1
|
Grosskopf JD, Sidabras JW, Altenbach C, Anderson JR, Mett RR, Strangeway RA, Hyde JS, Hubbell WL, Lerch MT. A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins. Protein Sci 2024; 33:e5220. [PMID: 39565088 PMCID: PMC11577460 DOI: 10.1002/pro.5220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the timescale of ps-μs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of μs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and ms-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the ms timescale.
Collapse
Affiliation(s)
| | - Jason W. Sidabras
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Christian Altenbach
- Department of Chemistry and Biochemistry and Stein Eye InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jim R. Anderson
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Richard R. Mett
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | | | - James S. Hyde
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Wayne L. Hubbell
- Department of Chemistry and Biochemistry and Stein Eye InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Michael T. Lerch
- Department of BiophysicsMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
2
|
Grosskopf JD, Sidabras JW, Altenbach C, Anderson JR, Mett RR, Strangeway RA, Hyde JS, Hubbell WL, Lerch MT. A pressure-jump EPR system to monitor millisecond conformational exchange rates of spin-labeled proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593074. [PMID: 38766191 PMCID: PMC11100676 DOI: 10.1101/2024.05.07.593074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) using nitroxide spin labels is a well-established technology for mapping site-specific secondary and tertiary structure and for monitoring conformational changes in proteins of any degree of complexity, including membrane proteins, with high sensitivity. SDSL-EPR also provides information on protein dynamics in the time scale of ps-µs using continuous wave lineshape analysis and spin lattice relaxation time methods. However, the functionally important time domain of µs-ms, corresponding to large-scale protein motions, is inaccessible to those methods. To extend SDSL-EPR to the longer time domain, the perturbation method of pressure-jump relaxation is implemented. Here, we describe a complete high-pressure EPR system at Q-band for both static pressure and millisecond-timescale pressure-jump measurements on spin-labeled proteins. The instrument enables pressure jumps both up and down from any holding pressure, ranging from atmospheric pressure to the maximum pressure capacity of the system components (~3500 bar). To demonstrate the utility of the system, we characterize a local folding-unfolding equilibrium of T4 lysozyme. The results illustrate the ability of the system to measure thermodynamic and kinetic parameters of protein conformational exchange on the millisecond timescale.
Collapse
Affiliation(s)
- Julian D Grosskopf
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian Altenbach
- Department of Chemistry and Biochemistry and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Jim R Anderson
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Richard R Mett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Robert A Strangeway
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James S Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wayne L Hubbell
- Department of Chemistry and Biochemistry and Stein Eye Institute, University of California, Los Angeles, CA 90095, USA
| | - Michael T Lerch
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Niebuur BJ, Chiappisi L, Jung F, Zhang X, Schulte A, Papadakis CM. Kinetics of Mesoglobule Formation and Growth in Aqueous Poly(N-isopropylacrylamide) Solutions: Pressure Jumps at Low and at High Pressure. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Leonardo Chiappisi
- Large Scale Structures Group, Institut Laue-Langevin, 71, Avenue des Martyrs, 38042 Grenoble, France
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Florian Jung
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Xiaohan Zhang
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
4
|
Möller J, Léonardon J, Gorini J, Dattani R, Narayanan T. A sub-ms pressure jump setup for time-resolved X-ray scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:125116. [PMID: 28040915 DOI: 10.1063/1.4972296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a new experimental setup for time-resolved solution small-angle X-ray scattering (SAXS) studies of kinetic processes induced by sub-ms hydrostatic pressure jumps. It is based on a high-force piezo-stack actuator, with which the volume of the sample can be dynamically compressed. The presented setup has been designed and optimized for SAXS experiments with absolute pressures of up to 1000 bars, using transparent diamond windows and an easy-to-change sample capillary. The pressure in the cell can be changed in less than 1 ms, which is about an order of magnitude faster jump than previously obtained by dynamic pressure setups for SAXS. An additional temperature control offers the possibility for automated mapping of p-T phase diagrams. Here we present the technical specifications and first experimental data taken together with a preview of new research opportunities enabled by this setup.
Collapse
|
5
|
Salakhieva DV, Sadreev II, Chen MZQ, Umezawa Y, Evstifeev AI, Welsh GI, Kotov NV. Kinetic regulation of multi-ligand binding proteins. BMC SYSTEMS BIOLOGY 2016; 10:32. [PMID: 27090530 PMCID: PMC4835871 DOI: 10.1186/s12918-016-0277-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Second messengers, such as calcium, regulate the activity of multisite binding proteins in a concentration-dependent manner. For example, calcium binding has been shown to induce conformational transitions in the calcium-dependent protein calmodulin, under steady state conditions. However, intracellular concentrations of these second messengers are often subject to rapid change. The mechanisms underlying dynamic ligand-dependent regulation of multisite proteins require further elucidation. RESULTS In this study, a computational analysis of multisite protein kinetics in response to rapid changes in ligand concentrations is presented. Two major physiological scenarios are investigated: i) Ligand concentration is abundant and the ligand-multisite protein binding does not affect free ligand concentration, ii) Ligand concentration is of the same order of magnitude as the interacting multisite protein concentration and does not change. Therefore, buffering effects significantly influence the amounts of free ligands. For each of these scenarios the influence of the number of binding sites, the temporal effects on intermediate apo- and fully saturated conformations and the multisite regulatory effects on target proteins are investigated. CONCLUSIONS The developed models allow for a novel and accurate interpretation of concentration and pressure jump-dependent kinetic experiments. The presented model makes predictions for the temporal distribution of multisite protein conformations in complex with variable numbers of ligands. Furthermore, it derives the characteristic time and the dynamics for the kinetic responses elicited by a ligand concentration change as a function of ligand concentration and the number of ligand binding sites. Effector proteins regulated by multisite ligand binding are shown to depend on ligand concentration in a highly nonlinear fashion.
Collapse
Affiliation(s)
- Diana V. Salakhieva
- />Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Ildar I. Sadreev
- />Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Road, Exeter, EX4 4QF UK
| | - Michael Z. Q. Chen
- />Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yoshinori Umezawa
- />Department of Dermatology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461 Japan
| | - Aleksandr I. Evstifeev
- />Biophysics & Bionics Lab, Institute of Physics, Kazan Federal University, Kazan, 420008 Russia
| | - Gavin I. Welsh
- />Academic Renal Unit, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY UK
| | - Nikolay V. Kotov
- />Biophysics & Bionics Lab, Institute of Physics, Kazan Federal University, Kazan, 420008 Russia
| |
Collapse
|
6
|
Quérard J, Le Saux T, Gautier A, Alcor D, Croquette V, Lemarchand A, Gosse C, Jullien L. Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. Chemphyschem 2016; 17:1396-413. [PMID: 26833808 DOI: 10.1002/cphc.201500987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 11/07/2022]
Abstract
Living cells are chemical mixtures of exceptional interest and significance, whose investigation requires the development of powerful analytical tools fulfilling the demanding constraints resulting from their singular features. In particular, multiplexed observation of a large number of molecular targets with high spatiotemporal resolution appears highly desirable. One attractive road to address this analytical challenge relies on engaging the targets in reactions and exploiting the rich kinetic signature of the resulting reactive module, which originates from its topology and its rate constants. This review explores the various facets of this promising strategy. We first emphasize the singularity of the content of a living cell as a chemical mixture and suggest that its multiplexed observation is significant and timely. Then, we show that exploiting the kinetics of analytical processes is relevant to selectively detect a given analyte: upon perturbing the system, the kinetic window associated to response read-out has to be matched with that of the targeted reactive module. Eventually, we introduce the state-of-the-art of cell imaging exploiting protocols based on reaction kinetics and draw some promising perspectives.
Collapse
Affiliation(s)
- Jérôme Quérard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Thomas Le Saux
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Arnaud Gautier
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| | - Damien Alcor
- INSERM U1065, C3M; 151 route Saint Antoine de Ginestière, BP 2 3194 F-06204 Nice Cedex 3 France
| | - Vincent Croquette
- Ecole Normale Supérieure; Département de Physique and Département de Biologie, Laboratoire de Physique Statistique UMR CNRS-ENS 8550; 24 rue Lhomond F-75005 Paris France
| | - Annie Lemarchand
- Sorbonne Universités; UPMC Univ Paris 06, Laboratoire de Physique Théorique de la Matière Condensée; 4 place Jussieu, case courrier 121 75252 Paris cedex 05 France
- CNRS, UMR 7600 LPTMC; 75005 Paris France
| | - Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS; route de Nozay 91460 Marcoussis France
| | - Ludovic Jullien
- Ecole Normale Supérieure-PSL Research University; Département de Chimie; 24, rue Lhomond F-75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06, PASTEUR; F-75005 Paris France
- CNRS, UMR 8640 PASTEUR; F-75005 Paris France
| |
Collapse
|
7
|
van Wilderen LJGW, Bredenbeck J. Von ultraschnellen Strukturbestimmungen bis zum Steuern von Reaktionen: mehrdimensionale gemischte IR/nicht-IR-Schwingungsspektroskopie. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
van Wilderen LJGW, Bredenbeck J. From Ultrafast Structure Determination to Steering Reactions: Mixed IR/Non-IR Multidimensional Vibrational Spectroscopies. Angew Chem Int Ed Engl 2015; 54:11624-40. [PMID: 26394274 DOI: 10.1002/anie.201503155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 12/27/2022]
Abstract
Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface-specific 2D-IR spectroscopy with sub-monolayer sensitivity, ultrafast structure determination in non-equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman- and IR-active modes, imaging with chemical contrast, sub-ensemble-selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non-IR pulse sequences, discuss their differences, and illustrate their application potential.
Collapse
Affiliation(s)
| | - Jens Bredenbeck
- Institute of Biophysics, Johann Wolfgang Goethe-University, Frankfurt am Main (Germany).
| |
Collapse
|
9
|
Meersman F, McMillan PF. High hydrostatic pressure: a probing tool and a necessary parameter in biophysical chemistry. Chem Commun (Camb) 2014; 50:766-75. [PMID: 24286104 DOI: 10.1039/c3cc45844j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High pressures extending up to several thousands of atmospheres provide extreme conditions for biological organisms to survive. Recent studies are investigating the survival mechanisms and biological function of microorganisms under natural and laboratory conditions extending into the GigaPascal range, with applications to understanding the Earth's deep biosphere and food technology. High pressure has also emerged as a useful tool and physical parameter for probing changes in the structure and functional properties of biologically important macromolecules and polymers encountered in soft matter science. Here we highlight some areas of current interest in high pressure biophysics and physical chemistry that are emerging at the frontier of this cross-disciplinary field.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | | |
Collapse
|
10
|
Brooks NJ. Pressure effects on lipids and bio-membrane assemblies. IUCRJ 2014; 1:470-7. [PMID: 25485127 PMCID: PMC4224465 DOI: 10.1107/s2052252514019551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/28/2014] [Indexed: 05/06/2023]
Abstract
Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid-protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.
Collapse
Affiliation(s)
- Nicholas J. Brooks
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, England
| |
Collapse
|
11
|
Abstract
Most biochemical processes occur on sub-second time scales. Relaxation and rapid mixing methods allow reactions from microsecond time scales onwards to be monitored in real time. This chapter describes the instrumentation for these techniques and it discusses general topics of sample excitation and signal detection.
Collapse
|
12
|
Probing the Self-Assembly of Unilamellar Vesicles Using Time-Resolved SAXS. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-12-418698-9.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
13
|
Vilensky GG. Thermodynamic theory of nonlinear ultrasound in soft biological tissue. Proc Math Phys Eng Sci 2013. [DOI: 10.1098/rspa.2012.0399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new theoretical model of ultrasound propagation in soft biological media is presented based on an extended thermodynamics formalism. The long-standing experimental conjecture claiming that a continuous distribution of internal degrees of freedom can be used to model ultrasound in biological media is given theoretical justification. A strategy to derive a well-defined set of equations coupling the balance equations of mass, momentum, energy and entropy with relaxation kinetics of a medium characterized by a continuous distribution of internal states is presented. We demonstrate that new phenomenological coefficients of the proposed governing equations can be extracted directly from experimental data. Our theory successfully explains the anomalous attenuation law found in experiments with biological media that is inconsistent with the conventional models using a finite number of internal degrees of freedom. The results presented offer new possibilities for medical applications of high-intensity ultrasound and ultrasound emission methods to study matter with complex internal structure. These techniques include using pressure relaxation methods for accurate investigation of fast protein folding and a variety of other applications for media where irreversible thermodynamic simulations are essential.
Collapse
Affiliation(s)
- Gregory G. Vilensky
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
14
|
Brooks NJ, Ces O, Templer RH, Seddon JM. Pressure effects on lipid membrane structure and dynamics. Chem Phys Lipids 2010; 164:89-98. [PMID: 21172328 DOI: 10.1016/j.chemphyslip.2010.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
The effect of hydrostatic pressure on lipid structure and dynamics is highly important as a tool in biophysics and bio-technology, and in the biology of deep sea organisms. Despite its importance, high hydrostatic pressure remains significantly less utilised than other thermodynamic variables such as temperature and chemical composition. Here, we give an overview of some of the theoretical aspects which determine lipid behaviour under pressure and the techniques and technology available to study these effects. We also summarise several recent experiments which highlight the information available from these approaches.
Collapse
Affiliation(s)
- Nicholas J Brooks
- Membrane Biophysics Platform and Institute of Chemical Biology, Department of Chemistry, Imperial College London, South Kensington Campus, UK
| | | | | | | |
Collapse
|
15
|
Heuert U, Krumova M, Hempel G, Schiewek M, Blume A. NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:105102. [PMID: 21034114 DOI: 10.1063/1.3481164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We describe the design and performance of a pressure-jump instrument for time-resolved NMR experiments. Initial pressure of up to 250 bars can be produced by means of a HPLC pump and distilled water as a pressure-transmitting liquid. Fast pressure release at a time resolution of 3 ms is achieved using a fast acting valve driven by a piezostack close to the sample chamber. The pressure-jump cell is placed together with two valves in an especially designed NMR probe, which can be used in standard spectrometers with wide-bore magnets. All functions of the instrument are personal computer controlled. The equipment is designed for investigations on systems of biological interest, especially lipid-water dispersions. A theoretical consideration implies that probably the limited speed of valve opening determines the lower boundary of the jump time. The performance is illustrated by time-resolved NMR spectra across the phase transition of a phospholipid-water dispersion after a pressure jump from 100 bars to atmospheric pressure.
Collapse
Affiliation(s)
- U Heuert
- Insitut für Physik, Martin-Luther University Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
16
|
Bridges MD, Hideg K, Hubbell WL. Resolving Conformational and Rotameric Exchange in Spin-Labeled Proteins Using Saturation Recovery EPR. APPLIED MAGNETIC RESONANCE 2010; 37:363. [PMID: 20157634 PMCID: PMC2821067 DOI: 10.1007/s00723-009-0079-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The function of many proteins involves equilibria between conformational substates, and to elucidate mechanisms of function it is essential to have experimental tools to detect the presence of conformational substates and to determine the time scale of exchange between them. Site-directed spin labeling (SDSL) has the potential to serve this purpose. In proteins containing a nitroxide side chain (R1), multicomponent electron paramagnetic resonance (EPR) spectra can arise either from equilibria involving different conformational substates or rotamers of R1. To employ SDSL to uniquely identify conformational equilibria, it is thus essential to distinguish between these origins of multicomponent spectra. Here we show that this is possible based on the time scale for exchange of the nitroxide between distinct environments that give rise to multicomponent EPR spectra; rotamer exchange for R1 lies in the ≈0.1-1 μs range, while conformational exchange is at least an order of magnitude slower. The time scales of exchange events are determined by saturation recovery EPR, and in favorable cases, the exchange rate constants between substates with lifetimes of approximately 1-70 μs can be estimated by the approach.
Collapse
Affiliation(s)
- Michael D. Bridges
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-7008, USA
| | - Kálmán Hideg
- Institute of Organic and Medical Chemistry, University of Pécs, Szigeti str. 12, 7624 Pecs, Hungary
| | - Wayne L. Hubbell
- Jules Stein Eye Institute and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-7008, USA
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095-7008, USA
| |
Collapse
|
17
|
Marchal S, Font J, Ribó M, Vilanova M, Phillips RS, Lange R, Torrent J. Asymmetric kinetics of protein structural changes. Acc Chem Res 2009; 42:778-87. [PMID: 19378977 DOI: 10.1021/ar800266r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermodynamic and kinetic understanding of structural transformations in proteins is critical to new developments in medicine and biotechnology. These fields often require the design of mechanism-based modulators of protein function. Researchers increasingly consider these structural changes-such as folding/unfolding or shuttling between active and inactive states-within the energy landscape concept that supposes a high-dimensional, rugged conformational surface. The unevenness, or asperity, of this conformational surface results from energetic barriers and kinetic traps. However, for a large number of protein reactions, such as reversible folding/unfolding, the literature only reports simple two-state transitions, which calls into question the use of a more complex energy landscape model. The question is: are these reactions really that simple, or are we misled by a biased experimental approach? In this Account, we argue in favor of the latter possibility. Indeed, the frequently employed temperature-jump method only allows recording protein structure changes in the heating direction. Under those conditions, it might not be possible to detect other kinetic pathways that could have been taken in the cooling direction. Recently, however, we have developed bidirectional pressure- and temperature-jump methods, which can offer new insights. Here, we show the potential of these methods both for studying protein folding/unfolding reactions, taking ribonuclease A as model, and for studying functionally relevant protein conformational changes, using the open/closed allosteric transition of tryptophan synthase. For example, the heating and cooling temperature-jump induced kinetics involved in the folding/unfolding conformational surface of ribonuclease A is illustrated above. In both of our model systems, the kinetic transition states of several reaction steps were path-dependent, i.e. the rates and thermodynamic activation parameters depend on the direction of the applied pressure and temperature perturbation. This asymmetry suggests that proteins cope with external stress by adapting their structure to form different ensembles of conformational substates. These states are distinguished by their activation enthalpy and entropy barriers, which can be strongly negative in the folding direction. Based on our analysis of activation compressibility and heat capacity, hydration and packing defects of the kinetic transition states are also very important for determining the reaction path. We expect that a more generalized use of this experimental approach should allow researchers to obtain greater insight into the mechanisms of physiologically relevant protein structural changes.
Collapse
Affiliation(s)
- Stéphane Marchal
- INSERM, U710, F-34095 Montpellier, France
- Université Montpellier 2, F-34095 Montpellier, France
- EPHE, 75007 Paris, France
| | - Josep Font
- School of Molecular and Microbial Biosciences, University of Sydney, NSW, 2006 Australia
| | - Marc Ribó
- Laboratori d’Enginyeria de Proteïnes, Dept. de Biologia, Fac. de Ciències, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Maria Vilanova
- Laboratori d’Enginyeria de Proteïnes, Dept. de Biologia, Fac. de Ciències, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | | | - Reinhard Lange
- INSERM, U710, F-34095 Montpellier, France
- Université Montpellier 2, F-34095 Montpellier, France
- EPHE, 75007 Paris, France
| | - Joan Torrent
- INSERM, U710, F-34095 Montpellier, France
- Université Montpellier 2, F-34095 Montpellier, France
- EPHE, 75007 Paris, France
| |
Collapse
|
18
|
Jenkins DC, Pearson DS, Harvey A, Sylvester ID, Geeves MA, Pinheiro TJT. Rapid folding of the prion protein captured by pressure-jump. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2009; 38:625-635. [PMID: 19255752 PMCID: PMC4509520 DOI: 10.1007/s00249-009-0420-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/16/2009] [Accepted: 01/29/2009] [Indexed: 12/23/2022]
Abstract
The conversion of the cellular form of the prion protein (PrP(C)) to an altered disease state, generally denoted as scrapie isoform (PrP(Sc)), appears to be a crucial molecular event in prion diseases. The details of this conformational transition are not fully understood, but it is perceived that they are associated with misfolding of PrP or its incapacity to maintain the native fold during its cell cycle. Here we present a tryptophan mutant of PrP (F198W), which has enhanced fluorescence sensitivity to unfolding/refolding transitions. Equilibrium folding was studied by circular dichroism and fluorescence. Pressure-jump experiments were successfully applied to reveal rapid submillisecond folding events of PrP at temperatures not accessed before.
Collapse
Affiliation(s)
- David C Jenkins
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David S Pearson
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Andrew Harvey
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Ian D Sylvester
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Teresa J T Pinheiro
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
19
|
Nishiyama M, Kimura Y, Nishiyama Y, Terazima M. Pressure-induced changes in the structure and function of the kinesin-microtubule complex. Biophys J 2009; 96:1142-50. [PMID: 19186149 PMCID: PMC2716646 DOI: 10.1016/j.bpj.2008.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/21/2008] [Indexed: 11/26/2022] Open
Abstract
Kinesin-1 is an ATP-driven molecular motor that "walks" along a microtubule by working two heads in a "hand-over-hand" fashion. The stepping motion is well-coordinated by intermolecular interactions between the kinesin head and microtubule, and is sensitively changed by applied forces. We demonstrate that hydrostatic pressure works as an inhibitory action on kinesin motility. We developed a high-pressure microscope that enables the application of hydrostatic pressures of up to 200 MPa (2000 bar). Under high-pressure conditions, taxol-stabilized microtubules were shortened from both ends at the same speed. The sliding velocity of kinesin motors was reversibly changed by pressure, and reached half-maximal value at approximately 100 MPa. The pressure-velocity relationship was very close to the force-velocity relationship of single kinesin molecules, suggesting a similar inhibitory mechanism on kinesin motility. Further analysis showed that the pressure mainly affects the stepping motion, but not the ATP binding reaction. The application of pressure is thought to enhance the structural fluctuation and/or association of water molecules with the exposed regions of the kinesin head and microtubule. These pressure-induced effects could prevent kinesin motors from completing the stepping motion.
Collapse
Affiliation(s)
- Masayoshi Nishiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
20
|
Pearson DS, Swartz DR, Geeves MA. Fast pressure jumps can perturb calcium and magnesium binding to troponin C F29W. Biochemistry 2008; 47:12146-58. [PMID: 18942859 DOI: 10.1021/bi801150w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used rapid pressure jump and stopped-flow fluorometry to investigate calcium and magnesium binding to F29W chicken skeletal troponin C. Increased pressure perturbed calcium binding to the N-terminal sites in the presence and absence of magnesium and provided an estimate for the volume change upon calcium binding (-12 mL/mol). We observed a biphasic response to a pressure change which was characterized by fast and slow reciprocal relaxation times of the order 1000/s and 100/s. Between pCa 8-5.4 and at troponin C concentrations of 8-28 muM, the slow relaxation times were invariant, indicating that a protein isomerization was rate-limiting. The fast event was only detected over a very narrow pCa range (5.6-5.4). We have devised a model based on a Monod-Wyman-Changeux cooperative mechanism with volume changes of -9 and +6 mL/mol for the calcium binding to the regulatory sites and closed to open protein isomerization steps, respectively. In the absence of magnesium, we discovered that calcium binding to the C-terminal sites could be detected, despite their position distal to the calcium-sensitive tryptophan, with a volume change of +25 mL/mol. We used this novel observation to measure competitive magnesium binding to the C-terminal sites and deduced an affinity in the range 200-300 muM (and a volume change of +35 mL/mol). This affinity is an order of magnitude tighter than equilibrium fluorescence data suggest based on a model of direct competitive binding. Magnesium thus indirectly modulates binding to the N-terminal sites, which may act as a fine-tuning mechanism in vivo.
Collapse
Affiliation(s)
- David S Pearson
- Department of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | | |
Collapse
|
21
|
Abstract
The elementary steps in complex biochemical reaction schemes (isomerization, dissociation, and association reactions) ultimately determine how fast any system can react in responding to incoming signals and in adapting to new conditions. Many of these steps have associated rate constants that result in subsecond responses to incoming signals or externally applied changes. This chapter is concerned with the techniques that have been developed to study such rapidly reacting systems in vitro and to determine the values of the rate constants for the individual steps. We focus principally on two classes of techniques: (1) flow techniques, in which two solutions are mixed within a few milliseconds and the ensuing reaction monitored over milliseconds to seconds, and (2) relaxation techniques, in which a small perturbation to an existing equilibrium is applied within a few microseconds and the response of the system is followed over microseconds to hundreds of milliseconds. These reactions are most conveniently monitored by recording the change in some optical signal, such as absorbance or fluorescence. We discuss the instrumentation that is (commercially) available to study fast reactions and describe a number of optical probes (chromophores) that can be used to monitor the changes. We discuss the experimental design appropriate for the different experimental techniques and reaction mechanisms, as well as the fundamental theoretical concepts behind the analysis of the data obtained.
Collapse
Affiliation(s)
- John F Eccleston
- Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
22
|
Málnási-Csizmadia A, Tóth J, Pearson DS, Hetényi C, Nyitray L, Geeves MA, Bagshaw CR, Kovács M. Selective perturbation of the myosin recovery stroke by point mutations at the base of the lever arm affects ATP hydrolysis and phosphate release. J Biol Chem 2007; 282:17658-64. [PMID: 17449872 DOI: 10.1074/jbc.m701447200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After ATP binding the myosin head undergoes a large structural rearrangement called the recovery stroke. This transition brings catalytic residues into place to enable ATP hydrolysis, and at the same time it causes a swing of the myosin lever arm into a primed state, which is a prerequisite for the power stroke. By introducing point mutations into a subdomain interface at the base of the myosin lever arm at positions Lys(84) and Arg(704), we caused modulatory changes in the equilibrium constant of the recovery stroke, which we could accurately resolve using the fluorescence signal of single tryptophan Dictyostelium myosin II constructs. Our results shed light on a novel role of the recovery stroke: fine-tuning of this reversible equilibrium influences the functional properties of myosin through controlling the effective rates of ATP hydrolysis and phosphate release.
Collapse
|
23
|
Schiewek M, Krumova M, Hempel G, Blume A. Pressure jump relaxation setup with IR detection and millisecond time resolution. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2007; 78:045101. [PMID: 17477687 DOI: 10.1063/1.2719020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An instrument is described that allows the use of Fourier transform infrared (FTIR) spectroscopy as a detection system for kinetic processes after a pressure jump of up to 100 bars. The pressure is generated using a high performance liquid chromatography (HPLC) pump and water as a pressure transducing medium. A flexible membrane separates the liquid sample in the IR cell from the pressure transducing medium. Two electromagnetic switching valves in the setup enable pressure jumps with a decay time of 4 ms. The FTIR spectrometer is configured to measure time resolved spectra in the millisecond time regime using the rapid scan mode. All components are computer controlled. For a demonstration of the capability of the method first results on the kinetics of a phase transition between two lamellar phases of an aqueous phospholipid dispersion are presented. This combination of FTIR spectroscopy with the pressure jump relaxation technique can also be used for other systems which display cooperative transitions with concomitant volume changes.
Collapse
Affiliation(s)
- Martin Schiewek
- Faculty of Chemistry and Physics, Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, Mühlpforte 1, Halle (Saale), Germany
| | | | | | | |
Collapse
|
24
|
Kintses B, Gyimesi M, Pearson DS, Geeves MA, Zeng W, Bagshaw CR, Málnási-Csizmadia A. Reversible movement of switch 1 loop of myosin determines actin interaction. EMBO J 2007; 26:265-74. [PMID: 17213877 PMCID: PMC1782383 DOI: 10.1038/sj.emboj.7601482] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 10/25/2006] [Indexed: 11/09/2022] Open
Abstract
The conserved switch 1 loop of P-loop NTPases is implicated as a central element that transmits information between the nucleotide-binding pocket and the binding site of the partner proteins. Recent structural studies have identified two states of switch 1 in G-proteins and myosin, but their role in the transduction mechanism has yet to be clarified. Single tryptophan residues were introduced into the switch 1 region of myosin II motor domain and studied by rapid reaction methods. We found that in the presence of MgADP, two states of switch 1 exist in dynamic equilibrium. Actin binding shifts the equilibrium towards one of the MgADP states, whereas ATP strongly favors the other. In the light of electron cryo-microscopic and X-ray crystallographic results, these findings lead to a specific structural model in which the equilibrium constant between the two states of switch 1 is coupled to the strength of the actin-myosin interaction. This has implications for the enzymatic mechanism of G-proteins and possibly P-loop NTPases in general.
Collapse
Affiliation(s)
- Bálint Kintses
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
| | - David S Pearson
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Wei Zeng
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Clive R Bagshaw
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - András Málnási-Csizmadia
- Department of Biochemistry, Eötvös Lorand University, Budapest, Hungary
- Department of Biochemistry, Eötvös Lorand University, Budapest 1117, Hungary. Tel.: +36 1 381 2171; Fax: +36 1 381 2172; E-mail:
| |
Collapse
|
25
|
Seddon JM, Squires AM, Conn CE, Ces O, Heron AJ, Mulet X, Shearman GC, Templer RH. Pressure-jump X-ray studies of liquid crystal transitions in lipids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:2635-55. [PMID: 16973480 DOI: 10.1098/rsta.2006.1844] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In [section sign] 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In [section sign] 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In [section sign] 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In [section sign] 4, we describe an IDL-based 'AXcess' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In [section sign] 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in [section sign] 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Collapse
Affiliation(s)
- John M Seddon
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The cold shock protein Bc-Csp folds very rapidly in a reaction that is well described by a kinetic two-state mechanism without intermediates. We measured the shortening of six intra-protein distances during folding by Förster resonance energy transfer (FRET) in combination with stopped-flow experiments. Single tryptophan residues were engineered into the protein as the donors, and single 5-(((acetylamino)ethyl)amino)naphthalene-1-sulfonate (AEDANS) residues were placed as the acceptors at solvent-exposed sites of Bc-Csp. Their R0 value of about 22 A was well suited for following distance changes during the folding of this protein with a high sensitivity. The mutagenesis and the labeling did not alter the refolding kinetics. The changes in energy transfer during folding were monitored by both donor and acceptor emission and reciprocal effects were found. In two cases the donor-acceptor distances were similar in the unfolded and the folded state and, as a consequence, the kinetic changes in energy transfer upon folding were very small. For four donor/acceptor pairs we found that > or =50% of the increase in energy transfer upon folding occurred prior to the rate-limiting step of folding. This reveals that about half of the shortening of the intra-molecular distances upon folding has occurred already before the rate-limiting step and suggests that the fast two-state folding reaction of Bc-Csp is preceded by a very rapid collapse.
Collapse
Affiliation(s)
- Christine Magg
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | |
Collapse
|
27
|
Bódis E, Szarka K, Nyitrai M, Somogyi B. Dynamic reorganization of the motor domain of myosin subfragment 1 in different nucleotide states. ACTA ACUST UNITED AC 2004; 270:4835-45. [PMID: 14653810 DOI: 10.1046/j.1432-1033.2003.03883.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Atomic models of the myosin motor domain with different bound nucleotides have revealed the open and closed conformations of the switch 2 element [Geeves, M.A. & Holmes, K.C. (1999) Annu. Rev. Biochem.68, 687-728]. The two conformations are in dynamic equilibrium, which is controlled by the bound nucleotide. In the present work we attempted to characterize the flexibility of the motor domain in the open and closed conformations in rabbit skeletal myosin subfragment 1. Three residues (Ser181, Lys553 and Cys707) were labelled with fluorophores and the probes identified three fluorescence resonance energy transfer pairs. The effect of ADP, ADP.BeFx, ADP.AlF4- and ADP.Vi on the conformation of the motor domain was shown by applying temperature-dependent fluorescence resonance energy transfer methods. The 50 kDa lower domain was found to maintain substantial rigidity in both the open and closed conformations to provide the structural basis of the interaction of myosin with actin. The flexibility of the 50 kDa upper domain was high in the open conformation and further increased in the closed conformation. The converter region of subfragment 1 became more rigid during the open-to-closed transition, the conformational change of which can provide the mechanical basis of the energy transduction from the nucleotide-binding pocket to the light-chain-binding domain.
Collapse
Affiliation(s)
- Emoke Bódis
- Department of Biophysics, Faculty of Medicine, University of Pécs, Hungary
| | | | | | | |
Collapse
|