasts by deubiquitinating TβRII.
Collapse
Affiliation(s)
- Tianhao Li
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiuzuo Huang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ang Zeng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nanze Yu
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiao Long
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Deng T, Xie L, Xiaofang C, Zhang Z, Xiao Y, Peng Y, Yin L, Fu Y, Li X. ATM-Mediated translocation of RanBPM regulates DNA damage response by stabilizing p21 in non-small cell lung cancer cells. Cell Oncol (Dordr) 2024; 47:245-258. [PMID: 37676377 PMCID: PMC10899406 DOI: 10.1007/s13402-023-00866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE Platinum-based chemotherapy remains a standard-of-care for most patients with advanced non-small cell lung cancer (NSCLC). DNA damage response (DDR) induced by platinum or Etoposide activated a panel of cell cycle-regulatory proteins including p21 through p53 pathway. Previous studies have reported that RanBPM has been involved in various cellular processes such as DDR by interacting with multiple proteins. However, the underlying mechanism remains unclear. METHODS NSCLC tissue microarrays were used for assessing the expression of RanBPM by immunohistochemical staining. The roles of RanBPM in the DDR of NSCLC progression was examined in in vitro cell lines and in vivo animal models. The regulation of RanBPM on protein stability and ubiquitination levels were investigated by immunoblots and in vivo ubiquitylation assay. RESULTS The level of p21 or RanBPM is lower in NSCLC than non-malignant tissues and has a highly positive correlation. Mechanistically, RanBPM protein physically interacts with p21, and RanBPM deubiquitinates p21 by recruiting a deubiquitinase USP11 to maintain protein stability of p21. RanBPM silencing significantly decreased p21 protein level. Conversely, RanBPM overexpression led to the accumulation of endogenous p21 protein regardless of p53 status. Functionally, RanBPM regulates DDR in a p21-dependent manner. Furthermore, DNA damage significantly promoted the nuclear translocation of RanBPM protein through ATM signaling pathways. CONCLUSION RanBPM is a novel regulator of P21 protein stability, and plays a critical role in the regulation of DDR.
Collapse
Affiliation(s)
- Tanggang Deng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China.
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Lin Xie
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chen Xiaofang
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
| | - Zhenbin Zhang
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yugang Xiao
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linglong Yin
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongming Fu
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong, China.
- Clinical Pharmacy, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China.
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China.
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
5
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
6
|
Shi Y, Tao M, Chen H, Ma X, Wang Y, Hu Y, Zhou X, Li J, Cui B, Qiu A, Zhuang S, Liu N. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis. Kidney Int 2023; 103:544-564. [PMID: 36581018 DOI: 10.1016/j.kint.2022.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022]
Abstract
The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-β1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, Pieper AA, Woo JAA, Kang DE. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022; 185:3913-3930.e19. [PMID: 36198316 PMCID: PMC9588697 DOI: 10.1016/j.cell.2022.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Dale Chaput
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Cleveland, Louis Stokes Cleveland VA Medical Center, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| |
Collapse
|
8
|
Ubiquitin specific peptidase 11 as a novel therapeutic target for cancer management. Cell Death Dis 2022; 8:292. [PMID: 35715413 PMCID: PMC9205893 DOI: 10.1038/s41420-022-01083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Ubiquitination is a critical biological process in post-translational modification of proteins and involves multiple signaling pathways in protein metabolism, apoptosis, DNA damage, cell-cycle progression, and cancer development. Deubiquitinase, a specific enzyme that regulates the ubiquitination process, is also thought to be closely associated with the development and progression of various cancers. In this article, we systematically review the emerging role of the deubiquitinase ubiquitin-specific peptidase 11 (USP11) in many cancer-related pathways. The results show that USP11 promotes or inhibits the progression and chemoresistance of different cancers, including colorectal, breast, ovarian, and hepatocellular carcinomas, via deubiquitinating several critical proteins of cancer-related pathways. We initially summarize the role of USP11 in different cancers and further discuss the possibility of USP11 as a therapeutic strategy.
Collapse
|
9
|
The Dual Role of USP11 in Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9963905. [PMID: 35359344 PMCID: PMC8964208 DOI: 10.1155/2022/9963905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022]
Abstract
Ubiquitination is one of the most crucial ways of protein degradation and plays an indispensable role in various living activities of cells. The deubiquitinating enzyme (DUB) is the main practitioner of the reversal of ubiquitination. Up till the present moment, nearly 100 DUBs from six families have been confirmed. USP11 is a member of the largest subfamily of cysteine protease DUBs, involving in the regulation of cell cycle, DNA repair, regulating signaling pathways, tumor development, and other important biological behaviors. This review briefly describes the structure and function of USP11 and comprehensively describes its dual role in tumorigenesis and development, as well as its targeted therapy.
Collapse
|
10
|
Tang Y, Yuan Q, Zhao C, Xu Y, Zhang Q, Wang L, Sun Z, Cao J, Luo J, Jiao Y. Targeting USP11 may alleviate radiation-induced pulmonary fibrosis by regulating endothelium tight junction. Int J Radiat Biol 2021; 98:30-40. [PMID: 34705600 DOI: 10.1080/09553002.2022.1998711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a major side effect after radiotherapy for thoracic malignancies. However, rare anti-RIPF therapeutics show definitive effects for treating this disease. Ubiquitin-specific peptidase 11 (USP11) has been reported to promote transforming growth factor β (TGFβ) signaling which plays an essential role underlying RIPF. Herein, we explored the role of USP11 on RIPF. MATERIALS AND METHODS In the present study, USP11-knockout (Usp11-/-) mice were used to explore the effects of USP11 on RIPF. The lung tissue was obtained after receiving 30 Gy X-ray irradiation. The expression of USP11, TGF-β1, and a-SMA was determined by immunohistochemical and Western Blot, respectively. γ-H2AX foci and TUNEL positive cells were detected by fluorescent technique to assess DNA damage and apoptosis. High-throughput proteomic analysis was applied to further explore the related mechanisms. The transwell co-culture method was used to investigate bystander effects in HELF cells induced by irradiated HMEC-1 cells in vitro. RESULTS Here we found that radiation activated USP11 in vivo and in vitro. Our results showed that USP11 deficiency effectively decreased serum TGF-β1 level, suppressed α-SMA expression, and mitigated pulmonary fibrosis. In addition, fewer γ-H2AX foci and decreased apoptotic cells were identified after irradiation in the primary cells isolated from the lungs of Usp11-/- mice. High-throughput proteomics analysis results showed that 22-upregulated and 158-downregulated proteins were identified in the lung tissues of Usp11-/- mice after irradiation. Furthermore, gene set enrichment analysis (GSEA) revealed that USP11 deficiency affects the tight junction signaling pathway. CONCLUSIONS We verified that USP11 deficiency remarkably reinforced tight junction in the endothelial cells and alleviated TGF-β1 to inhibit fibrosis of fibroblast cells. The present study preliminarily showed that USP11-knockout mitigated RIPF via reinforcement endothelial barrier function.
Collapse
Affiliation(s)
- Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Qian Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Congzhao Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Qi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lili Wang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
11
|
A pro-inflammatory mediator USP11 enhances the stability of p53 and inhibits KLF2 in intracerebral hemorrhage. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:681-692. [PMID: 34141823 PMCID: PMC8178085 DOI: 10.1016/j.omtm.2021.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Microglial cell activation and neuroinflammation after intracerebral hemorrhage (ICH) lead to secondary brain damage. Ubiquitin-specific protease 11 (USP11) has been correlated with ICH-induced neuron apoptosis. This study aims to explore the molecular mechanism of USP11 regulating neuroinflammation in ICH. First, an ICH rat model was developed by intracranial administration of collagenase. Silencing USP11 was found to alleviate nerve injury in rats with ICH-like symptoms. Then, through loss- and gain-of-function assays, USP11 knockdown was revealed to alleviate ICH-induced symptoms, corresponding to reduced modified neurological severity scores (mNSS) value, brain water content, blood-brain barrier permeability, neuron apoptosis, microglial cell activation, neutrophil infiltration, and inflammatory factor secretion. It was subsequently shown in microglial cells that USP11 stabilized p53 by deubiquitination and p53 targeted the Kruppel-like factor 2 (KLF2) promoter to repress KLF2 transcription, thereby activating the nuclear factor κB (NF-κB) pathway. Further, rescue experiments were conducted in vivo to validate the function of the USP11/p53/KLF2/NF-κB axis in ICH-induced inflammation, which confirmed that USP11 silencing blocked the release of pro-inflammatory cytokines following ICH by downregulating p53, thus protecting against neurological impairment. Hence silencing USP11 may be a novel anti-inflammatory method for ICH treatment.
Collapse
|
12
|
Unveiling the genetic etiology of primary ciliary dyskinesia: When standard genetic approach is not enough. Adv Med Sci 2020; 65:1-11. [PMID: 31835165 DOI: 10.1016/j.advms.2019.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/08/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Primary ciliary dyskinesia (PCD) is a ciliopathy caused by dysfunction of motile cilia. As there is still no standard PCD diagnostics, the final diagnosis requires a combination of several tests. The genetic screening is a hallmark for the final diagnosis and requires high-throughput techniques, such as whole-exome sequencing (WES). Nevertheless, WES has limitations that may prevent a definitive genetic diagnosis. Here we present a case that demonstrates how the PCD genetic diagnosis may not be trivial. MATERIALS/METHODS A child with PCD and situs inversus totalis (designated as Kartagener syndrome (KS)) was subjected to clinical assessments, ultrastructural analysis of motile cilia, extensive genetic evaluation by WES and chromosomal array analysis, bioinformatic analysis, gene expression analysis and immunofluorescence to identify the genetic etiology. His parents and sister, as well as healthy controls were also evaluated. RESULTS Here we show that a disease-causing variant in the USP11 gene and copy number variations in CRHR1 and KRT34 genes may be involved in the patient PCD phenotype. None of these genes were previously reported in PCD patients and here we firstly show its presence and immunolocalization in respiratory cells. CONCLUSIONS This work highlights how the genetic diagnosis can turn to be rather complex and that combining several approaches may be needed. Overall, our results contribute to increase the understanding of the genetic factors involved in the pathophysiology of PCD/KS, which is of paramount importance to assist the current diagnosis and future development of newer therapies.
Collapse
|
13
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
14
|
Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C. Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 2018; 7:rsob.170081. [PMID: 28659384 PMCID: PMC5493780 DOI: 10.1098/rsob.170081] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
RanBPM (Ran-binding protein M, also called RanBP9) is an evolutionarily conserved, ubiquitous protein which localizes to both nucleus and cytoplasm. RanBPM has been implicated in the regulation of a number of signalling pathways to regulate several cellular processes such as apoptosis, cell adhesion, migration as well as transcription, and plays a critical role during development. In addition, RanBPM has been shown to regulate pathways implicated in cancer and Alzheimer's disease, implying that RanBPM has important functions in both normal and pathological development. While its functions in these processes are still poorly understood, RanBPM has been identified as a component of a large complex, termed the CTLH (C-terminal to LisH) complex. The yeast homologue of this complex functions as an E3 ubiquitin ligase that targets enzymes of the gluconeogenesis pathway. While the CTLH complex E3 ubiquitin ligase activity and substrates still remain to be characterized, the high level of conservation between the complexes in yeast and mammals infers that the CTLH complex could also serve to promote the degradation of specific substrates through ubiquitination, therefore suggesting the possibility that RanBPM's various functions may be mediated through the activity of the CTLH complex.
Collapse
Affiliation(s)
- Louisa M Salemi
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Matthew E R Maitland
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Christina J McTavish
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| | - Caroline Schild-Poulter
- Robarts Research Institute, Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, 1151 Richmond Street North, London, Ontario, Canada N6A 5B7
| |
Collapse
|
15
|
Zhang S, Xie C, Li H, Zhang K, Li J, Wang X, Yin Z. Ubiquitin-specific protease 11 serves as a marker of poor prognosis and promotes metastasis in hepatocellular carcinoma. J Transl Med 2018; 98:883-894. [PMID: 29545598 DOI: 10.1038/s41374-018-0050-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-specific protease 11 (USP11) is a deubiquitinating enzyme that exerts its biological functions by regulating multiple signaling pathways such as p53, NF-κB, TGF-β, and Hippo. A large body of evidence supports a link between UPS11 and tumorigenesis. However, the clinical significance and biological function of USP11 in hepatocellular carcinoma (HCC) remains unclear. Here, USP11 expression was assessed by immunohistochemistry in a pilot series of 71 HCC clinical samples, and the association between USP11 expression and clinicopathological features and overall survival time was analyzed. The cytoplasmic expression rate of USP11 was higher in non-cancerous tissue than that in cancer tissue (36.6 vs. 12.7%, P = 0.001), whereas the nuclear expression rate of USP11 was lower in non-cancerous tissue (5.6 vs. 69.0%, P < 0.001). USP11 expression level was higher in tumor than that in non-tumor tissue (P < 0.001). Chi-square analysis of variances suggested that USP11 expression was associated with vascular invasion (P = 0.033), differentiation (P = 0.027), tumor number (P = 0.009), and recurrence (P = 0.036). USP11 expression was also associated with shorter overall survival time (P = 0.001) by log-rank test. Unconditional logistic regression analysis with multiple covariates indicated that high USP11 expression was associated with a 2.96-fold increase in the risk of death compared with low USP11 levels (P = 0.041) and acted as an independent predictor of overall survival. HCC patients with simultaneously high USP11 and alpha-fetoprotein expression had an adjusted 5-fold higher risk of all-cause-related death (P = 0.006). Moreover, in vitro and in vivo experiments confirmed that USP11 could promote the migration and invasion of HCC cell. Overall, we suggest that USP11 promotes HCC cell metastasis, and we provide the first evidence of the prognostic significance of USP11 expression in HCC, which suggests that USP11 is a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Sheng Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China. .,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China.
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China.,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| | - Honghe Li
- Research Center for Medical Education, China Medical University, Shenyang, Liaoning Province, China
| | - Kang Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China.,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| | - Jie Li
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China.,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| | - Xiaomin Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China.,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital), 361004, Xiamen, China.,Xiamen Translational Medical Key Laboratory of Hepatobiliary and Pancreatic Tumor, Zhongshan Hospital, Xiamen University, 361004, Xiamen, China
| |
Collapse
|
16
|
Deubiquitylation and stabilization of p21 by USP11 is critical for cell-cycle progression and DNA damage responses. Proc Natl Acad Sci U S A 2018; 115:4678-4683. [PMID: 29666278 PMCID: PMC5939064 DOI: 10.1073/pnas.1714938115] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have demonstrated that p21 occupies a central position in cell-cycle regulation and DNA damage responses. As an unstable protein, the regulation of p21 stability has been extensively investigated over the past 20 years. Although p21 degradation by the ubiquitin-proteasome pathway has been well characterized, it is unclear whether ubiquitylated p21 can be recycled. Here, we identify USP11 as a deubiquitylase that directly removes p21 polyubiquitylation and stabilizes p21 protein, revealing that cellular p21 protein is finely regulated by a dynamic balance of USP11-mediated stabilization and proteasome-mediated degradation. Meanwhile, we also provide evidence that the USP11-p21 axis plays a crucial role in G1/S transition under physiological conditions and in regulating the balance between cytostasis and apoptosis. p21WAF1/CIP1 is a broad-acting cyclin-dependent kinase inhibitor. Its stability is essential for proper cell-cycle progression and cell fate decision. Ubiquitylation by the multiple E3 ubiquitin ligase complexes is the major regulatory mechanism of p21, which induces p21 degradation. However, it is unclear whether ubiquitylated p21 can be recycled. In this study, we report USP11 as a deubiquitylase of p21. In the nucleus, USP11 binds to p21, catalyzes the removal of polyubiquitin chains conjugated onto p21, and stabilizes p21 protein. As a result, USP11 reverses p21 polyubiquitylation and degradation mediated by SCFSKP2, CRL4CDT2, and APC/CCDC20 in a cell-cycle–independent manner. Loss of USP11 causes the destabilization of p21 and induces the G1/S transition in unperturbed cells. Furthermore, p21 accumulation mediated by DNA damage is completely abolished in cells depleted of USP11, which results in abrogation of the G2 checkpoint and induction of apoptosis. Functionally, USP11-mediated stabilization of p21 inhibits cell proliferation and tumorigenesis in vivo. These findings reveal an important mechanism by which p21 can be stabilized by direct deubiquitylation, and they pinpoint a crucial role of the USP11-p21 axis in regulating cell-cycle progression and DNA damage responses.
Collapse
|
17
|
Lim KH, Suresh B, Park JH, Kim YS, Ramakrishna S, Baek KH. Ubiquitin-specific protease 11 functions as a tumor suppressor by modulating Mgl-1 protein to regulate cancer cell growth. Oncotarget 2018; 7:14441-57. [PMID: 26919101 PMCID: PMC4924727 DOI: 10.18632/oncotarget.7581] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/31/2016] [Indexed: 12/17/2022] Open
Abstract
The Lethal giant larvae (Lgl) gene encodes a cortical cytoskeleton protein, Lgl, and is involved in maintaining cell polarity and epithelial integrity. Previously, we observed that Mgl-1, a mammalian homologue of the Drosophila tumor suppressor protein Lgl, is subjected to degradation via ubiquitin-proteasome pathway, and scaffolding protein RanBPM prevents the turnover of the Mgl-1 protein. Consequently, overexpression of RanBPM enhances Mgl-1-mediated cell proliferation and migration. Here, we analyzed the ability of ubiquitin-specific protease 11 (USP11) as a novel regulator of Mgl-1 and it requires RanBPM to regulate proteasomal degradation of Mgl-1. USP11 showed deubiquitinating activity and stabilized Mgl-1 protein. However, USP11-mediated Mgl-1 stabilization was inhibited in RanBPM-knockdown cells. Furthermore, in the cancer cell migration, the regulation of Mgl-1 by USP11 required RanBPM expression. In addition, an in vivo study revealed that depletion of USP11 leads to tumor formation. Taken together, the results indicated that USP11 functions as a tumor suppressor through the regulation of Mgl-1 protein degradation via RanBPM.
Collapse
Affiliation(s)
- Key-Hwan Lim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Bharathi Suresh
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Jung-Hyun Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Young-Soo Kim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Suresh Ramakrishna
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 463-400, Republic of Korea
| |
Collapse
|
18
|
Stockum A, Snijders AP, Maertens GN. USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation. PLoS One 2018; 13:e0190513. [PMID: 29293652 PMCID: PMC5749825 DOI: 10.1371/journal.pone.0190513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/15/2017] [Indexed: 11/26/2022] Open
Abstract
Correct segregation of the mitotic chromosomes into daughter cells is a highly regulated process critical to safeguard genome stability. During M phase the spindle assembly checkpoint (SAC) ensures that all kinetochores are correctly attached before its inactivation allows progression into anaphase. Upon SAC inactivation, the anaphase promoting complex/cyclosome (APC/C) E3 ligase ubiquitinates and targets cyclin B and securin for proteasomal degradation. Here, we describe the identification of Ribonucleic Acid Export protein 1 (RAE1), a protein previously shown to be involved in SAC regulation and bipolar spindle formation, as a novel substrate of the deubiquitinating enzyme (DUB) Ubiquitin Specific Protease 11 (USP11). Lentiviral knock-down of USP11 or RAE1 in U2OS cells drastically reduces cell proliferation and increases multipolar spindle formation. We show that USP11 is associated with the mitotic spindle, does not regulate SAC inactivation, but controls ubiquitination of RAE1 at the mitotic spindle, hereby functionally modulating its interaction with Nuclear Mitotic Apparatus protein (NuMA).
Collapse
Affiliation(s)
- Anna Stockum
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
| | - Ambrosius P. Snijders
- Francis Crick Institute, The Crick Mass Spectrometry Science Technology Platform, 1 Midland Road, London, United Kingdom
| | - Goedele N. Maertens
- Imperial College London, Department of Medicine, Division of Infectious Diseases, Norfolk Place, London, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 2017; 8:96522-96535. [PMID: 29228550 PMCID: PMC5722502 DOI: 10.18632/oncotarget.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway for removing DNA damage caused by UV radiation and many environmental carcinogens. NER is essential for suppressing tumorigenesis in the skin, lungs and brain. Although the core NER proteins have been identified and characterized, molecular regulation of NER remains poorly understood. Here we show that ubiquitin-specific peptidase 11 (USP11) positively regulates NER by deubiquitinating xeroderma pigmentosum complementation group C (XPC) and promoting its retention at the DNA damage sites. In addition, UV irradiation induces both USP11 recruitment to the chromatin and USP11 interaction with XPC in an XPC-ubiquitination-dependent manner. Furthermore, we found that USP11 is down-regulated in chronically UV-exposed mouse skin and in skin tumors from mice and humans. Our findings indicate that USP11 plays an important role in maintaining NER capacity, and suggest that USP11 acts as a tumor suppressor via its role in DNA repair.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Keyoumars Soltani
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Das S, Suresh B, Kim HH, Ramakrishna S. RanBPM: a potential therapeutic target for modulating diverse physiological disorders. Drug Discov Today 2017; 22:1816-1824. [PMID: 28847759 DOI: 10.1016/j.drudis.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
The Ran-binding protein microtubule-organizing center (RanBPM) is a highly conserved nucleocytoplasmic protein involved in a variety of intracellular signaling pathways that control diverse cellular functions. RanBPM interacts with proteins that are linked to various diseases, including Alzheimer's disease (AD), schizophrenia (SCZ), and cancer. In this article, we define the characteristics of the scaffolding protein RanBPM and focus on its interaction partners in diverse physiological disorders, such as neurological diseases, fertility disorders, and cancer.
Collapse
Affiliation(s)
- Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Hyongbum Henry Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
21
|
Dai H, Lv YF, Yan GN, Meng G, Zhang X, Guo QN. RanBP9/TSSC3 complex cooperates to suppress anoikis resistance and metastasis via inhibiting Src-mediated Akt signaling in osteosarcoma. Cell Death Dis 2016; 7:e2572. [PMID: 28032865 PMCID: PMC5261021 DOI: 10.1038/cddis.2016.436] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/22/2022]
Abstract
Suppression of anoikis is a prerequisite for tumor cell metastasis, which is correlated with chemoresistance and poor prognosis. We characterized a novel interaction between RanBP9 SPRY domain and TSSC3 PH domain by which RanBP9/TSSC3 complex exerts transcription and post-translation regulation in osteosarcoma. RanBP9/TSSC3 complex was inversely correlated with a highly anoikis-resistant phenotype in osteosarcoma cells and metastasis in human osteosarcoma. RanBP9 cooperated with TSSC3 to inhibit anchorage-independent growth and to promote anoikis in vitro and suppress lung metastasis in vivo. Moreover, RanBP9 SPRY domain was required for RanBP9/TSSC3 complex-mediated anoikis resistance. Mechanistically, RanBP9 formed a ternary complex with TSSC3 and Src to scaffold this interaction, which suppressed both Src and Src-dependent Akt pathway activations and facilitated mitochondrial-associated anoikis. Collectively, the newly identified RanBP9/TSSC3 complex cooperatively suppress metastasis via downregulation of Src-dependent Akt pathway to expedite mitochondrial-associated anoikis. This study provides a biological basis for exploring the therapeutic significance of dual targeting of RanBP9 and TSSC3 in osteosarcoma.
Collapse
Affiliation(s)
- Huanzi Dai
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Nephrology, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yang-Fan Lv
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Guang-Ning Yan
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Meng
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Pathology, Southwest Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Xi Zhang
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China.,Department of Pathology, Southwest Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
23
|
Zhang Q, Harding R, Hou F, Dong A, Walker JR, Bteich J, Tong Y. Structural Basis of the Recruitment of Ubiquitin-specific Protease USP15 by Spliceosome Recycling Factor SART3. J Biol Chem 2016; 291:17283-92. [PMID: 27255711 DOI: 10.1074/jbc.m116.740787] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
Ubiquitin-specific proteases (USPs) USP15 and USP4 belong to a subset of USPs featuring an N-terminal tandem domain in USP (DUSP) and ubiquitin-like (UBL) domain. Squamous cell carcinoma antigen recognized by T-cell 3 (SART3), a spliceosome recycling factor, binds to the DUSP-UBL domain of USP15 and USP4, recruiting them to the nucleus from the cytosol to control deubiquitination of histone H2B and spliceosomal proteins, respectively. To provide structural insight, we solved crystal structures of SART3 in the apo-form and in complex with the DUSP-UBL domain of USP15 at 2.0 and 3.0 Å, respectively. Structural analysis reveals SART3 contains 12 half-a-tetratricopeptide (HAT) repeats, organized into two subdomains, HAT-N and HAT-C. SART3 dimerizes through the concave surface of HAT-C, whereas the HAT-C convex surface binds USP15 in a novel bipartite mode. Isothermal titration calorimetry measurements and mutagenesis analysis confirmed key residues of USP15 involved in the interaction and indicated USP15 binds 20-fold stronger than USP4.
Collapse
Affiliation(s)
- Qi Zhang
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Rachel Harding
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Feng Hou
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Aiping Dong
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - John R Walker
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7
| | - Joseph Bteich
- the Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, and
| | - Yufeng Tong
- From the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, the Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
24
|
Xu Z, Li X, Chen J, Zhao J, Wang J, Ji Y, Shen Y, Han L, Shi J, Zhang D. USP11, Deubiquitinating Enzyme, Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage. J Mol Neurosci 2015; 58:16-27. [PMID: 26334325 DOI: 10.1007/s12031-015-0644-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/18/2015] [Indexed: 11/29/2022]
Abstract
Protein ubiquitination is a dynamic two-way process that can be reversed or regulated by deubiquitinating enzymes (DUB). USP11, located on the X chromosome, 6 is a member of USP subclass of the DUB family. Here, we demonstrate that USP11 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot, immunohistochemistry, and immunofluorescence, we obtained a significant up-regulation of USP11 in neurons adjacent to the hematoma following ICH. Increasing USP11 level was found to be accompanied by the up-regulation of active caspase-3, Fas receptor (Fas), Fas ligand (FasL), and active caspase-8. Besides, USP11 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. What is more, knocking down USP11 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, USP11 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Zhiwei Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Xiaohong Li
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jianping Chen
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jianmei Zhao
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jun Wang
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yuhong Ji
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yifen Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lijian Han
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jiansheng Shi
- Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
25
|
Ke JY, Dai CJ, Wu WL, Gao JH, Xia AJ, Liu GP, Lv KS, Wu CL. USP11 regulates p53 stability by deubiquitinating p53. J Zhejiang Univ Sci B 2015; 15:1032-8. [PMID: 25471832 DOI: 10.1631/jzus.b1400180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The p53 tumor suppressor protein coordinates the cellular responses to a broad range of cellular stresses, leading to DNA repair, cell cycle arrest or apoptosis. The stability of p53 is essential for its tumor suppressor function, which is tightly controlled by ubiquitin-dependent degradation primarily through its negative regulator murine double minute 2 (Mdm2). To better understand the regulation of p53, we tested the interaction between p53 and USP11 using co-immunoprecipitation. The results show that USP11, an ubiquitin-specific protease, forms specific complexes with p53 and stabilizes p53 by deubiquitinating it. Moreover, down-regulation of USP11 dramatically attenuated p53 induction in response to DNA damage stress. These findings reveal that USP11 is a novel regulator of p53, which is required for p53 activation in response to DNA damage.
Collapse
Affiliation(s)
- Jia-ying Ke
- College of Chemistry and Life Science, Quanzhou Normal University, Quanzhou 36200, China; The Higher Educational Key Laboratory for Molecular Biology and Pharmacology of Fujian Province, Quanzhou 36200, China; Xiamen Women and Children Health Hospital, Xiamen 361005, China; Shouguang People's Hospital, Shouguang 262700, China; Department of Orthopedics, Central Hospital of Zibo, Zibo 255000, China; Department of Pathology, University of Chicago, Chicago 60102, Illinois, USA; Department of Pathology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 36200, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang YC, Feng TH, Chen TY, Huang HH, Hung CC, Liu ST, Chang LK. RanBPM regulates Zta-mediated transcriptional activity in Epstein–Barr virus. J Gen Virol 2015; 96:2336-2348. [DOI: 10.1099/vir.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tzu-Hui Feng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Tse-Yao Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiang-Hung Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chen-Chia Hung
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Shih-Tung Liu
- Molecular Genetics Laboratory, Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, 333, Taiwan, ROC
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan, ROC
| |
Collapse
|
27
|
Salemi LM, Loureiro SO, Schild-Poulter C. Characterization of RanBPM molecular determinants that control its subcellular localization. PLoS One 2015; 10:e0117655. [PMID: 25659156 PMCID: PMC4319831 DOI: 10.1371/journal.pone.0117655] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.
Collapse
Affiliation(s)
- Louisa M. Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sandra O. Loureiro
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Harper S, Gratton HE, Cornaciu I, Oberer M, Scott D, Emsley J, Dreveny I. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry 2014; 53:2966-78. [PMID: 24724799 PMCID: PMC4020902 DOI: 10.1021/bi500116x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Indexed: 12/17/2022]
Abstract
The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Hayley E. Gratton
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Irina Cornaciu
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - Monika Oberer
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - David
J. Scott
- School
of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Ingrid Dreveny
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
29
|
Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell 2014; 5:503-17. [PMID: 24756567 PMCID: PMC4085288 DOI: 10.1007/s13238-014-0058-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/28/2014] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β (TGF-β) members are key cytokines that control embryogenesis and tissue homeostasis via transmembrane TGF-β type II (TβR II) and type I (TβRI) and serine/threonine kinases receptors. Aberrant activation of TGF-β signaling leads to diseases, including cancer. In advanced cancer, the TGF-β/SMAD pathway can act as an oncogenic factor driving tumor cell invasion and metastasis, and thus is considered to be a therapeutic target. The activity of TGF-β/SMAD pathway is known to be regulated by ubiquitination at multiple levels. As ubiquitination is reversible, emerging studies have uncovered key roles for ubiquitin-removals on TGF-β signaling components by deubiquitinating enzymes (DUBs). In this paper, we summarize the latest findings on the DUBs that control the activity of the TGF-β signaling pathway. The regulatory roles of these DUBs as a driving force for cancer progression as well as their underlying working mechanisms are also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Xiaofei Zhang
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Feng Xie
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Zhengkui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
30
|
Zhang J, Ma W, Tian S, Fan Z, Ma X, Yang X, Zhao Q, Tan K, Chen H, Chen D, Huang BR. RanBPM interacts with TβRI, TRAF6 and curbs TGF induced nuclear accumulation of TβRI. Cell Signal 2013; 26:162-72. [PMID: 24103590 DOI: 10.1016/j.cellsig.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/18/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β (TGF-β), a cytokine, and its receptors play a vital role during normal embryogenesis, cell proliferation, differentiation, apoptosis and migration. Ran-binding protein in the microtubule-organizing center (RanBPM) serves as a scaffold protein that has been shown to interact with many other proteins, such as MET, Axl/Sky, TRAF6, IFNR, TrKA and TrkB in addition to p75NTR. In the current study, we have identified RanBPM as a novel binding partner of TβRI by yeast two-hybrid assay. The TβRI and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM abrogated the interaction between TβRI and TRAF6. Furthermore, RanBPM could depress TGF-β induced TRAF6 ubiquitination, subsequent NF-κB signaling pathway, and block TGF-β induced TβRI nuclear accumulation. Taken together, our results reveal that RanBPM may modulate TGF-β-mediated downstream signaling and biological functions.
Collapse
Affiliation(s)
- Junwen Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP. USP11 augments TGFβ signalling by deubiquitylating ALK5. Open Biol 2013; 2:120063. [PMID: 22773947 PMCID: PMC3390794 DOI: 10.1098/rsob.120063] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/31/2012] [Indexed: 12/20/2022] Open
Abstract
The TGFβ receptors signal through phosphorylation and nuclear translocation of SMAD2/3. SMAD7, a transcriptional target of TGFβ signals, negatively regulates the TGFβ pathway by recruiting E3 ubiquitin ligases and targeting TGFβ receptors for ubiquitin-mediated degradation. In this report, we identify a deubiquitylating enzyme USP11 as an interactor of SMAD7. USP11 enhances TGFβ signalling and can override the negative effects of SMAD7. USP11 interacts with and deubiquitylates the type I TGFβ receptor (ALK5), resulting in enhanced TGFβ-induced gene transcription. The deubiquitylase activity of USP11 is required to enhance TGFβ-induced gene transcription. RNAi-mediated depletion of USP11 results in inhibition of TGFβ-induced SMAD2/3 phosphorylation and TGFβ-mediated transcriptional responses. Central to TGFβ pathway signalling in early embryogenesis and carcinogenesis is TGFβ-induced epithelial to mesenchymal transition. USP11 depletion results in inhibition of TGFβ-induced epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Medical Research Council - Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
32
|
USP-11 as a predictive and prognostic factor following neoadjuvant therapy in women with breast cancer. Cancer J 2013; 19:10-7. [PMID: 23337751 DOI: 10.1097/ppo.0b013e3182801b3a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE USP-11, a member of the ubiquitin-specific protease family, has emerged as an essential regulator of double-strand break repair. Few studies have shown that silencing USP-11 led to hypersensitivity to poly(ADP-ribose) polymerase inhibition, ionizing radiation, and DNA-damaging agents. We sought to examine the predictive and prognostic relevance of USP-11 in patients treated with neoadjuvant systemic therapy (NST) for breast cancer. METHODS Fifty-six women who were treated with NST for breast cancer between 1999 and 2004 were included in the study. The Kaplan-Meier product-limit method was used to estimate disease-free survival and overall survival rates. Logistic regression models were fit to determine the associations between USP-11 status, pathological complete response (pCR), and survival. RESULTS Sixteen patients (29%) had high-USP-11-expressing tumors, and 40 (71%) patients had low-USP-11-expressing tumors. No significant differences were observed in pCR rates with respect to USP-11 status. At a median follow-up of 7.4 years, 33 patients (59%) experienced a disease recurrence or death. Patients with high-USP-11-expressing tumors had a higher risk of recurrence (odds ratio [OR], 3.87; 95% confidence interval [CI], 1.51-9.93; P = 0.005) and death (OR, 6.03; 95% CI, 2.00-18.17; P = 0.001) than those with low-USP-11-expressing tumors. Patients who did not achieve a pCR had an increased risk of recurrence (OR, 5.16; 95% CI, 1.16-23.07; P = 0.03). CONCLUSIONS Our data indicate that USP-11 is not a predictor of a pCR after anthracycline-taxane-containing NST for breast cancer. Low USP-11 expression was independently correlated with better survival outcomes.
Collapse
|
33
|
Abstract
RanBPM is a multimodular scaffold protein that interacts with a great variety of molecules including nuclear, cytoplasmic, and membrane proteins. By building multiprotein complexes, RanBPM is thought to regulate various signaling pathways, especially in the immune and nervous system. However, the diversity of these interactions does not facilitate the identification of its precise mechanism of action, and therefore the physiological role of RanBPM still remains unclear. Recently, RanBPM has been shown to be critical for the fertility of both genders in mouse. Although mechanistically it is still unclear how RanBPM affects gametogenesis, the data collected so far suggest that it is a key player in this process. Here, we examine the RanBPM sterility phenotype in the context of other genetic mutations affecting mouse gametogenesis to investigate whether this scaffold protein affects the function of other known proteins whose deficiency results in similar sterility phenotypes.
Collapse
Affiliation(s)
- Sandrine Puverel
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, Maryland, USA.
| | | |
Collapse
|
34
|
Abstract
Ran-binding protein M (RanBPM) is a nucleocytoplasmic protein of yet unknown function. We have previously shown that RanBPM inhibits expression of the anti-apoptotic factor Bcl-2 and promotes apoptosis induced by DNA damage. Here we show that the effects of RanBPM on Bcl-2 expression occur through a regulation of the ERK signaling pathway. Transient and stable down-regulation of RanBPM stimulated ERK phosphorylation, leading to Bcl-2 up-regulation, while re-expression of RanBPM reversed these effects. RanBPM was found to inhibit MEK and ERK activation induced by ectopic expression of active RasV12. Activation of ERK by active c-Raf was also prevented by RanBPM. Expression of RanBPM correlated with a marked decrease in the protein levels of ectopically expressed active c-Raf and also affected the expression of endogenous c-Raf. RanBPM formed a complex with both active c-Raf, consisting of the C-terminal kinase domain, and endogenous c-Raf in mammalian cells. In addition, RanBPM was found to decrease the binding of Hsp90 to c-Raf. Finally, we show that loss of RanBPM expression confers increased cell proliferation and cell migration properties to HEK293 cells. Altogether, these findings establish RanBPM as a novel inhibitor of the ERK pathway through an interaction with the c-Raf complex and a regulation of c-Raf stability, and provide evidence that RanBPM loss of expression results in constitutive activation of the ERK pathway and promotes cellular events leading to cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
35
|
Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet 2012; 8:e1002826. [PMID: 22829782 PMCID: PMC3400564 DOI: 10.1371/journal.pgen.1002826] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
Regulation of PCNA ubiquitylation plays a key role in the tolerance to DNA damage in eukaryotes. Although the evolutionary conserved mechanism of PCNA ubiquitylation is well understood, the deubiquitylation of ubPCNA remains poorly characterized. Here, we show that the histone H2BK123 ubiquitin protease Ubp10 also deubiquitylates ubPCNA in Saccharomyces cerevisiae. Our results sustain that Ubp10-dependent deubiquitylation of the sliding clamp PCNA normally takes place during S phase, likely in response to the simple presence of ubPCNA. In agreement with this, we show that Ubp10 forms a complex with PCNA in vivo. Interestingly, we also show that deletion of UBP10 alters in different ways the interaction of PCNA with DNA polymerase ζ–associated protein Rev1 and with accessory subunit Rev7. While deletion of UBP10 enhances PCNA–Rev1 interaction, it decreases significantly Rev7 binding to the sliding clamp. Finally, we report that Ubp10 counteracts Rad18 E3-ubiquitin ligase activity on PCNA at lysine 164 in such a manner that deregulation of Ubp10 expression causes tolerance impairment and MMS hypersensitivity. DNA damage is a major source of genome instability and cancer. A universal mechanism of DNA damage tolerance is based on translesion synthesis (TLS) by specialized low-fidelity DNA polymerases capable of replicating over DNA lesions during replication. Translesion synthesis requires the switch between replicative and TLS DNA polymerases, and this switching is controlled through the ubiquitylation of the proliferating-cell nuclear antigen (PCNA), a processivity factor for DNA synthesis. It is thought that DNA polymerase switching is a reversible process that has a favorable outcome for cells in the prevention of irreversible DNA replication forks collapse. However, the low-fidelity nature of TLS polymerases has unfavorable consequences like the increased risk of mutations opposite to DNA lesions. Here we identify Ubp10 as an enzyme controlling PCNA deubiquitylation in the model yeast S. cerevisiae. The identification of Ubp10 is a first step that will allow us to understand its biological significance and its potential role as part of a safeguard mechanism limiting the residence time of TLS DNA polymerases on replicating chromatin in eukaryotes.
Collapse
|
36
|
Tomaštíková E, Cenklová V, Kohoutová L, Petrovská B, Váchová L, Halada P, Kočárová G, Binarová P. Interactions of an Arabidopsis RanBPM homologue with LisH-CTLH domain proteins revealed high conservation of CTLH complexes in eukaryotes. BMC PLANT BIOLOGY 2012; 12:83. [PMID: 22676313 PMCID: PMC3464593 DOI: 10.1186/1471-2229-12-83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/07/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND RanBPM (Ran-binding protein in the microtubule-organizing centre) was originally reported as a centrosome-associated protein in human cells. However, RanBPM protein containing highly conserved SPRY, LisH, CTLH and CRA domains is currently considered as a scaffolding protein with multiple cellular functions. A plant homologue of RanBPM has not yet been characterized. RESULTS Based on sequence similarity, we identified a homologue of the human RanBPM in Arabidopsis thaliana. AtRanBPM protein has highly conserved SPRY, LisH, CTLH and CRA domains. Cell fractionation showed that endogenous AtRanBPM or expressed GFP-AtRanBPM are mainly cytoplasmic proteins with only a minor portion detectable in microsomal fractions. AtRanBPM was identified predominantly in the form of soluble cytoplasmic complexes ~230-500 kDa in size. Immunopurification of AtRanBPM followed by mass spectrometric analysis identified proteins containing LisH and CRA domains; LisH, CRA, RING-U-box domains and a transducin/WD40 repeats in a complex with AtRanBPM. Homologues of identified proteins are known to be components of the C-terminal to the LisH motif (CTLH) complexes in humans and budding yeast. Microscopic analysis of GFP-AtRanBPM in vivo and immunofluorescence localization of endogenous AtRanBPM protein in cultured cells and seedlings of Arabidopsis showed mainly cytoplasmic and nuclear localization. Absence of colocalization with γ-tubulin was consistent with the biochemical data and suggests another than a centrosomal role of the AtRanBPM protein. CONCLUSION We showed that as yet uncharacterized Arabidopsis RanBPM protein physically interacts with LisH-CTLH domain-containing proteins. The newly identified high molecular weight cytoplasmic protein complexes of AtRanBPM showed homology with CTLH types of complexes described in mammals and budding yeast. Although the exact functions of the CTLH complexes in scaffolding of protein degradation, in protein interactions and in signalling from the periphery to the cell centre are not yet fully understood, structural conservation of the complexes across eukaryotes suggests their important biological role.
Collapse
Affiliation(s)
- Eva Tomaštíková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, v.v.i., Sokolovská 6, Olomouc, 772 00, Czech Republic
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Lucie Kohoutová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, v.v.i., Sokolovská 6, Olomouc, 772 00, Czech Republic
| | - Lenka Váchová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Petr Halada
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Gabriela Kočárová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
37
|
Suresh B, Ramakrishna S, Baek KH. Diverse roles of the scaffolding protein RanBPM. Drug Discov Today 2011; 17:379-87. [PMID: 22094242 DOI: 10.1016/j.drudis.2011.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/08/2011] [Accepted: 10/31/2011] [Indexed: 11/27/2022]
Abstract
Ran-binding protein microtubule-organizing center (RanBPM) appears to function as a scaffolding protein in several signal transduction pathways. RanBPM is a crucial component of multiprotein complexes that regulate the cellular function by modulating and/or assembling with a wide range of proteins in different intracellular regions and thereby mediate diverse cellular functions. This suggests a role for RanBPM as a scaffolding protein. In this article, we have summarized the diverse functions of RanBPM and its interacting partners that have been investigated to date. Also, we have categorized the role of RanBPM into four divisions: RanBPM as a modulator/protein stabilizer, regulator of transcription activity, cell cycle and neurological functions.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Republic of Korea
| | | | | |
Collapse
|
38
|
Wang L, Fu C, Cui Y, Xie Y, Yuan Y, Wang X, Chen H, Huang BR. The Ran-binding protein RanBPM can depress the NF-κB pathway by interacting with TRAF6. Mol Cell Biochem 2011; 359:83-94. [DOI: 10.1007/s11010-011-1002-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/19/2011] [Indexed: 12/11/2022]
|
39
|
Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J 2010; 29:3879-90. [PMID: 20924359 DOI: 10.1038/emboj.2010.250] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 09/14/2010] [Indexed: 11/08/2022] Open
Abstract
Influenza A virus RNA replication requires an intricate regulatory network involving viral and cellular proteins. In this study, we examined the roles of cellular ubiquitinating/deubiquitinating enzymes (DUBs). We observed that downregulation of a cellular deubiquitinating enzyme USP11 resulted in enhanced virus production, suggesting that USP11 could inhibit influenza virus replication. Conversely, overexpression of USP11 specifically inhibited viral genomic RNA replication, and this inhibition required the deubiquitinase activity. Furthermore, we showed that USP11 interacted with PB2, PA, and NP of viral RNA replication complex, and that NP is a monoubiquitinated protein and can be deubiquitinated by USP11 in vivo. Finally, we identified K184 as the ubiquitination site on NP and this residue is crucial for virus RNA replication. We propose that ubiquitination/deubiquitination of NP can be manipulated for antiviral therapeutic purposes.
Collapse
|
40
|
Suresh B, Ramakrishna S, Kim YS, Kim SM, Kim MS, Baek KH. Stability and function of mammalian lethal giant larvae-1 oncoprotein are regulated by the scaffolding protein RanBPM. J Biol Chem 2010; 285:35340-9. [PMID: 20829363 DOI: 10.1074/jbc.m110.156836] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved lethal giant larvae (Lgl) tumor suppressor gene has an essential role in establishing apical-basal cell polarity, cell proliferation, differentiation, and tissue organization. However, the precise molecular mechanism by which the Lgl carries out its function remains obscure. In the current study, we have identified Ran-binding protein M (RanBPM) as a novel binding partner of Mgl-1, a mammalian homolog of Drosophila tumor suppressor protein lethal (2) giant larvae (L(2)gl) by yeast two-hybrid screening. RanBPM seems to act as a scaffolding protein with a modulatory function with respect to Mgl-1. The Mgl-1 and RanBPM association was confirmed by co-immunoprecipitation and GST pull-down experiments. Additionally, expression of RanBPM resulted in inhibition of Mgl-1 degradation, and thereby extended the half-life of Mgl-1. Furthermore, the ability of Mgl-1 activity in cell migration and colony formation assay was enhanced by RanBPM. Taken together, our findings reveal that RanBPM plays a novel role in regulating Mgl-1 stability and contributes to its biological function as a tumor suppressor.
Collapse
Affiliation(s)
- Bharathi Suresh
- Department of Biomedical Science, CHA University, CHA General Hospital, Seoul 135-081, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Maertens GN, El Messaoudi-Aubert S, Elderkin S, Hiom K, Peters G. Ubiquitin-specific proteases 7 and 11 modulate Polycomb regulation of the INK4a tumour suppressor. EMBO J 2010; 29:2553-65. [PMID: 20601937 PMCID: PMC2928679 DOI: 10.1038/emboj.2010.129] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 05/19/2010] [Indexed: 12/12/2022] Open
Abstract
An important facet of transcriptional repression by Polycomb repressive complex 1 (PRC1) is the mono-ubiquitination of histone H2A by the combined action of the Posterior sex combs (Psc) and Sex combs extra (Sce) proteins. Here, we report that two ubiquitin-specific proteases, USP7 and USP11, co-purify with human PRC1-type complexes through direct interactions with the Psc orthologues MEL18 and BMI1, and with other PRC1 components. Ablation of either USP7 or USP11 in primary human fibroblasts results in de-repression of the INK4a tumour suppressor accompanied by loss of PRC1 binding at the locus and a senescence-like proliferative arrest. Mechanistically, USP7 and USP11 regulate the ubiquitination status of the Psc and Sce proteins themselves, thereby affecting their turnover and abundance. Our results point to a novel function for USPs in the regulation and function of Polycomb complexes.
Collapse
Affiliation(s)
| | | | | | - Kevin Hiom
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Gordon Peters
- Cancer Research UK, London Research Institute, London, UK
| |
Collapse
|
42
|
Sun W, Tan X, Shi Y, Xu G, Mao R, Gu X, Fan Y, Yu Y, Burlingame S, Zhang H, Rednam SP, Lu X, Zhang T, Fu S, Cao G, Qin J, Yang J. USP11 negatively regulates TNFalpha-induced NF-kappaB activation by targeting on IkappaBalpha. Cell Signal 2010; 22:386-94. [PMID: 19874889 DOI: 10.1016/j.cellsig.2009.10.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/13/2009] [Accepted: 10/18/2009] [Indexed: 01/03/2023]
Abstract
IkappaBalpha serves as a central anchoring molecule in the sequestration of NF-kappaB transcription factor in the cytoplasm. Ubiquitination-mediated IkappaBalpha degradation immediately precedes and is required for NF-kappaB nuclear translocation and activation. However, the precise mechanism for the deubiquitination of IkappaBalpha is still not fully understood. Using a proteomic approach, we have identified Ubiquitin Specific Peptidase 11 (USP11) as an IkappaBalpha associated deubiquitinase. Overexpression of USP11 inhibits IkappaBalpha ubiquitination. Recombinant USP11 catalyzes deubiquitination of IkappaBalpha in vitro. Moreover, knockdown of USP11 expression enhances TNFalpha-induced IkappaBalpha ubiquitination and NF-kappaB activation. These data demonstrate that USP11 plays an important role in the downregulation of TNFalpha-mediated NF-kappaB activation through modulating IkappaBalpha stability. In addition, overexpression of a catalytically inactive USP11 mutant partially inhibits TNFalpha- and IKKbeta-induced NF-kappaB activation, suggesting that USP11 also exerts a non-catalytic function in its negative regulation of TNFalpha-mediated NF-kappaB activation. Thus, IkappaBalpha ubiquitination and deubiquitination processes function as a Yin-Yang regulatory mechanism on TNFalpha-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Wenjing Sun
- Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Talbot JN, Skifter DA, Bianchi E, Monaghan DT, Toews ML, Murrin LC. Regulation of mu opioid receptor internalization by the scaffold protein RanBPM. Neurosci Lett 2009; 466:154-8. [PMID: 19788913 DOI: 10.1016/j.neulet.2009.09.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Mu opioid receptors (MOP) are transducers of the pharmacological effects of many opioid drugs, including analgesia and tolerance/dependence. Previously, we observed increased MOP signaling during postnatal development that was not associated with increased MOP or G protein expression. A yeast two-hybrid screen of a human brain cDNA library using the MOP C-terminus as bait identified RanBPM as a potential MOP-interacting protein. RanBPM has been recognized as a multi-functional scaffold protein that interacts with a variety of signaling receptors/proteins. Co-immunoprecipitation studies in HEK293 cells indicated that RanBPM constitutively associates with MOP. Functionally, RanBPM had no effect on MOP-mediated inhibition of adenylyl cyclase, yet reduced agonist-induced endocytosis of MOP. Mechanistically, RanBPM interfered with beta arrestin2-GFP translocation stimulated by MOP but not alpha(1B)-adrenergic receptor activation, indicating selectivity of action. Our findings suggest that RanBPM is a novel MOP-interacting protein that negatively regulates receptor internalization without altering MOP signaling through adenylyl cyclase.
Collapse
Affiliation(s)
- Jeffery N Talbot
- Department of Pharmacology and Experimental Neuroscience, 985800 Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | | | | | |
Collapse
|
44
|
Ying M, Zhan Z, Wang W, Chen D. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 2009; 447:72-85. [PMID: 19664694 DOI: 10.1016/j.gene.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/19/2022]
Abstract
The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 1048-1059], while mammal E2s experienced evolution of multigene families by gene duplications which have been accompanied by the increase in the species complexity. Because of alternatively splicing, primate-specific expansions of E2s happened once again at a transcriptional level. Both of them resulted in increasing genomic complexity and diversity of primate E2 proteomic function. The evolutionary processes of human E2 gene structure during expansions were accompanied by exon duplication and exonization of intronic sequences. Exonizations of Transposable Elements (TEs) in UBE2D3, UBE2L3 and UBE2V1 genes from primates indicate that exaptation of TEs also plays important roles in the structural innovation of primate-specific E2s and may create alternative splicing isoforms at a transcriptional level. Estimates for the ratio of dN/dS suggest that a strong purifying selection had acted upon protein-coding sequences of their orthologous UBE2D2, UBE2A, UBE2N, UBE2I and Rbx1 genes from animals, plants and fungi. The similar rates of synonymous substitutions are in accordance with the neutral mutation-random drift hypothesis of molecular evolution. Systematic detection of the origin and evolution of E2s, analyzing the evolution of E2 multigene families by gene duplications and the evolutionary processes of E2s during expansions, and testing its evolutionary force using E2s from distant phylogenetic lineages may advance our distinguishing of ancestral E2s from created E2s, and reveal previously unknown relationships between E2s and metazoan complexity. Analysis of these conserved proteins provides strong support for a close relationship between social amoeba and eukaryote, choanoflagellate and metazoan, and for the central roles of social amoeba and choanoflagellate in the origin and evolution of eukaryote and metazoan. Retracing the different stages of primate E2 exonization by monitoring genomic events over 63 Myr of primate evolution will advance our understanding of how TEs dynamically modified primate transcriptome and proteome in the past, and continue to do so.
Collapse
Affiliation(s)
- Muying Ying
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
45
|
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008; 29:898-938. [PMID: 18815314 PMCID: PMC2647704 DOI: 10.1210/er.2008-0019] [Citation(s) in RCA: 567] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/15/2008] [Indexed: 02/06/2023]
Abstract
The iodothyronine deiodinases initiate or terminate thyroid hormone action and therefore are critical for the biological effects mediated by thyroid hormone. Over the years, research has focused on their role in preserving serum levels of the biologically active molecule T(3) during iodine deficiency. More recently, a fascinating new role of these enzymes has been unveiled. The activating deiodinase (D2) and the inactivating deiodinase (D3) can locally increase or decrease thyroid hormone signaling in a tissue- and temporal-specific fashion, independent of changes in thyroid hormone serum concentrations. This mechanism is particularly relevant because deiodinase expression can be modulated by a wide variety of endogenous signaling molecules such as sonic hedgehog, nuclear factor-kappaB, growth factors, bile acids, hypoxia-inducible factor-1alpha, as well as a growing number of xenobiotic substances. In light of these findings, it seems clear that deiodinases play a much broader role than once thought, with great ramifications for the control of thyroid hormone signaling during vertebrate development and metamorphosis, as well as injury response, tissue repair, hypothalamic function, and energy homeostasis in adults.
Collapse
Affiliation(s)
- Balázs Gereben
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Proteasome-dependent degradation of alpha-catenin is regulated by interaction with ARMc8alpha. Biochem J 2008; 411:581-91. [PMID: 18215130 DOI: 10.1042/bj20071312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ARMc8 (armadillo-repeat-containing protein 8) is a key component of the CTLH (C-terminal to lissencephaly type-1-like homology motif) complex in mammalian cells. This complex is well conserved in Saccharomyces cerevisiae and has been characterized as a FBPase (fructose-1, 6-bisphosphatase)-degrading complex. The yeast homologue of ARMc8, Gid (glucose-induced degradation) 5p, plays an essential role in the ubiquitin- and proteasome-dependent degradation of FBPase. To elucidate the function of ARMc8, we used a yeast two-hybrid system to screen a human skeletal muscle cDNA library. alpha-Catenin was isolated as a binding protein of ARMc8alpha. This association was confirmed by co-immunoprecipitation assay using MDCK (Madin-Darby canine kidney) cells in which exogenous alpha-catenin and ARMc8alpha were overexpressed. The association was also confirmed by co-immunoprecipitation assay using endogenous proteins in untransfected MDCK cells. We then used immunofluorescence microscopy of MDCK cells and C2C12 cells to investigate the intracellular distribution of ARMc8. Exogenously expressed ARMc8 was co-localized with alpha-catenin and beta-catenin along the cell membrane, suggesting an association between alpha-catenin and ARMc8 in the cells. To compare the binding domain of alpha-catenin with ARMc8alpha with that of beta-catenin, we performed a co-immunoprecipitation assay, again using 5'- and 3'-deletion constructs of alpha-catenin. The N-terminal sequence (amino acids 82-148) of alpha-catenin was sufficient to bind to both ARMc8alpha and beta-catenin. Next, we investigated the proteasome-dependent degradation of alpha-catenin by immunoblotting using proteasome inhibitors. Co-expression of ARMc8alpha with alpha-catenin resulted in rapid degradation of the exogenous alpha-catenin. Furthermore, ARMc8 knockdown inhibited alpha-catenin degradation and prolonged the half-life of alpha-catenin. We conclude that ARMc8alpha associates with alpha-catenin and up-regulates its degradation.
Collapse
|
47
|
Lin CH, Chang HS, Yu WCY. USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem 2008; 283:15681-8. [PMID: 18408009 DOI: 10.1074/jbc.m708278200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HPV-16E7 is a major transforming protein, which has been implicated in the development of cervical cancer. The stability of E7 is thus important to ensure its fully functional status. Using the yeast two-hybrid system, we found that USP11 (ubiquitin-specific protease 11), a member of a protein family that cleaves polyubiquitin chains and/or ubiquitin precursors, interacts and forms a specific complex with HPV-16E7. Our results indicate that the USP11 can greatly increase the steady state level of HPV-16E7 by reducing ubiquitination and attenuating E7 degradation. In contrast, a catalytically inactive mutant of USP11 abolished the deubiquitinating ability and returned E7 to a normal rate of degradation. Moreover, USP11 not only protected E7 from ubiquitination but also influenced E7 function as a modulator of cell growth status. These results suggest that USP11 plays an important role in regulating the levels of E7 protein and subsequently affects the biological function of E7 as well as its contribution to cell transformation by HPV-16E7.
Collapse
Affiliation(s)
- Ching-Hui Lin
- National Health Research Institutes, 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
| | | | | |
Collapse
|
48
|
Haase A, Nordmann C, Sedehizade F, Borrmann C, Reiser G. RanBPM, a novel interaction partner of the brain-specific protein p42IP4/centaurin α-1. J Neurochem 2008; 105:2237-48. [DOI: 10.1111/j.1471-4159.2008.05308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Yamaguchi T, Kimura J, Miki Y, Yoshida K. The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem 2007; 282:33943-8. [PMID: 17897950 DOI: 10.1074/jbc.m706282200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Post-translational modification and degradation of proteins by the ubiquitin-proteasome system are key regulatory events in cellular responses to various stimuli. The NF-kappaB signaling pathway is controlled by the ubiquitin-mediated proteolysis. Although mechanisms of ubiquitination in the NF-kappaB pathway have been extensively studied, deubiquitination-mediated regulation of the NF-kappaB signaling remains poorly understood. The present studies show that a deubiquitinating enzyme, USP11, specifically regulates IkappaB kinase alpha (IKKalpha) among the NF-kappaB signaling molecules. Knocking down USP11 attenuates expression of IKKalpha in the transcriptional, but not the post-translational, level. However, down-regulation of USP11 dramatically enhances NF-kappaB activity in response to tumor necrosis factor-alpha, indicating that IKKalpha does not require activation of NF-kappaB. Instead, knock down of USP11 or IKKalpha is associated with abrogation of p53 expression upon exposure to tumor necrosis factor-alpha. In concert with these results, silencing of USP11 is associated with transcriptional attenuation of the p53-responsive genes, such as p21 or Bax. Importantly, the ectopic expression of IKKalpha into cells silenced for USP11 restores p53 expression, demonstrating that USP11 functions as an upstream regulator of an IKKalpha-p53 signaling pathway.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
50
|
Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, Okuda K, Ishigatsubo Y. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8alpha and ARMC8beta are components of the CTLH complex. Gene 2007; 396:236-47. [PMID: 17467196 DOI: 10.1016/j.gene.2007.02.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 02/13/2007] [Accepted: 02/23/2007] [Indexed: 11/17/2022]
Abstract
Ran-binding protein in microtubule organising centre (RanBPM) was originally isolated as a protein that binds to the small GTPase Ran. Recently our group and other groups reported that RanBPM was associated with several proteins and composed a large protein complex. Here, we used tandem MS with an antibody against RanBPM to purify this complex from a soluble extract of HEK293 cells: we identified Muskelin, p48EMLP, p44CTLH, and the novel armadillo-repeat proteins ARMC8alpha and ARMC8beta as components. In RanBPM, Muskelin, p48EMLP, and p44CTLH we found LisH/CTLH motifs, which are present in proteins involved in microtubule dynamics, cell migration, nucleokinesis, and chromosome segregation. We renamed the 20S large protein complex the CTLH complex. The N-terminal 364 amino acids of ARMC8alpha and ARMC8beta were completely conserved, suggesting that these proteins are probably alternatively spliced products from the same gene. We confirmed the in vivo association of each component by co-immunoprecipitation assays with Cos-7 cells in which these components were exogenously overexpressed. A pull-down assay with bacterially-expressed Twa1 revealed binding of each in vitro-translated component to Twa1. Finally, we confirmed the cellular localization of these proteins. Taken together, our results reveal that RanBPM, ARMC8alpha, ARMC8beta, Muskelin, p48EMLP, and p44CTLH form complexes in cells.
Collapse
Affiliation(s)
- Nobuaki Kobayashi
- Department of Internal Medicine and Clinical Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama-City 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|