1
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
2
|
Vibhute AM, Pushpanandan P, Varghese M, Koniecnzy V, Taylor CW, Sureshan KM. Synthesis of dimeric analogs of adenophostin A that potently evoke Ca 2+ release through IP 3 receptors. RSC Adv 2016; 6:86346-86351. [PMID: 28066549 PMCID: PMC5171214 DOI: 10.1039/c6ra19413c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/05/2016] [Indexed: 11/21/2022] Open
Abstract
Syntheses and Ca2+ release potentials of four dimeric analogs of adenophostin A (AdA) through activation of type 1 IP3R are reported. These analogs are full agonists of IP3R and are equipotent to AdA, the most potent agonist of IP3R.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are tetrameric intracellular channels through which many extracellular stimuli initiate the Ca2+ signals that regulate diverse cellular responses. There is considerable interest in developing novel ligands of IP3R. Adenophostin A (AdA) is a potent agonist of IP3R and since some dimeric analogs of IP3R ligands are more potent than the corresponding monomer; we considered whether dimeric AdA analogs might provide agonists with increased potency. We previously synthesized traizolophostin, in which a simple triazole replaced the adenine of AdA, and showed it to be equipotent to AdA. Here, we used click chemistry to synthesize four homodimeric analogs of triazolophostin, connected by oligoethylene glycol chains of different lengths. We evaluated the potency of these analogs to release Ca2+ through type 1 IP3R and established that the newly synthesized dimers are equipotent to AdA and triazolophostin.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Poornenth Pushpanandan
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Maria Varghese
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| | - Vera Koniecnzy
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge , CB2 1PD , UK
| | - Colin W Taylor
- Department of Pharmacology , University of Cambridge , Tennis Court Road , Cambridge , CB2 1PD , UK
| | - Kana M Sureshan
- School of Chemistry , Indian Institute of Science Education and Research Thiruvananthapuram , Kerala 695016 , India . ; http://kms514.wix.com/kmsgroup
| |
Collapse
|
3
|
A fluorescence-based method for evaluating inositol 1,4,5-trisphosphate receptor ligands: Determination of subtype selectivity and partial agonist effects. J Biotechnol 2013; 167:248-54. [DOI: 10.1016/j.jbiotec.2013.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/19/2013] [Accepted: 06/23/2013] [Indexed: 11/22/2022]
|
4
|
Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 2012; 98:1-14. [PMID: 16354157 DOI: 10.1042/bc20050031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.
Collapse
|
5
|
Parys JB, De Smedt H. Inositol 1,4,5-trisphosphate and its receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:255-79. [PMID: 22453946 DOI: 10.1007/978-94-007-2888-2_11] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activation of cells by many extracellular agonists leads to the production of inositol 1,4,5-trisphosphate (IP₃). IP₃ is a global messenger that easily diffuses in the cytosol. Its receptor (IP₃R) is a Ca(2+)-release channel located on intracellular membranes, especially the endoplasmic reticulum (ER). The IP₃R has an affinity for IP(3) in the low nanomolar range. A prime regulator of the IP₃R is the Ca(2+) ion itself. Cytosolic Ca(2+) is considered as a co-agonist of the IP₃R, as it strongly increases IP(3)R activity at concentrations up to about 300 nM. In contrast, at higher concentrations, cytosolic Ca(2+) inhibits the IP₃R. Also the luminal Ca(2+) sensitizes the IP₃R. In higher organisms three genes encode for an IP₃R and additional diversity exists as a result of alternative splicing mechanisms and the formation of homo- and heterotetramers. The various IP₃R isoforms have a similar structure and a similar function, but due to differences in their affinity for IP₃, their variable sensitivity to regulatory parameters, their differential interaction with associated proteins, and the variation in their subcellular localization, they participate differently in the formation of intracellular Ca(2+) signals and this affects therefore the physiological consequences of these signals.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N1 - Bus 802, Herestraat 49, Belgium.
| | | |
Collapse
|
6
|
Rossi AM, Sureshan KM, Riley AM, Potter VL, Taylor CW. Selective determinants of inositol 1,4,5-trisphosphate and adenophostin A interactions with type 1 inositol 1,4,5-trisphosphate receptors. Br J Pharmacol 2010; 161:1070-85. [PMID: 20977457 PMCID: PMC2998688 DOI: 10.1111/j.1476-5381.2010.00947.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Adenophostin A (AdA) is a potent agonist of inositol 1,4,5-trisphosphate receptors (IP(3) R). AdA shares with IP(3) the essential features of all IP(3) R agonists, namely structures equivalent to the 4,5-bisphosphate and 6-hydroxyl of IP(3) , but the basis of its increased affinity is unclear. Hitherto, the 2'-phosphate of AdA has been thought to provide a supra-optimal mimic of the 1-phosphate of IP(3) . EXPERIMENTAL APPROACH We examined the structural determinants of AdA binding to type 1 IP(3) R (IP(3) R1). Chemical synthesis and mutational analysis of IP(3) R1 were combined with (3) H-IP(3) binding to full-length IP(3) R1 and its N-terminal fragments, and Ca(2+) release assays from recombinant IP(3) R1 expressed in DT40 cells. KEY RESULTS Adenophostin A is at least 12-fold more potent than IP(3) in functional assays, and the IP(3) -binding core (IBC, residues 224-604 of IP(3) R1) is sufficient for this high-affinity binding of AdA. Removal of the 2'-phosphate from AdA (to give 2'-dephospho-AdA) had significantly lesser effects on its affinity for the IBC than did removal of the 1-phosphate from IP(3) (to give inositol 4,5-bisphosphate). Mutation of the only residue (R568) that interacts directly with the 1-phosphate of IP(3) decreased similarly (by ~30-fold) the affinity for IP(3) and AdA, but mutating R504, which has been proposed to form a cation-π interaction with the adenine of AdA, more profoundly reduced the affinity of IP(3) R for AdA (353-fold) than for IP(3) (13-fold). CONCLUSIONS AND IMPLICATIONS The 2'-phosphate of AdA is not a major determinant of its high affinity. R504 in the receptor, most likely via a cation-π interaction, contributes specifically to AdA binding.
Collapse
Affiliation(s)
- Ana M Rossi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
7
|
Ding Z, Rossi AM, Riley AM, Rahman T, Potter BVL, Taylor CW. Binding of inositol 1,4,5-trisphosphate (IP3) and adenophostin A to the N-terminal region of the IP3 receptor: thermodynamic analysis using fluorescence polarization with a novel IP3 receptor ligand. Mol Pharmacol 2010; 77:995-1004. [PMID: 20215561 PMCID: PMC2879921 DOI: 10.1124/mol.109.062596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/09/2010] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R) are intracellular Ca(2+) channels. Their opening is initiated by binding of IP(3) to the IP(3)-binding core (IBC; residues 224-604 of IP(3)R1) and transmitted to the pore via the suppressor domain (SD; residues 1-223). The major conformational changes leading to IP(3)R activation occur within the N terminus (NT; residues 1-604). We therefore developed a high-throughput fluorescence polarization (FP) assay using a newly synthesized analog of IP(3), fluorescein isothiocyanate (FITC)-IP(3), to examine the thermodynamics of IP(3) and adenophostin A binding to the NT and IBC. Using both single-channel recording and the FP assay, we demonstrate that FITC-IP(3) is a high-affinity partial agonist of the IP(3)R. Conventional [(3)H]IP(3) and FP assays provide similar estimates of the K(D) for both IP(3) and adenophostin A in cytosol-like medium at 4 degrees C. They further establish that the isolated IBC retains the ability of full-length IP(3)R to bind adenophostin A with approximately 10-fold greater affinity than IP(3). By examining the reversible effects of temperature on ligand binding, we established that favorable entropy changes (T Delta S) account for the greater affinities of both ligands for the IBC relative to the NT and for the greater affinity of adenophostin A relative to IP(3). The two agonists differ more substantially in the relative contribution of Delta H and T Delta S to binding to the IBC relative to the NT. This suggests that different initial binding events drive the IP(3)R on convergent pathways toward a similar open state.
Collapse
Affiliation(s)
- Zhao Ding
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Rossi AM, Riley AM, Potter BV, Taylor CW. Adenophostins. CURRENT TOPICS IN MEMBRANES 2010; 66:209-33. [DOI: 10.1016/s1063-5823(10)66010-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
9
|
Lee B, Yoon SY, Malcuit C, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1 degradation in mouse eggs and impact on [Ca2+]i oscillations. J Cell Physiol 2009; 222:238-47. [PMID: 19798695 DOI: 10.1002/jcp.21945] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The initiation of normal embryo development depends on the completion of all events of egg activation. In all species to date, egg activation requires an increase(s) in the intracellular concentration of calcium ([Ca(2+)](i)), which is almost entirely mediated by inositol 1,4,5-trisphosphate receptor 1 (IP(3)R1). In mammalian eggs, fertilization-induced [Ca(2+)](i) responses exhibit a periodic pattern that are called [Ca(2+)](i) oscillations. These [Ca(2+)](i) oscillations are robust at the beginning of fertilization, which occurs at the second metaphase of meiosis, but wane as zygotes approach the pronuclear stage, time after which in the mouse oscillations cease altogether. Underlying this change in frequency are cellular and biochemical changes associated with egg activation, including degradation of IP(3)R1, progression through the cell cycle, and reorganization of intracellular organelles. In this study, we investigated the system requirements for IP(3)R1 degradation and examined the impact of the IP(3)R1 levels on the pattern of [Ca(2+)](i) oscillations. Using microinjection of IP(3) and of its analogs and conditions that prevent the development of [Ca(2+)](i) oscillations, we show that IP(3)R1 degradation requires uniform and persistently elevated levels of IP(3). We also established that progressive degradation of the IP(3)R1 results in [Ca(2+)](i) oscillations with diminished periodicity while a near complete depletion of IP(3)R1s precludes the initiation of [Ca(2+)](i) oscillations. These results provide insights into the mechanism involved in the generation of [Ca(2+)](i) oscillations in mouse eggs.
Collapse
Affiliation(s)
- Bora Lee
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Calcium signals mediate diverse cellular functions in immunological cells. Early studies with mast cells, then a preeminent model for studying Ca2+-dependent exocytosis, revealed several basic features of calcium signaling in non-electrically excitable cells. Subsequent studies in these and other cells further defined the basic processes such as inositol 1,4,5-trisphosphate-mediated release of Ca2+ from Ca2+ stores in the endoplasmic reticulum (ER); coupling of ER store depletion to influx of external Ca2+ through a calcium-release activated calcium (CRAC) channel now attributed to the interaction of the ER Ca2+ sensor, stromal interacting molecule-1 (STIM1), with a unique Ca2+-channel protein, Orai1/CRACM1, and subsequent uptake of excess Ca2+ into ER and mitochondria through ATP-dependent Ca2+ pumps. In addition, transient receptor potential channels and ion exchangers also contribute to the generation of calcium signals that may be global or have dynamic (e.g., waves and oscillations) and spatial resolution for specific functional readouts. This review discusses past and recent developments in this field of research, the pharmacologic agents that have assisted in these endeavors, and the mast cell as an exemplar for sorting out how calcium signals may regulate multiple outputs in a single cell.
Collapse
Affiliation(s)
- Hong-Tao Ma
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
11
|
Keddie NS, Bultynck G, Luyten T, Slawin AM, Conway SJ. A type 2 Ferrier rearrangement-based synthesis of d-myo-inositol 1,4,5-trisphosphate. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.tetasy.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Bello D, Aslam T, Bultynck G, Slawin AMZ, Roderick HL, Bootman MD, Conway SJ. Synthesis and Biological Action of Novel 4-Position-Modified Derivatives of d-myo-Inositol 1,4,5-Trisphosphate. J Org Chem 2007; 72:5647-59. [PMID: 17585817 DOI: 10.1021/jo070611a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of a range of 4-position-modified D-myo-inositol 1,4,5-trisphosphate derivatives is described. The enantioselective synthesis of these compounds is reported, along with initial biological analysis, which indicates that these compounds do not act as D-myo-inositol 1,4,5-trisphosphate receptor agonists or antagonists.
Collapse
MESH Headings
- Cell Line
- Crystallography, X-Ray
- Inositol 1,4,5-Trisphosphate/chemical synthesis
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/pharmacology
- Magnetic Resonance Spectroscopy
- Models, Molecular
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Davide Bello
- EaStCHEM and School of Chemistry, Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
14
|
Poinas A, Backers K, Riley AM, Mills SJ, Moreau C, Potter BVL, Erneux C. Interaction of the catalytic domain of inositol 1,4,5-trisphosphate 3-kinase A with inositol phosphate analogues. Chembiochem 2005; 6:1449-57. [PMID: 15997461 DOI: 10.1002/cbic.200400443] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in the cytoplasm are tightly regulated by two enzymes, Ins(1,4,5)P3 3-kinase and type I Ins(1,4,5)P3 5-phosphatase. The catalytic domain of Ins(1,4,5)P3 3-kinase (isoenzymes A, B and C) is restricted to approximately 275 amino acids at the C-terminal end. We were interested in understanding the catalytic mechanism of this key family of enzymes in order to exploit this in inhibitor design. We expressed the catalytic domain of rat Ins(1,4,5)P3 3-kinase A in Escherichia coli as a His- and S-tagged fusion protein. The purified enzyme was used in an Ins(1,4,5)P3 kinase assay to phosphorylate a series of inositol phosphate analogues with three or four phosphate groups. A synthetic route to D-2-deoxy-Ins(1,4,5)P3 was devised. D-2-Deoxy-Ins(1,4,5)P3 and D-3-deoxy-Ins(1,4,6)P3 were potent inhibitors of the enzyme, with IC50 values in the micromolar range. Amongst all analogues tested, only D-2-deoxy-Ins(1,4,5)P3 appears to be a good substrate of the Ins(1,4,5)P3 3-kinase. Therefore, the axial 2-hydroxy group of Ins(1,4,5)P3 is not involved in recognition of the substrate nor does it participate in the phosphorylation mechanism of Ins(1,4,5)P3. In contrast, the equatorial 3-hydroxy function must be present in that configuration for phosphorylation to occur. Our data indicate the importance of the 3-hydroxy function in the mechanism of inositol trisphosphate phosphorylation rather than in substrate binding.
Collapse
Affiliation(s)
- Alexandra Poinas
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Malcuit C, Knott JG, He C, Wainwright T, Parys JB, Robl JM, Fissore RA. Fertilization and Inositol 1,4,5-Trisphosphate (IP3)-Induced Calcium Release in Type-1 Inositol 1,4,5-Trisphosphate Receptor Down-Regulated Bovine Eggs1. Biol Reprod 2005; 73:2-13. [PMID: 15744020 DOI: 10.1095/biolreprod.104.037333] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It is widely believed that stimulation of the phosphoinositide pathway and production of 1,4,5-inositol trisphosphate (IP(3)) underlies the oscillatory changes in the concentration of intracellular free calcium ions ([Ca(2+)](i)) seen during mammalian fertilization. IP(3) promotes Ca(2+) release in eggs by binding to its receptor, the type-1 IP(3) receptor (IP(3)R-1, also known as ITPR1), a ligand-gated Ca(2+) channel located in the membrane of the endoplasmic reticulum, the main Ca(2+) store of the cell. While IP(3)R-1 has been shown to mediate all Ca(2+) release during mouse fertilization, whether or not it plays such an essential role in fertilization-induced Ca(2+) release in large domestic species such as bovine and porcine is presently not known. Accordingly, we have generated metaphase II bovine eggs with a approximately 70%-80% reduction in the number of intact IP(3)R-1 by inducing receptor down-regulation during oocyte maturation. We did so by injecting the nonhydrolyzable IP(3) analogue, adenophostin A. Functional Ca(2+) release analysis revealed that IP(3)R-1 is the predominant Ca(2+) release channel in bovine eggs, requiring as little as 20% of total intact receptor to mount persistent [Ca(2+)](i) oscillations in response to fertilization, expression of PLCzeta (also known as PLCZ1), and adenophostin A. However, lower concentrations of IP(3) and near-physiological concentrations of porcine sperm extract were unable to trigger [Ca(2+)](i) oscillations in this reduced IP(3)R-1 model. Furthermore, we present evidence that the sensitivity of bovine IP(3)R-1 is impaired at the first embryonic interphase. Together, these results demonstrate the essential role of IP(3)R-1-mediated Ca(2+) release during fertilization in bovine eggs, and identify cell cycle regulatory mechanisms of [Ca(2+)](i) oscillations at the level of IP(3)R-1.
Collapse
Affiliation(s)
- Christopher Malcuit
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, 01003, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Jellerette T, Kurokawa M, Lee B, Malcuit C, Yoon SY, Smyth J, Vermassen E, De Smedt H, Parys JB, Fissore RA. Cell cycle-coupled [Ca(2+)](i) oscillations in mouse zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Dev Biol 2004; 274:94-109. [PMID: 15355791 DOI: 10.1016/j.ydbio.2004.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 06/12/2004] [Accepted: 06/12/2004] [Indexed: 11/20/2022]
Abstract
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.
Collapse
Affiliation(s)
- Teru Jellerette
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Coquil JF, Blazquez S, Soave S, Mauger JP. Regulation of the cerebellar inositol 1,4,5-trisphosphate receptor by univalent cations. Biochem J 2004; 381:423-8. [PMID: 15084149 PMCID: PMC1133848 DOI: 10.1042/bj20031984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/07/2004] [Accepted: 04/15/2004] [Indexed: 11/17/2022]
Abstract
In the present study we investigated the effects of K and other univalent cations on [3H]InsP3 [[3H]Ins(1,4,5)P3] binding to sheep cerebellar microsomes. In equilibrium binding experiments performed over 4 s at pH 7.1 and 20 degrees C, the addition of K to the binding medium decreased the affinity and increased the total number of binding sites for InsP3 in a dose-dependent manner. At low InsP3 concentration (0.5 nM) these effects resulted in a biphasic dose-response curve, with maximal binding at about 75 mM K. In contrast, the dose-response curve calculated for InsP3 at the physiological concentration of 5 mM, was linear up to 200 mM K. Univalent inorganic cations stimulated [3H]InsP3 binding to various extents, with the following descending order of efficiency at 75 mM: Cs approximately Rb approximately K>Na>Li. The effect of K on InsP3R affinity was rapidly reversed upon cation removal. We were therefore also able to demonstrate that K increased Bmax (maximal specific binding) by pre-treating microsomes with K before measuring [3H]InsP3 binding in the absence of that cation. The increase in Bmax was reversible, but this reversal occurred less rapidly than the change in affinity. These results are consistent with a process by which K reversibly converted very low-affinity sites into sites with higher affinity, making them detectable in competitive binding experiments. They suggest that interconversion between these two affinity states constitutes the basis of a K-controlled regulatory mechanism for cerebellar InsP3R.
Collapse
Affiliation(s)
- Jean-François Coquil
- INSERM U442, Signalisation Cellulaire et Calcium, Université Paris Sud, Bât 443, F-91405 Orsay Cédex, France
- To whom correspondence should be addressed (e-mail )
| | - Samantha Blazquez
- INSERM U442, Signalisation Cellulaire et Calcium, Université Paris Sud, Bât 443, F-91405 Orsay Cédex, France
| | - Sabrina Soave
- INSERM U442, Signalisation Cellulaire et Calcium, Université Paris Sud, Bât 443, F-91405 Orsay Cédex, France
| | - Jean-Pierre Mauger
- INSERM U442, Signalisation Cellulaire et Calcium, Université Paris Sud, Bât 443, F-91405 Orsay Cédex, France
| |
Collapse
|
18
|
Riley AM, Dozol H, Spiess B, Potter BVL. 2-O-(2-Aminoethyl)-myo-inositol 1,4,5-trisphosphate as a novel ligand for conjugation: physicochemical properties and synthesis of a new Ins(1,4,5)P(3) affinity matrix. Biochem Biophys Res Commun 2004; 318:444-52. [PMID: 15120621 DOI: 10.1016/j.bbrc.2004.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Indexed: 11/22/2022]
Abstract
2-O-(2-Aminoethyl)-Ins(1,4,5)P(3), (5), a novel derivative of the Ca(2+)-mobilising second messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], was synthesised from myo-inositol. 5 was found to be a potent mobiliser of intracellular Ca(2+), and an Ins(1,4,5)P(3) affinity matrix synthesised from 5 was effective at selectively binding N-terminal fragments of the Ins(1,4,5)P(3) receptor containing the intact Ins(1,4,5)P(3) binding site. The microprotonation scheme for 5 was resolved and the related constants were determined in comparison with Ins(1,4,5)P(3) and another reactive Ins(1,4,5)P(3) analogue 1-O-(2-aminoethyl-1-phospho)-Ins(4,5)P(2), (2a), by potentiometric and NMR titration methods. The (31)P and (1)H NMR titration curves for compound 5 and Ins(1,4,5)P(3) are remarkably close, indicating analogous acid-base properties and intramolecular interactions for the two compounds. The 1-phosphate-modified Ins(1,4,5)P(3) derivative 2a, on the contrary, behaves as a bisphosphorylated rather than a trisphosphorylated inositol. Thus, 5 is a new reactive Ins(1,4,5)P(3) analogue of considerable potential for investigation of the chemical biology of Ins(1,4,5)P(3)-mediated cellular signalling.
Collapse
Affiliation(s)
- Andrew M Riley
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
19
|
Abstract
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
20
|
Riley AM, Laude AJ, Taylor CW, Potter BVL. Dimers of d-myo-Inositol 1,4,5-Trisphosphate: Design, Synthesis, and Interaction with Ins(1,4,5)P3 Receptors. Bioconjug Chem 2004; 15:278-89. [PMID: 15025523 DOI: 10.1021/bc034214s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and synthesis of dimeric versions of the intracellular signaling molecule d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] are reported. Ins(1,4,5)P(3) dimers in a range of sizes were constructed by conjugation of a partially protected 2-O-(2-aminoethyl)-Ins(1,4,5)P(3) intermediate with activated oligo- and poly(ethylene glycol) (PEG) tethers, to give benzyl-protected dimers with amide or carbamate linkages. After deprotection, the resulting water-soluble Ins(1,4,5)P(3) dimers were purified by ion-exchange chromatography. The interaction of the Ins(1,4,5)P(3) dimers with tetrameric Ins(1,4,5)P(3) receptors was explored, using equilibrium [(3)H]Ins(1,4,5)P(3)-binding to membranes from cerebellum, and (45)Ca(2+)-release from permeabilized hepatocytes. The results showed that dimers, even when they incorporate large PEG tethers, interact potently with Ins(1,4,5)P(3) receptors, and that the shorter dimers are more potent than Ins(1,4,5)P(3) itself. A very small dimer, consisting of two Ins(1,4,5)P(3) motifs joined by a short N,N'-diethylurea spacer, was synthesized. Preliminary studies of (45)Ca(2+) release from the intracellular stores of permeabilized hepatocytes showed this shortest dimer to be almost as potent as adenophostin A, the most potent Ins(1,4,5)P(3) receptor ligand known. Possible interpretations of this result are considered in relation to the recently disclosed X-ray crystal structure of the type 1 Ins(1,4,5)P(3) receptor core binding domain.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Calcium Channels/metabolism
- Cell Membrane/metabolism
- Cell Membrane Permeability
- Cerebellum/metabolism
- Dimerization
- Drug Design
- Hepatocytes/metabolism
- Inositol 1,4,5-Trisphosphate/analogs & derivatives
- Inositol 1,4,5-Trisphosphate/chemical synthesis
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Protein Binding
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- Andrew M Riley
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
21
|
Rosenberg HJ, Riley AM, Laude AJ, Taylor CW, Potter BVL. Synthesis and Ca2+-Mobilizing Activity of Purine-Modified Mimics of Adenophostin A: A Model for the Adenophostin−Ins(1,4,5)P3Receptor Interaction. J Med Chem 2003; 46:4860-71. [PMID: 14584937 DOI: 10.1021/jm030883f] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of a series of adenophostin A analogues modified at C-6 and C-2 of adenine is described. The target compounds were synthesized by a convergent route involving a modified Vorbrüggen condensation of either 6-chloropurine or 2,6-dichloropurine with a protected disaccharide, yielding two versatile intermediates capable of undergoing substitution with a range of nucleophiles. The new analogues showed a range of abilities to mobilize Ca(2+) from the intracellular stores of permeabilized hepatocytes and are among the first totally synthetic compounds to approach the activity of adenophostin A. In agreement with the biological results, docking studies of adenophostin A using the recently reported X-ray crystal structure of the type 1 Ins(1,4,5)P(3) receptor binding core suggested that, in likely binding modes of adenophostin A, the area around N(6) may be relatively open, identifying this region of the adenophostin A molecule as a promising target for further elaboration. The docking results also point to specific interactions involving residues within the binding domain of the Ins(1,4,5)P(3) receptor that may be involved in the molecular recognition of the adenophostins.
Collapse
Affiliation(s)
- Heidi J Rosenberg
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
22
|
Nadif Kasri N, Bultynck G, Sienaert I, Callewaert G, Erneux C, Missiaen L, Parys JB, De Smedt H. The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:19-31. [PMID: 12445455 DOI: 10.1016/s1570-9639(02)00440-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracellular calcium release is a fundamental signaling mechanism in all eukaryotic cells. The ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP(3)R) are intracellular calcium release channels. Both channels can be regulated by calcium and calmodulin (CaM). In this review we will first discuss the role of calcium as an activator and inactivator of the IP(3)R, concluding that calcium is the most important regulator of the IP(3)R. In the second part we will further focus on the role of CaM as modulator of the IP(3)R, using results of the voltage-dependent Ca(2+) channels and the RyR as reference material. Here we conclude that despite the fact that different CaM-binding sites have been characterized, their function for the IP(3)R remains elusive. In the third part we will discuss the possible functional role of CaM in IP(3)-induced Ca(2+) release (IICR) by direct and indirect mechanisms. Special attention will be given to the Ca(2+)-binding proteins (CaBPs) that were shown to activate the IP(3)R in the absence of IP(3).
Collapse
Affiliation(s)
- Nael Nadif Kasri
- Laboratorium voor Fysiologie, K.U.Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are tetrameric intracellular Ca(2+) channels, the opening of which is regulated by both IP(3) and Ca(2+). We suggest that all IP(3) receptors are biphasically regulated by cytosolic Ca(2+), which binds to two distinct sites. IP(3) promotes channel opening by controlling whether Ca(2+) binds to the stimulatory or inhibitory sites. The stimulatory site is probably an integral part of the receptor lying just upstream of the pore region. Inhibition of IP(3) receptors by Ca(2+) probably requires an accessory protein, which has not yet been unequivocally identified, but calmodulin is a prime candidate. We speculate that one lobe of calmodulin tethers it to the IP(3) receptor, while the other lobe can bind Ca(2+) and then interact with a second site on the receptor to cause inhibition.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD, Cambridge, UK.
| | | |
Collapse
|
24
|
Riley AM, Morris SA, Nerou EP, Correa V, Potter BVL, Taylor CW. Interactions of inositol 1,4,5-trisphosphate (IP(3)) receptors with synthetic poly(ethylene glycol)-linked dimers of IP(3) suggest close spacing of the IP(3)-binding sites. J Biol Chem 2002; 277:40290-5. [PMID: 12183463 DOI: 10.1074/jbc.m206925200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The distances between the inositol 1,4,5-trisphosphate (IP(3))-binding sites of tetrameric IP(3) receptors were probed using dimers of IP(3) linked by poly(ethylene glycol) (PEG) molecules of differing lengths (1-8 nm). Each of the dimers potently stimulated (45)Ca(2+) release from permeabilized cells expressing predominantly type 1 (SH-SY5Y cells) or type 2 (hepatocytes) IP(3) receptors. The shortest dimers, with PEG linkers of an effective length of 1.5 nm or less, were the most potent, being 3-4-fold more potent than IP(3). In radioligand binding experiments using cerebellar membranes, the shortest dimers bound with highest affinity, although the longest dimer (8 nm) also bound with almost 4-fold greater affinity than IP(3). The affinity of monomeric IP(3) with only the PEG attached was 2-fold weaker than IP(3), confirming that the increased affinity of the dimers requires the presence of both IP(3) motifs. The increased affinity of the long dimer probably results from the linked IP(3) molecules binding to sites on different receptors, because the dimer bound with greater affinity than IP(3) to cerebellar membranes, where receptors are densely packed, but with the same affinity as IP(3) to purified receptors. IP(3) and the IP(3) dimers, irrespective of their length, bound with similar affinity to a monomeric IP(3)-binding domain of the type 1 IP(3) receptor expressed in bacteria. Short dimers therefore bind with increased affinity only when the receptor is tetrameric. We conclude that the four IP(3)-binding sites of an IP(3) receptor may be separated by as little as 1.5 nm and are therefore likely to be placed centrally in this large (25 x 25 nm) structure, consistent with previous work indicating a close association between the central pore and the IP(3)-binding sites of the IP(3) receptor.
Collapse
Affiliation(s)
- Andrew M Riley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | | | |
Collapse
|