1
|
Yu J, Boehr DD. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front Mol Biosci 2023; 10:1306483. [PMID: 38099197 PMCID: PMC10720463 DOI: 10.3389/fmolb.2023.1306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Recruitment of enzymes to intracellular membranes often modulates their catalytic activity, which can be important in cell signaling and membrane trafficking. Thus, re-localization is not only important for these enzymes to gain access to their substrates, but membrane interactions often allosterically regulate enzyme function by inducing conformational changes across different time and amplitude scales. Recent structural, biophysical and computational studies have revealed how key enzymes interact with lipid membrane surfaces, and how this membrane binding regulates protein structure and function. This review summarizes the recent progress in understanding regulatory mechanisms involved in enzyme-membrane interactions.
Collapse
Affiliation(s)
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
2
|
Kotzampasi DM, Premeti K, Papafotika A, Syropoulou V, Christoforidis S, Cournia Z, Leondaritis G. The orchestrated signaling by PI3Kα and PTEN at the membrane interface. Comput Struct Biotechnol J 2022; 20:5607-5621. [PMID: 36284707 PMCID: PMC9578963 DOI: 10.1016/j.csbj.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The oncogene PI3Kα and the tumor suppressor PTEN represent two antagonistic enzymatic activities that regulate the interconversion of the phosphoinositide lipids PI(4,5)P2 and PI(3,4,5)P3 in membranes. As such, they are defining components of phosphoinositide-based cellular signaling and membrane trafficking pathways that regulate cell survival, growth, and proliferation, and are often deregulated in cancer. In this review, we highlight aspects of PI3Kα and PTEN interplay at the intersection of signaling and membrane trafficking. We also discuss the mechanisms of PI3Kα- and PTEN- membrane interaction and catalytic activation, which are fundamental for our understanding of the structural and allosteric implications on signaling at the membrane interface and may aid current efforts in pharmacological targeting of these proteins.
Collapse
Affiliation(s)
- Danai Maria Kotzampasi
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
- Department of Biology, University of Crete, Heraklion 71500, Greece
| | - Kyriaki Premeti
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Alexandra Papafotika
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Vasiliki Syropoulou
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Savvas Christoforidis
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology, Ioannina 45110, Greece
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - George Leondaritis
- Laboratory of Pharmacology, Faculty of Medicine, University of Ioannina, Ioannina 45110, Greece
- Institute of Biosciences, University Research Center of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
3
|
Dawson JE, Smith IN, Martin W, Khan K, Cheng F, Eng C. Shape shifting: The multiple conformational substates of the PTEN N-terminal PIP 2 -binding domain. Protein Sci 2022; 31:e4308. [PMID: 35481646 PMCID: PMC9004235 DOI: 10.1002/pro.4308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/12/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
The Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a chief regulator of a variety of cellular processes including cell proliferation, migration, growth, and death. It is also a major tumor suppressor gene that is frequently mutated or lost under cancerous conditions. PTEN encodes a dual-specificity (lipid and protein) phosphatase that negatively regulates the PI3K/AKT/mTOR signaling pathway where the PIP2 -binding domain (PBD) regulates the lipid phosphatase function. Unfortunately, despite two decades of research, a full-length structure of PTEN remains elusive, leaving open questions regarding PTEN's disordered regions that mediate protein stability, post-translational modifications, protein-protein interactions, while also hindering the design of small molecules that can regulate PTEN's function. Here, we utilized a combination of crosslinking mass spectrometry, in silico predicted structural modeling (including AlphaFold2), molecular docking, molecular dynamics simulations, and residue interaction network modeling to obtain structural details and molecular insight into the behavior of the PBD of PTEN. Our study shows that the PBD exists in multiple conformations which suggests its ability to regulate PTEN's variety of functions. Studying how these specific conformational substates contribute to PTEN function is imperative to defining its function in disease pathogenesis, and to delineate ways to modulate its tumor suppressor activity.
Collapse
Affiliation(s)
- Jennifer E. Dawson
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Iris Nira Smith
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - William Martin
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Case Comprehensive Cancer CenterCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Taussig Cancer InstituteCleveland ClinicClevelandOhioUSA
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Department of Computational and Systems Biology, School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Stochasticity and positive feedback enable enzyme kinetics at the membrane to sense reaction size. Proc Natl Acad Sci U S A 2021; 118:2103626118. [PMID: 34789575 PMCID: PMC8617498 DOI: 10.1073/pnas.2103626118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/27/2022] Open
Abstract
Cellular membranes span a wide range of spatial dimensions, from the plasma membrane with a scale of microns to vesicles on the nanometer scale. The work presented here identifies a molecular mechanism, based on common features of cellular signaling enzymes, that causes the average enzymatic catalytic rate to exhibit reaction size dependency. This effect stems from stochastic variation, but the final results can be essentially deterministic. In competitive enzymatic reaction cycles, the final product can depend on the size of the reaction system. The simplicity of the mechanism suggests that size-dependent reaction rates may be widespread among signaling enzymes and thus enable reaction size to be an important factor in signal regulation at the membrane. Here, we present detailed kinetic analyses of a panel of soluble lipid kinases and phosphatases, as well as Ras activating proteins, acting on their respective membrane surface substrates. The results reveal that the mean catalytic rate of such interfacial enzymes can exhibit a strong dependence on the size of the reaction system—in this case membrane area. Experimental measurements and kinetic modeling reveal how stochastic effects stemming from low molecular copy numbers of the enzymes alter reaction kinetics based on mechanistic characteristics of the enzyme, such as positive feedback. For the competitive enzymatic cycles studied here, the final product—consisting of a specific lipid composition or Ras activity state—depends on the size of the reaction system. Furthermore, we demonstrate how these reaction size dependencies can be controlled by engineering feedback mechanisms into the enzymes.
Collapse
|
5
|
The structural basis of PTEN regulation by multi-site phosphorylation. Nat Struct Mol Biol 2021; 28:858-868. [PMID: 34625746 PMCID: PMC8549118 DOI: 10.1038/s41594-021-00668-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a phosphatidylinositol-3,4,5-triphosphate (PIP3) phospholipid phosphatase that is commonly mutated or silenced in cancer. PTEN's catalytic activity, cellular membrane localization and stability are orchestrated by a cluster of C-terminal phosphorylation (phospho-C-tail) events on Ser380, Thr382, Thr383 and Ser385, but the molecular details of this multi-faceted regulation have remained uncertain. Here we use a combination of protein semisynthesis, biochemical analysis, NMR, X-ray crystallography and computational simulations on human PTEN and its sea squirt homolog, VSP, to obtain a detailed picture of how the phospho-C-tail forms a belt around the C2 and phosphatase domains of PTEN. We also visualize a previously proposed dynamic N-terminal α-helix and show that it is key for PTEN catalysis but disordered upon phospho-C-tail interaction. This structural model provides a comprehensive framework for how C-tail phosphorylation can impact PTEN's cellular functions.
Collapse
|
6
|
Lee MF, Trotman LC. PTEN: Bridging Endocytosis and Signaling. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036103. [PMID: 31818848 DOI: 10.1101/cshperspect.a036103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Matthew F Lee
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
7
|
Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem 2019; 294:16684-16697. [PMID: 31543504 DOI: 10.1074/jbc.ra119.009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Indexed: 01/31/2023] Open
Abstract
Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.
Collapse
Affiliation(s)
- David A Sheffield
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Malene R Jepsen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Micka C Bertucci
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Monica J Naughtin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M Dyson
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Multifaceted Regulation of PTEN Subcellular Distributions and Biological Functions. Cancers (Basel) 2019; 11:cancers11091247. [PMID: 31454965 PMCID: PMC6770588 DOI: 10.3390/cancers11091247] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene frequently found to be inactivated in over 30% of human cancers. PTEN encodes a 54-kDa lipid phosphatase that serves as a gatekeeper of the phosphoinositide 3-kinase pathway involved in the promotion of multiple pro-tumorigenic phenotypes. Although the PTEN protein plays a pivotal role in carcinogenesis, cumulative evidence has implicated it as a key signaling molecule in several other diseases as well, such as diabetes, Alzheimer's disease, and autism spectrum disorders. This finding suggests that diverse cell types, especially differentiated cells, express PTEN. At the cellular level, PTEN is widely distributed in all subcellular compartments and organelles. Surprisingly, the cytoplasmic compartment, not the plasma membrane, is the predominant subcellular location of PTEN. More recently, the finding of a secreted 'long' isoform of PTEN and the presence of PTEN in the cell nucleus further revealed unexpected biological functions of this multifaceted molecule. At the regulatory level, PTEN activity, stability, and subcellular distribution are modulated by a fascinating array of post-translational modification events, including phosphorylation, ubiquitination, and sumoylation. Dysregulation of these regulatory mechanisms has been observed in various human diseases. In this review, we provide an up-to-date overview of the knowledge gained in the last decade on how different functional domains of PTEN regulate its biological functions, with special emphasis on its subcellular distribution. This review also highlights the findings of published studies that have reported how mutational alterations in specific PTEN domains can lead to pathogenesis in humans.
Collapse
|
9
|
Goulden BD, Pacheco J, Dull A, Zewe JP, Deiters A, Hammond GRV. A high-avidity biosensor reveals plasma membrane PI(3,4)P 2 is predominantly a class I PI3K signaling product. J Cell Biol 2018; 218:1066-1079. [PMID: 30591513 PMCID: PMC6400549 DOI: 10.1083/jcb.201809026] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022] Open
Abstract
Class I phosphoinositide 3-OH kinase (PI3K) signaling is central to animal growth and metabolism, and pathological disruption of this pathway affects cancer and diabetes. However, the specific spatial/temporal dynamics and signaling roles of its minor lipid messenger, phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2), are not well understood. This owes principally to a lack of tools to study this scarce lipid. Here we developed a high-sensitivity genetically encoded biosensor for PI(3,4)P2, demonstrating high selectivity and specificity of the sensor for the lipid. We show that despite clear evidence for class II PI3K in PI(3,4)P2-driven function, the overwhelming majority of the lipid accumulates through degradation of class I PI3K-produced PIP3 However, we show that PI(3,4)P2 is also subject to hydrolysis by the tumor suppressor lipid phosphatase PTEN. Collectively, our results show that PI(3,4)P2 is potentially an important driver of class I PI3K-driven signaling and provides powerful new tools to begin to resolve the biological functions of this lipid downstream of class I and II PI3K.
Collapse
Affiliation(s)
- Brady D Goulden
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Allyson Dull
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - James P Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Leitner MG, Hobiger K, Mavrantoni A, Feuer A, Oberwinkler J, Oliver D, Halaszovich CR. A126 in the active site and TI167/168 in the TI loop are essential determinants of the substrate specificity of PTEN. Cell Mol Life Sci 2018; 75:4235-4250. [PMID: 29987362 PMCID: PMC6182344 DOI: 10.1007/s00018-018-2867-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/19/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023]
Abstract
PTEN prevents tumor genesis by antagonizing the PI3 kinase/Akt pathway through D3 site phosphatase activity toward PI(3,4)P2 and PI(3,4,5)P3. The structural determinants of this important specificity remain unknown. Interestingly, PTEN shares remarkable homology to voltage-sensitive phosphatases (VSPs) that dephosphorylate D5 and D3 sites of PI(4,5)P2, PI(3,4)P2, and PI(3,4,5)P3. Since the catalytic center of PTEN and VSPs differ markedly only in TI/gating loop and active site motif, we wondered whether these differences explained the variation of their substrate specificity. Therefore, we introduced mutations into PTEN to mimic corresponding sequences of VSPs and studied phosphatase activity in living cells utilizing engineered, voltage switchable PTENCiV, a Ci-VSP/PTEN chimera that retains D3 site activity of the native enzyme. Substrate specificity of this enzyme was analyzed with whole-cell patch clamp in combination with total internal reflection fluorescence microscopy and genetically encoded phosphoinositide sensors. In PTENCiV, mutating TI167/168 in the TI loop into the corresponding ET pair of VSPs induced VSP-like D5 phosphatase activity toward PI(3,4,5)P3, but not toward PI(4,5)P2. Combining TI/ET mutations with an A126G exchange in the active site removed major sequence variations between PTEN and VSPs and resulted in D5 activity toward PI(4,5)P2 and PI(3,4,5)P3 of PTENCiV. This PTEN mutant thus fully reproduced the substrate specificity of native VSPs. Importantly, the same combination of mutations also induced D5 activity toward PI(3,4,5)P3 in native PTEN demonstrating that the same residues determine the substrate specificity of the tumor suppressor in living cells. Reciprocal mutations in VSPs did not alter their substrate specificity, but reduced phosphatase activity. In summary, A126 in the active site and TI167/168 in the TI loop are essential determinants of PTEN's substrate specificity, whereas additional features might contribute to the enzymatic activity of VSPs.
Collapse
Affiliation(s)
- Michael G Leitner
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- Division of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Kirstin Hobiger
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Angeliki Mavrantoni
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Anja Feuer
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Johannes Oberwinkler
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dominik Oliver
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
- DFG Research Training Group GRK 2213, Membrane Plasticity in Tissue Development and Remodeling, Philipps-University Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg/Giessen, Germany
| | - Christian R Halaszovich
- Institute of Physiology and Pathophysiology, Philipps-University Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany.
| |
Collapse
|
11
|
Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res 2018; 60:299-311. [PMID: 30201631 DOI: 10.1194/jlr.r088518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in this non-membrane state, held soluble in the nucleoplasm by nuclear proteins that remain largely unidentified. Recently, two nuclear proteins responsible for solubilizing phosphoinositides were identified, steroidogenic factor-1 (SF-1; NR5A1) and liver receptor homolog-1 (LRH-1; NR5A2), along with two enzymes that directly remodel these phosphoinositide/protein complexes, phosphatase and tensin homolog (PTEN; MMAC) and inositol polyphosphate multikinase (IPMK; ipk2). These new footholds now permit the assignment of physiological functions for nuclear phosphoinositides in human diseases, such as endometriosis, nonalcoholic fatty liver disease/steatohepatitis, glioblastoma, and hepatocellular carcinoma. The unique nature of nuclear phosphoinositide signaling affords extraordinary clinical opportunities for new biomarkers, diagnostics, and therapeutics. Thus, phosphoinositide biology within the nucleus may represent the next generation of low-hanging fruit for new drugs, not unlike what has occurred for membrane phosphatidylinositol 3-kinase drug development. This review connects recent basic science discoveries in nuclear phosphoinositide signaling to clinical pathologies, with the hope of inspiring development of new therapies.
Collapse
Affiliation(s)
- Jamal M Bryant
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Raymond D Blind
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
12
|
Ramos AR, Ghosh S, Erneux C. The impact of phosphoinositide 5-phosphatases on phosphoinositides in cell function and human disease. J Lipid Res 2018; 60:276-286. [PMID: 30194087 DOI: 10.1194/jlr.r087908] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/01/2018] [Indexed: 02/06/2023] Open
Abstract
Phosphoinositides (PIs) are recognized as major signaling molecules in many different functions of eukaryotic cells. PIs can be dephosphorylated by multiple phosphatase activities at the 5-, 4-, and 3- positions. Human PI 5-phosphatases belong to a family of 10 members. Except for inositol polyphosphate 5-phosphatase A, they all catalyze the dephosphorylation of PI(4,5)P2 and/or PI(3,4,5)P3 at the 5- position. PI 5-phosphatases thus directly control the levels of PI(3,4,5)P3 and participate in the fine-tuning regulatory mechanisms of PI(3,4)P2 and PI(4,5)P2 Second messenger functions have been demonstrated for PI(3,4)P2 in invadopodium maturation and lamellipodia formation. PI 5-phosphatases can use several substrates on isolated enzymes, and it has been challenging to establish their real substrate in vivo. PI(4,5)P2 has multiple functions in signaling, including interacting with scaffold proteins, ion channels, and cytoskeleton proteins. PI 5-phosphatase isoenzymes have been individually implicated in human diseases, such as the oculocerebrorenal syndrome of Lowe, through mechanisms that include lipid control. Oncogenic and tumor-suppressive functions of PI 5-phosphatases have also been reported in different cell contexts. The mechanisms responsible for genetic diseases and for oncogenic or tumor-suppressive functions are not fully understood. The regulation of PI 5-phosphatases is thus crucial in understanding cell functions.
Collapse
Affiliation(s)
- Ana Raquel Ramos
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
13
|
Dempsey DR, Cole PA. Protein Chemical Approaches to Understanding PTEN Lipid Phosphatase Regulation. Methods Enzymol 2018; 607:405-422. [PMID: 30149868 DOI: 10.1016/bs.mie.2018.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Since the discovery of C-tail phosphorylation of PTEN almost 20 years ago, much progress has been made in understanding its regulatory influences on the cellular function of PTEN. Phosphorylation of Ser380, Thr382, Thr383, and Ser385 drives a PTEN conformational change from an open to closed state where catalytic function is impaired, plasma membrane binding is reduced, and cellular stability is enhanced. Despite these advances, a detailed structural and mechanistic model of how these phosphorylations impact PTEN function is lacking. We discuss here several recent approaches to analyzing PTEN phosphorylation and highlight several insights that have come from this work. We also discuss remaining challenges for the PTEN regulation field and potential directions for future research.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Liu C, Deb S, Ferreira VS, Xu E, Baumgart T. Kinetics of PTEN-mediated PI(3,4,5)P3 hydrolysis on solid supported membranes. PLoS One 2018; 13:e0192667. [PMID: 29447222 PMCID: PMC5813967 DOI: 10.1371/journal.pone.0192667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/26/2018] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositides play important roles in cellular signaling and migration. Phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) is an important phosphatidylinositide because it acts as a secondary messenger to trigger cell movement and proliferation. A high level of PI(3,4,5)P3 at the plasma membrane is known to contribute to tumorigenesis. One key enzyme that regulates PI(3,4,5)P3 levels at the plasma membrane is phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which dephosphorylates PI(3,4,5)P3 through hydrolysis to form phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). It has been reported that PI(4,5)P2 is involved in positive feedback in the PI(3,4,5)P3 hydrolysis by PTEN. However, how PI(3,4,5)P3 dephosphorylation by PTEN is regulated, is still under debate. How other PI(3,4,5)P3-binding proteins affect the dephosphorylation kinetics catalyzed by PTEN also remains unclear. Here, we develop a fluorescent-protein biosensor approach to study how PI(3,4,5)P3 dephosphorylation is regulated by PTEN as well as its membrane-mediated feedback mechanisms. Our observation of sigmoidal kinetics of the PI(3,4,5)P3 hydrolysis reaction supports the notion of autocatalysis in PTEN function. We developed a kinetic model to describe the observed reaction kinetics, which allowed us to i) distinguish between membrane-recruitment and allosteric activation of PTEN by PI(4,5)P2, ii) account for the influence of the biosensor on the observed reaction kinetics, and iii) demonstrate that all of these mechanisms contribute to the kinetics of PTEN-mediated catalysis.
Collapse
Affiliation(s)
- Chun Liu
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sanghamitra Deb
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vinicius S Ferreira
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Xu
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tobias Baumgart
- Department of Chemistry, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Spinelli L, Leslie NR. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates. Methods Mol Biol 2018; 1447:95-105. [PMID: 27514802 DOI: 10.1007/978-1-4939-3746-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate.
Collapse
Affiliation(s)
- Laura Spinelli
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Nasmyth Building, Riccarton Campus, Edinburgh, EH14 4AS, UK
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Nasmyth Building, Riccarton Campus, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
16
|
Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P, Nakanishi H, Eguchi S, Koizumi A, Sasaki J, Juvin V, Kiselev VY, Niewczas I, Gray A, Valayer A, Spensberger D, Imbert M, Felisbino S, Habuchi T, Beinke S, Cosulich S, Le Novère N, Sasaki T, Clark J, Hawkins PT, Stephens LR. PTEN Regulates PI(3,4)P 2 Signaling Downstream of Class I PI3K. Mol Cell 2017; 68:566-580.e10. [PMID: 29056325 PMCID: PMC5678281 DOI: 10.1016/j.molcel.2017.09.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/09/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022]
Abstract
The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN. PTEN is a PI(3,4)P2 3-phosphatase PTEN and INPP4B regulate PI(3,4)P2 accumulation downstream of class I PI3K PTEN regulates PI(3,4)P2-dependent activation of Akt and formation of invadopodia PI(3,4)P2 signaling may play a role in the tumor suppressor function of PTEN
Collapse
Affiliation(s)
| | | | - Tamara Chessa
- Signalling Programme, Babraham Institute, Cambridge, UK
| | | | - David Barneda
- Signalling Programme, Babraham Institute, Cambridge, UK; AstraZeneca R&D Cambridge, CRUK Cambridge Institute, Cambridge, UK
| | - Pınar Pir
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Hiroki Nakanishi
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Satoshi Eguchi
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Atsushi Koizumi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Junko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | | | | - Alexander Gray
- School of Life Sciences, University of Dundee, Dow St., Dundee, UK
| | | | | | - Marine Imbert
- Signalling Programme, Babraham Institute, Cambridge, UK
| | - Sergio Felisbino
- Department of Morphology, Institute of Biosciences of Botucatu, Sao Paulo State University - UNESP, Botucatu, Sao Paulo, Brazil
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | - Soren Beinke
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Sabina Cosulich
- AstraZeneca R&D Cambridge, CRUK Cambridge Institute, Cambridge, UK
| | | | - Takehiko Sasaki
- Department of Medical Biology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, Japan
| | | | | | - Len R Stephens
- Signalling Programme, Babraham Institute, Cambridge, UK.
| |
Collapse
|
17
|
Goltsov A, Tashkandi G, Langdon SP, Harrison DJ, Bown JL. Kinetic modelling of in vitro data of PI3K, mTOR1, PTEN enzymes and on-target inhibitors Rapamycin, BEZ235, and LY294002. Eur J Pharm Sci 2017; 97:170-181. [PMID: 27832967 DOI: 10.1016/j.ejps.2016.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/28/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
Abstract
The phosphatidylinositide 3-kinases (PI3K) and mammalian target of rapamycin-1 (mTOR1) are two key targets for anti-cancer therapy. Predicting the response of the PI3K/AKT/mTOR1 signalling pathway to targeted therapy is made difficult because of network complexities. Systems biology models can help explore those complexities but the value of such models is dependent on accurate parameterisation. Motivated by a need to increase accuracy in kinetic parameter estimation, and therefore the predictive power of the model, we present a framework to integrate kinetic data from enzyme assays into a unified enzyme kinetic model. We present exemplar kinetic models of PI3K and mTOR1, calibrated on in vitro enzyme data and founded on Michaelis-Menten (MM) approximation. We describe the effects of an allosteric mTOR1 inhibitor (Rapamycin) and ATP-competitive inhibitors (BEZ235 and LY294002) that show dual inhibition of mTOR1 and PI3K. We also model the kinetics of phosphatase and tensin homolog (PTEN), which modulates sensitivity of the PI3K/AKT/mTOR1 pathway to these drugs. Model validation with independent data sets allows investigation of enzyme function and drug dose dependencies in a wide range of experimental conditions. Modelling of the mTOR1 kinetics showed that Rapamycin has an IC50 independent of ATP concentration and that it is a selective inhibitor of mTOR1 substrates S6K1 and 4EBP1: it retains 40% of mTOR1 activity relative to 4EBP1 phosphorylation and inhibits completely S6K1 activity. For the dual ATP-competitive inhibitors of mTOR1 and PI3K, LY294002 and BEZ235, we derived the dependence of the IC50 on ATP concentration that allows prediction of the IC50 at different ATP concentrations in enzyme and cellular assays. Comparison of drug effectiveness in enzyme and cellular assays showed that some features of these drugs arise from signalling modulation beyond the on-target action and MM approximation and require a systems-level consideration of the whole PI3K/PTEN/AKT/mTOR1 network in order to understand mechanisms of drug sensitivity and resistance in different cancer cell lines. We suggest that using these models in a systems biology investigation of the PI3K/AKT/mTOR1 signalling in cancer cells can bridge the gap between direct drug target action and the therapeutic response to these drugs and their combinations.
Collapse
Affiliation(s)
- Alexey Goltsov
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK.
| | - Ghassan Tashkandi
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | | | - James L Bown
- School of Science, Engineering and Technology, University of Abertay, Dundee, UK; School of Arts, Media and Computer Games, University of Abertay, Dundee, UK.
| |
Collapse
|
18
|
Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics. Proc Natl Acad Sci U S A 2016; 113:13069-13074. [PMID: 27799542 DOI: 10.1073/pnas.1602393113] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinase A (PKA) phosphorylates Gli proteins, acting as a negative regulator of the Hedgehog pathway. PKA was recently detected within the cilium, and PKA activity specifically in cilia regulates Gli processing. Using a cilia-targeted genetically encoded sensor, we found significant basal PKA activity. Using another targeted sensor, we measured basal ciliary cAMP that is fivefold higher than whole-cell cAMP. The elevated basal ciliary cAMP level is a result of adenylyl cyclase 5 and 6 activity that depends on ciliary phosphatidylinositol (3,4,5)-trisphosphate (PIP3), not stimulatory G protein (Gαs), signaling. Sonic Hedgehog (SHH) reduces ciliary cAMP levels, inhibits ciliary PKA activity, and increases Gli1. Remarkably, SHH regulation of ciliary cAMP and downstream signals is not dependent on inhibitory G protein (Gαi/o) signaling but rather Ca2+ entry through a Gd3+-sensitive channel. Therefore, PIP3 sustains high basal cAMP that maintains PKA activity in cilia and Gli repression. SHH activates Gli by inhibiting cAMP through a G protein-independent mechanism that requires extracellular Ca2+ entry.
Collapse
|
19
|
Gupta A, Maccario H, Kriplani N, Leslie NR. In Cell and In Vitro Assays to Measure PTEN Ubiquitination. Methods Mol Biol 2016; 1388:155-65. [PMID: 27033076 DOI: 10.1007/978-1-4939-3299-3_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The lipid and protein tyrosine phosphatase, PTEN, is one of the most frequently mutated tumor suppressors in human cancers and is essential for regulating the oncogenic pro-survival PI3K/AKT signaling pathway. Because of its diverse physiological functions, PTEN has attracted great interest from researchers in multiple research fields. The functional diversity of PTEN demands a collection of delicate regulatory mechanisms, including transcriptional control and posttranslational mechanisms that include ubiquitination. Addition of ubiquitin to PTEN can have several effects on PTEN function, potentially regulating its stability, localization, and activity. In cell and in vitro ubiquitination assays are employed to study the ubiquitination-mediated regulation of PTEN. However, PTEN ubiquitination assays are challenging to perform and the data published from these assays has been of mixed quality. Here we describe protocols to detect PTEN ubiquitination in cultured cells expressing epitope tagged ubiquitin (in cell PTEN ubiquitination assay) and also using purified proteins (in vitro PTEN ubiquitination assay).
Collapse
Affiliation(s)
- Amit Gupta
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH144AS, UK
| | - Helene Maccario
- Faculte de Pharmacie, Aix Marseille Universite, Marseille, UK
| | - Nisha Kriplani
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH144AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH144AS, UK.
| |
Collapse
|
20
|
Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain. Proc Natl Acad Sci U S A 2015; 113:E509-18. [PMID: 26699478 DOI: 10.1073/pnas.1512952113] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
γ-Secretase is an intramembrane-cleaving protease that processes many type-I integral membrane proteins within the lipid bilayer, an event preceded by shedding of most of the substrate's ectodomain by α- or β-secretases. The mechanism by which γ-secretase selectively recognizes and recruits ectodomain-shed substrates for catalysis remains unclear. In contrast to previous reports that substrate is actively recruited for catalysis when its remaining short ectodomain interacts with the nicastrin component of γ-secretase, we find that substrate ectodomain is entirely dispensable for cleavage. Instead, γ-secretase-substrate binding is driven by an apparent tight-binding interaction derived from substrate transmembrane domain, a mechanism in stark contrast to rhomboid--another family of intramembrane-cleaving proteases. Disruption of the nicastrin fold allows for more efficient cleavage of substrates retaining longer ectodomains, indicating that nicastrin actively excludes larger substrates through steric hindrance, thus serving as a molecular gatekeeper for substrate binding and catalysis.
Collapse
|
21
|
The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity. Biochem J 2015; 473:135-44. [PMID: 26527737 PMCID: PMC4700475 DOI: 10.1042/bj20150931] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.
Collapse
|
22
|
Chia YCJ, Catimel B, Lio DSS, Ang CS, Peng B, Wu H, Zhu HJ, Cheng HC. The C-terminal tail inhibitory phosphorylation sites of PTEN regulate its intrinsic catalytic activity and the kinetics of its binding to phosphatidylinositol-4,5-bisphosphate. Arch Biochem Biophys 2015; 587:48-60. [PMID: 26471078 DOI: 10.1016/j.abb.2015.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN. These findings suggest that coordinated inhibition of the upstream protein kinases and activation of the protein phosphatases targeting the four sites are needed to fully activate PTEN phosphatase activity. Second, PI(4,5)P2 cannot activate the phosphopeptide phosphatase activity of PTEN, suggesting that PI(4,5)P2 can only activate the phospholipid phosphatase activity but not the phosphoprotein phosphatase activity of PTEN. Third, dephosphorylation of all four sites significantly decreases the affinity of PTEN for PI(4,5)P2. Since PI(4,5)P2 is a major phospholipid co-localizing with the phospholipid- and phosphoprotein-substrates in plasma membrane, we hypothesise that the reduced affinity facilitates PTEN to "hop" on the plasma membrane to dephosphorylate these substrates.
Collapse
Affiliation(s)
- Yeong-Chit Joel Chia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bruno Catimel
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin Peng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong Wu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
23
|
Kriplani N, Hermida MA, Brown ER, Leslie NR. Class I PI 3-kinases: Function and evolution. Adv Biol Regul 2015; 59:53-64. [PMID: 26159297 DOI: 10.1016/j.jbior.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
In many human cell types, the class I phosphoinositide 3-kinases play key roles in the control of diverse cellular processes including growth, proliferation, survival and polarity. This is achieved through their activation by many cell surface receptors, leading to the synthesis of the phosphoinositide lipid signal, PIP3, which in turn influences the function of numerous direct PIP3-binding proteins. Here we review PI3K pathway biology and analyse the evolutionary distribution of its components and their functions. The broad phylogenetic distribution of class I PI3Ks in metazoa, amoebozoa and choannoflagellates, implies that these enzymes evolved in single celled organisms and were later co-opted into metazoan intercellular communication. A similar distribution is evident for the AKT and Cytohesin groups of downstream PIP3-binding proteins, with other effectors and pathway components appearing to evolve later. The genomic and functional phylogeny of regulatory systems such as the PI3K pathway provides a framework to improve our understanding of the mechanisms by which key cellular processes are controlled in humans.
Collapse
Affiliation(s)
- Nisha Kriplani
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Miguel A Hermida
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Euan R Brown
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
24
|
Assaying PTEN catalysis in vitro. Methods 2015; 77-78:51-7. [DOI: 10.1016/j.ymeth.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
|
25
|
Harishchandra RK, Neumann BM, Gericke A, Ross AH. Biophysical methods for the characterization of PTEN/lipid bilayer interactions. Methods 2015; 77-78:125-35. [PMID: 25697761 PMCID: PMC4388815 DOI: 10.1016/j.ymeth.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.
Collapse
Affiliation(s)
- Rakesh K Harishchandra
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Alonzo H Ross
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Gil A, Rodríguez-Escudero I, Stumpf M, Molina M, Cid VJ, Pulido R. A functional dissection of PTEN N-terminus: implications in PTEN subcellular targeting and tumor suppressor activity. PLoS One 2015; 10:e0119287. [PMID: 25875300 PMCID: PMC4398541 DOI: 10.1371/journal.pone.0119287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization signal (NLS) and an overlapping PIP2-binding motif (PBM) involved in plasma membrane targeting. We report a comprehensive mutational and functional analysis of the PTEN N-terminus, including a panel of tumor-related mutations at this region. Nuclear/cytoplasmic partitioning in mammalian cells and PIP3 phosphatase assays in reconstituted S. cerevisiae defined categories of PTEN N-terminal mutations with distinct PIP3 phosphatase and nuclear accumulation properties. Noticeably, most tumor-related mutations that lost PIP3 phosphatase activity also displayed impaired nuclear localization. Cell proliferation and soft-agar colony formation analysis in mammalian cells of mutations with distinctive nuclear accumulation and catalytic activity patterns suggested a contribution of both properties to PTEN tumor suppressor activity. Our functional dissection of the PTEN N-terminus provides the basis for a systematic analysis of tumor-related and experimentally engineered PTEN mutations.
Collapse
Affiliation(s)
- Anabel Gil
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Miriam Stumpf
- Centro de Investigación Príncipe Felipe, Valencia, Spain; Hubrecht Institute, Utrecht, The Netherlands
| | - María Molina
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- BioCruces Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Naguib A, Bencze G, Cho H, Zheng W, Tocilj A, Elkayam E, Faehnle CR, Jaber N, Pratt CP, Chen M, Zong WX, Marks MS, Joshua-Tor L, Pappin DJ, Trotman LC. PTEN functions by recruitment to cytoplasmic vesicles. Mol Cell 2015; 58:255-68. [PMID: 25866245 DOI: 10.1016/j.molcel.2015.03.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/18/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles.
Collapse
Affiliation(s)
- Adam Naguib
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gyula Bencze
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hyejin Cho
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ante Tocilj
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Elad Elkayam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Christopher R Faehnle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nadia Jaber
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael S Marks
- Department of Pathology & Laboratory of Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology & Laboratory of Medicine and Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, NY 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
28
|
Catalysis by the tumor-suppressor enzymes PTEN and PTEN-L. PLoS One 2015; 10:e0116898. [PMID: 25607987 PMCID: PMC4301912 DOI: 10.1371/journal.pone.0116898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Phosphatase and tensin homologue deleted from chromosome ten (PTEN) is a lipid phosphatase tumor suppressor that is lost or inactivated in most human tumors. The enzyme catalyzes the hydrolysis of phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) to form phosphatidylinositol-(4,5)-bisphosphate (PIP2) and inorganic phosphate. Here, we report on the first continuous assay for the catalytic activity of PTEN. Using this assay, we demonstrate that human PTEN is activated by the reaction product PIP2, as well as in solutions of low salt concentration. This activation is abrogated in the K13A variant, which has a disruption in a putative binding site for PIP2. We also demonstrate that PTEN-L, which derives from alternative translation of the PTEN mRNA, is activated constitutively. These findings have implications for catalysis by PTEN in physiological environments and could expedite the development of PTEN-based chemotherapeutic agents.
Collapse
|
29
|
Hobiger K, Friedrich T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015; 6:20. [PMID: 25713537 PMCID: PMC4322731 DOI: 10.3389/fphar.2015.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 02/03/2023] Open
Abstract
The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs). Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs). In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs). Although PTPs have already been well-characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.
Collapse
Affiliation(s)
- Kirstin Hobiger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Thomas Friedrich
- Max-Volmer-Laboratory of Biophysical Chemistry, Institute of Chemistry, Technische Universität Berlin Berlin, Germany
| |
Collapse
|
30
|
Wei Y, Stec B, Redfield AG, Weerapana E, Roberts MF. Phospholipid-binding sites of phosphatase and tensin homolog (PTEN): exploring the mechanism of phosphatidylinositol 4,5-bisphosphate activation. J Biol Chem 2014; 290:1592-606. [PMID: 25429968 DOI: 10.1074/jbc.m114.588590] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipid phosphatase activity of the tumor suppressor phosphatase and tensin homolog (PTEN) is enhanced by the presence of its biological product, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This enhancement is suggested to occur via the product binding to the N-terminal region of the protein. PTEN effects on short-chain phosphoinositide (31)P linewidths and on the full field dependence of the spin-lattice relaxation rate (measured by high resolution field cycling (31)P NMR using spin-labeled protein) are combined with enzyme kinetics with the same short-chain phospholipids to characterize where PI(4,5)P2 binds on the protein. The results are used to model a discrete site for a PI(4,5)P2 molecule close to, but distinct from, the active site of PTEN. This PI(4,5)P2 site uses Arg-47 and Lys-13 as phosphate ligands, explaining why PTEN R47G and K13E can no longer be activated by that phosphoinositide. Placing a PI(4,5)P2 near the substrate site allows for proper orientation of the enzyme on interfaces and should facilitate processive catalysis.
Collapse
Affiliation(s)
- Yang Wei
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Boguslaw Stec
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Alfred G Redfield
- the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Eranthie Weerapana
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| | - Mary F Roberts
- From the Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467 and
| |
Collapse
|
31
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Cell activation-induced phosphoinositide 3-kinase alpha/beta dimerization regulates PTEN activity. Mol Cell Biol 2014; 34:3359-73. [PMID: 24958106 DOI: 10.1128/mcb.00167-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels.
Collapse
|
33
|
Bolduc D, Rahdar M, Tu-Sekine B, Sivakumaren SC, Raben D, Amzel LM, Devreotes P, Gabelli SB, Cole P. Phosphorylation-mediated PTEN conformational closure and deactivation revealed with protein semisynthesis. eLife 2013; 2:e00691. [PMID: 23853711 PMCID: PMC3707082 DOI: 10.7554/elife.00691] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/07/2013] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor PIP3 phosphatase PTEN is phosphorylated on four clustered Ser/Thr on its C-terminal tail (aa 380–385) and these phosphorylations are proposed to induce a reduction in PTEN’s plasma membrane recruitment. How these phosphorylations affect the structure and enzymatic function of PTEN is poorly understood. To gain insight into the mechanistic basis of PTEN regulation by phosphorylation, we generated semisynthetic site-specifically tetra-phosphorylated PTEN using expressed protein ligation. By employing a combination of biophysical and enzymatic approaches, we have found that purified tail-phosphorylated PTEN relative to its unphosphorylated counterpart shows reduced catalytic activity and membrane affinity and undergoes conformational compaction likely involving an intramolecular interaction between its C-tail and the C2 domain. Our results suggest that there is a competition between membrane phospholipids and PTEN phospho-tail for binding to the C2 domain. These findings reveal a key aspect of PTEN’s regulation and suggest pharmacologic approaches for direct PTEN activation. DOI:http://dx.doi.org/10.7554/eLife.00691.001 PTEN is an enzyme that is found in almost every tissue in the body, and its job is to stop cells dividing. If it fails to perform this job, the uncontrolled proliferation of cells can lead to the growth of tumors. PTEN stops cells dividing by localizing at the plasma membrane of a cell and removing a phosphate group from a lipid called PIP3: this sends a signal, via the PI3K pathway, that suppresses the replication and survival of cells. Three regions of PTEN are thought to be central to its biological functions: one of these regions, the phosphatase domain, is directly responsible for removing a phosphate group from the lipid PIP3; a second region, called the C2 domain, is known to be critical for PTEN binding to the cell membrane; however, the role of third region, called the C-terminal domain, is poorly understood. Many proteins are regulated by the addition and removal of phosphate groups, and PTEN is no exception. In particular, it seems as if the addition of phosphate groups to four amino acid residues in the C-terminal domain can switch off the activity of PTEN, but the details of this process have been elusive. Now, Bolduc et al. have employed a variety of biochemical and biophysical techniques to explore this process, finding that the addition of the phosphate groups reduced PTEN’s affinity for the plasma membrane. At the same time, interactions between the C-terminal and C2 domains of the PTEN cause the shape of the enzyme to change in a way that ‘buries’ the residues to which the phosphate groups have been added. In addition to offering new insights into PTEN, the work of Bolduc et al. could help efforts to identify compounds with clinical anti-cancer potential. DOI:http://dx.doi.org/10.7554/eLife.00691.002
Collapse
Affiliation(s)
- David Bolduc
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , Baltimore , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
35
|
Hopkins BD, Fine B, Steinbach N, Dendy M, Rapp Z, Shaw J, Pappas K, Yu JS, Hodakoski C, Mense S, Klein J, Pegno S, Sulis ML, Goldstein H, Amendolara B, Lei L, Maurer M, Bruce J, Canoll P, Hibshoosh H, Parsons R. A secreted PTEN phosphatase that enters cells to alter signaling and survival. Science 2013; 341:399-402. [PMID: 23744781 DOI: 10.1126/science.1234907] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphatase and tensin homolog on chromosome ten (PTEN) is a tumor suppressor and an antagonist of the phosphoinositide-3 kinase (PI3K) pathway. We identified a 576-amino acid translational variant of PTEN, termed PTEN-Long, that arises from an alternative translation start site 519 base pairs upstream of the ATG initiation sequence, adding 173 N-terminal amino acids to the normal PTEN open reading frame. PTEN-Long is a membrane-permeable lipid phosphatase that is secreted from cells and can enter other cells. As an exogenous agent, PTEN-Long antagonized PI3K signaling and induced tumor cell death in vitro and in vivo. By providing a means to restore a functional tumor-suppressor protein to tumor cells, PTEN-Long may have therapeutic uses.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Visser MB, Sun CX, Koh A, Ellen RP, Glogauer M. Treponema denticola major outer sheath protein impairs the cellular phosphoinositide balance that regulates neutrophil chemotaxis. PLoS One 2013; 8:e66209. [PMID: 23755300 PMCID: PMC3670873 DOI: 10.1371/journal.pone.0066209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
The major outer sheath protein (Msp) of Treponema denticola inhibits neutrophil polarization and directed chemotaxis together with actin dynamics in vitro in response to the chemoattractant N-formyl-methionine-leucine-phenylanine (fMLP). Msp disorients chemotaxis through inhibition of a Rac1-dependent signaling pathway, but the upstream mechanisms are unknown. We challenged murine bone marrow neutrophils with enriched native Msp to determine the role of phospholipid modifying enzymes in chemotaxis and actin assembly downstream of fMLP-stimulation. Msp modulated cellular phosphoinositide levels through inhibition of phosphatidylinositol 3-kinase (PI3-kinase) together with activation of the lipid phosphatase, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Impaired phosphatidylinositol[(3,4,5)]-triphosphate (PIP3) levels prevented recruitment and activation of the downstream mediator Akt. Release of the actin capping proteins gelsolin and CapZ in response to fMLP was also inhibited by Msp exposure. Chemical inhibition of PTEN restored PIP3 signaling, as measured by Akt activation, Rac1 activation, actin uncapping, neutrophil polarization and chemotaxis in response to fMLP-stimulation, even in the presence of Msp. Transduction with active Rac1 also restored fMLP-mediated actin uncapping, suggesting that Msp acts at the level of PIP3 in the hierarchical feedback loop of PIP3 and Rac1 activation. Taken together, Msp alters the phosphoinositide balance in neutrophils, impairing the cell “compass”, which leads to inhibition of downstream chemotactic events.
Collapse
Affiliation(s)
- Michelle B Visser
- Matrix Dynamics Group, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
37
|
Gericke A, Leslie NR, Lösche M, Ross AH. PtdIns(4,5)P2-mediated cell signaling: emerging principles and PTEN as a paradigm for regulatory mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:85-104. [PMID: 23775692 DOI: 10.1007/978-94-007-6331-9_6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PtdIns(4,5)P2 (phosphatidylinositol 4,5-bisphosphate) is a relatively common anionic lipid that regulates cellular functions by multiple mechanisms. Hydrolysis of PtdIns(4,5)P2 by phospholipase C yields inositol trisphosphate and diacylglycerol. Phosphorylation by phosphoinositide 3-kinase yields PtdIns(3,4,5)P3, which is a potent signal for survival and proliferation. Also, PtdIns(4,5)P2 can bind directly to integral and peripheral membrane proteins. As an example of regulation by PtdIns(4,5)P2, we discuss phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in detail. PTEN is an important tumor suppressor and hydrolyzes PtdIns(3,4,5)P3. PtdIns(4,5)P2 enhances PTEN association with the plasma membrane and activates its phosphatase activity. This is a critical regulatory mechanism, but a detailed description of this process from a structural point of view is lacking. The disordered lipid bilayer environment hinders structural determinations of membrane-bound PTEN. A new method to analyze membrane-bound protein measures neutron reflectivity for proteins bound to tethered phospholipid membranes. These methods allow determination of the orientation and shape of membrane-bound proteins. In combination with molecular dynamics simulations, these studies will provide crucial structural information that can serve as a foundation for our understanding of PTEN regulation in normal and pathological processes.
Collapse
Affiliation(s)
- Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
38
|
Roubinet C, Tran PT, Piel M. Common mechanisms regulating cell cortex properties during cell division and cell migration. Cytoskeleton (Hoboken) 2012; 69:957-72. [PMID: 23125194 DOI: 10.1002/cm.21086] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 09/28/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
Single cell morphogenesis results from a balance of forces involving internal pressure (also called turgor pressure in plants and fungi) and the plastic and dynamic outer shell of the cell. Dominated by the cell wall in plants and fungi, mechanical properties of the outer shell of animal cells arise from the cell cortex, which is mostly composed of the plasma membrane (and membrane proteins) and the underlying meshwork of actin filaments and myosin motors (and associated proteins). In this review, following Bray and White [1988; Science 239:883-889], we draw a parallel between the regulation of the cell cortex during cell division and cell migration in animal cells. Starting from the similarities in shape changes and underlying mechanical properties, we further propose that the analogy between cell division and cell migration might run deeper, down to the basic molecular mechanisms driving cell cortex remodeling. We focus our attention on how an heterogeneous and dynamic cortex can be generated to allow cell shape changes while preserving cell integrity.
Collapse
Affiliation(s)
- Chantal Roubinet
- Université de Toulouse, UPS, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France.
| | | | | |
Collapse
|
39
|
Membrane association of the PTEN tumor suppressor: electrostatic interaction with phosphatidylserine-containing bilayers and regulatory role of the C-terminal tail. J Struct Biol 2012; 180:394-408. [PMID: 23073177 DOI: 10.1016/j.jsb.2012.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 01/23/2023]
Abstract
The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN's C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN's C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN's unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN's membrane binding and activity.
Collapse
|
40
|
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions. Front Immunol 2012; 3:224. [PMID: 22908014 PMCID: PMC3414724 DOI: 10.3389/fimmu.2012.00224] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/10/2012] [Indexed: 12/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a central signal transduction axis controlling normal B cell homeostasis and activation in humoral immunity. The p110δ PI3K catalytic subunit has emerged as a critical mediator of multiple B cell functions. The activity of this pathway is regulated at multiple levels, with inositol phosphatases PTEN and SHIP both playing critical roles. When deregulated, the PI3K pathway can contribute to B cell malignancies and autoantibody production. This review summarizes current knowledge on key mechanisms that activate and regulate the PI3K pathway and influence normal B cell functional responses including the development of B cell subsets, antigen presentation, immunoglobulin isotype switch, germinal center responses, and maintenance of B cell anergy. We also discuss PI3K pathway alterations reported in select B cell malignancies and highlight studies indicating the functional significance of this pathway in malignant B cell survival and growth within tissue microenvironments. Finally, we comment on early clinical trial results, which support PI3K inhibition as a promising treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
41
|
Blind RD, Suzawa M, Ingraham HA. Direct modification and activation of a nuclear receptor-PIP₂ complex by the inositol lipid kinase IPMK. Sci Signal 2012; 5:ra44. [PMID: 22715467 DOI: 10.1126/scisignal.2003111] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP₂) is best known as a plasma membrane-bound regulatory lipid. Although PIP₂ and phosphoinositide-modifying enzymes coexist in the nucleus, their nuclear roles remain unclear. We showed that inositol polyphosphate multikinase (IPMK), which functions both as an inositol kinase and as a phosphoinositide 3-kinase (PI3K), interacts with the nuclear receptor steroidogenic factor 1 (SF-1) and phosphorylates its bound ligand, PIP₂. In vitro studies showed that PIP₂ was not phosphorylated by IPMK if PIP₂ was displaced or blocked from binding to the large hydrophobic pocket of SF-1 and that the ability to phosphorylate PIP₂ bound to SF-1 was specific to IPMK and did not occur with type 1 p110 PI3Ks. IPMK-generated SF-1-PIP₃ (phosphatidylinositol 3,4,5-trisphosphate) was dephosphorylated by the lipid phosphatase PTEN. Consistent with the in vitro activities of IPMK and PTEN on SF-1-PIP(n), SF-1 transcriptional activity was reduced by silencing IPMK or overexpressing PTEN. This ability of lipid kinases and phosphatases to directly remodel and alter the activity of a non-membrane protein-lipid complex establishes a previously unappreciated pathway for promoting lipid-mediated signaling in the nucleus.
Collapse
Affiliation(s)
- Raymond D Blind
- Department of Cellular and Molecular Pharmacology, Mission Bay Campus, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
42
|
Zhong S, Hsu F, Stefan CJ, Wu X, Patel A, Cosgrove MS, Mao Y. Allosteric activation of the phosphoinositide phosphatase Sac1 by anionic phospholipids. Biochemistry 2012; 51:3170-7. [PMID: 22452743 PMCID: PMC3329130 DOI: 10.1021/bi300086c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Sac family phosphoinositide phosphatases comprise an evolutionarily conserved family of enzymes in eukaryotes. Our recently determined crystal structure of the Sac phosphatase domain of yeast Sac1, the founding member of the Sac family proteins, revealed a unique conformation of the catalytic P-loop and a large positively charged groove at the catalytic site. We now report a unique mechanism for the regulation of its phosphatase activity. Sac1 is an allosteric enzyme that can be activated by its product phosphatidylinositol or anionic phospholipid phosphatidylserine. The activation of Sac1 may involve conformational changes of the catalytic P-loop induced by direct binding with the regulatory anionic phospholipids in the large cationic catalytic groove. These findings highlight the fact that lipid composition of the substrate membrane plays an important role in the control of Sac1 function.
Collapse
Affiliation(s)
- Shurong Zhong
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
New insights in the activity of voltage sensitive phosphatases. Cell Signal 2012; 24:1541-7. [PMID: 22481094 DOI: 10.1016/j.cellsig.2012.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022]
Abstract
The Ciona intestinalis voltage sensitive phosphatase (Ci-VSP) was the first proven enzyme to be under direct control of the membrane potential. Ci-VSP belongs to a family of proteins known as Protein Tyrosine Phosphatases (PTP), which are a group of enzymes that catalyze the removal of phosphate groups from phosphatidylinositides and phosphorylated tyrosine residues on proteins. What makes Ci-VSP and similar phosphatases unique is the presence of a Voltage Sensing Domain (VSD) in their N-terminus. The VSD of Ci-VSP shares high homology with those from voltage-gated channels and confers voltage sensitivity to these enzymes. The catalytic domain of Ci-VSP displays extraordinary structural and functional similarities to PTEN. This latter protein is encoded by the Phosphatase and Tensin homolog deleted from chromosome 10 gene, thus its name, and it is known as a tumor suppressor. The resemblance between these proteins has prompted the use of PTEN as a template for the study of Ci-VSP and produced a rapid advance in our understanding of the mechanism of activity of Ci-VSP. This review will be focused on discussing recent advances in the understanding of the activation mechanism for these molecules known as electrochemical coupling.
Collapse
|
44
|
Tibarewal P, Zilidis G, Spinelli L, Schurch N, Maccario H, Gray A, Perera NM, Davidson L, Barton GJ, Leslie NR. PTEN Protein Phosphatase Activity Correlates with Control of Gene Expression and Invasion, a Tumor-Suppressing Phenotype, But Not with AKT Activity. Sci Signal 2012; 5:ra18. [DOI: 10.1126/scisignal.2002138] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Christensen R, de la Torre-Ubieta L, Bonni A, Colón-Ramos DA. A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development. Development 2012; 138:5257-67. [PMID: 22069193 PMCID: PMC3210501 DOI: 10.1242/dev.069062] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a conserved signal transduction cascade that is fundamental for the correct development of the nervous system. The major negative regulator of PI3K signaling is the lipid phosphatase DAF-18/PTEN, which can modulate PI3K pathway activity during neurodevelopment. Here, we identify a novel role for DAF-18 in promoting neurite outgrowth during development in Caenorhabditis elegans. We find that DAF-18 modulates the PI3K signaling pathway to activate DAF-16/FOXO and promote developmental neurite outgrowth. This activity of DAF-16 in promoting outgrowth is isoform-specific, being effected by the daf-16b isoform but not the daf-16a or daf-16d/f isoform. We also demonstrate that the capacity of DAF-16/FOXO in regulating neuron morphology is conserved in mammalian neurons. These data provide a novel mechanism by which the conserved PI3K signaling pathway regulates neuronal cell morphology during development through FOXO.
Collapse
Affiliation(s)
- Ryan Christensen
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | | | | | | |
Collapse
|
46
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
47
|
Leslie NR, Dixon MJ, Schenning M, Gray A, Batty IH. Distinct inactivation of PI3K signalling by PTEN and 5-phosphatases. Adv Biol Regul 2012; 52:205-213. [PMID: 21930147 DOI: 10.1016/j.advenzreg.2011.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | |
Collapse
|
48
|
Rizvi MMA, Alam MS, Mehdi SJ, Ali A, Batra S. Allelic loss of 10q23.3, the PTEN gene locus in cervical carcinoma from Northern Indian population. Pathol Oncol Res 2011; 18:309-13. [PMID: 21901275 DOI: 10.1007/s12253-011-9446-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 08/01/2011] [Indexed: 02/04/2023]
Abstract
Cervical cancer is one of the most common malignant diseases affecting women worldwide. Studies on loss of heterozygosity have been made for PTEN gene specific microsatellite markers in malignancies like breast, ovary and lungs and the results have shown a significant association. However the role of this gene is not clearly understood in cervical cancer from Indian population. A total of 135 cervical carcinoma tissues samples were analyzed for loss of heterozygosity. DNA was isolated from the samples and their matched control specimens. Polymerase chain reaction was performed using primer specific for two intragenic markers (D10S198 & D10S192) and one marker (D10S541) in flanking region and further electrophoresed on 8% denaturing polyacrylamide gel. Overall, 31 out of 133(23%) informative cases showed loss of heterozygosity in at least one locus in the region examined. The percentage of loss of heterozygosity for these markers ranged from 8% (D10S192) to 13% (D10S198). Loss of heterozygosity was more frequently detected in intragenic region (D10S198 & D10S192) than in flanking region, D10S541 (21% versus 9%). These data argue that PTEN is a tumor suppressor gene whose inactivation may play an important role in the carcinoma of uterine cervix.
Collapse
Affiliation(s)
- M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, Maulana Mohammad Ali Jauhar Marg, New Delhi-, 110025, India.
| | | | | | | | | |
Collapse
|
49
|
Apical protein transport and lumen morphogenesis in polarized epithelial cells. Biosci Rep 2011; 31:245-56. [PMID: 21366541 DOI: 10.1042/bsr20100119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Segregation of the apical and basolateral plasma membrane domains is the key distinguishing feature of epithelial cells. A series of interrelated cues and processes follow this primary polarization event, resulting in the morphogenesis of the mammalian epithelium. This review focuses on the role of the interactions between the extracellular matrix and neighbouring cells during the initiation and establishment of epithelial polarity, and the role that membrane transport and polarity complexes play in this process. An overview of the formation of the apical junctional complexes is given in relation to the generation of distinct membrane domains characterized by the asymmetric distribution of phosphoinositides and proteins. The mechanisms and machinery utilized by the trafficking pathways involved in the generation and maintenance of this apical-basolateral polarization are expounded, highlighting processes of apical-directed transport. Furthermore, the current proposed mechanisms for the organization of entire networks of cells into a structured, polarized three-dimensional structure are described, with an emphasis on the proposed mechanisms for the formation and expansion of the apical lumen.
Collapse
|
50
|
Rizvi MMA, Alam MS, Ali A, Mehdi SJ, Batra S, Mandal AK. Aberrant promoter methylation and inactivation of PTEN gene in cervical carcinoma from Indian population. J Cancer Res Clin Oncol 2011; 137:1255-62. [DOI: 10.1007/s00432-011-0994-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/09/2011] [Indexed: 11/29/2022]
|