1
|
Deryusheva S, Gall JG. Dual nature of pseudouridylation in U2 snRNA: Pus1p-dependent and Pus1p-independent activities in yeasts and higher eukaryotes. RNA (NEW YORK, N.Y.) 2017; 23:1060-1067. [PMID: 28432181 PMCID: PMC5473140 DOI: 10.1261/rna.061226.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 05/05/2023]
Abstract
The pseudouridine at position 43 in vertebrate U2 snRNA is one of the most conserved post-transcriptional modifications of spliceosomal snRNAs; the equivalent position is pseudouridylated in U2 snRNAs in different phyla including fungi, insects, and worms. Pseudouridine synthase Pus1p acts alone on U2 snRNA to form this pseudouridine in yeast Saccharomyces cerevisiae and mouse. Furthermore, in S. cerevisiae, Pus1p is the only pseudouridine synthase for this position. Using an in vivo yeast cell system, we tested enzymatic activity of Pus1p from the fission yeast Schizosaccharomyces pombe, the worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the frog Xenopus tropicalis We demonstrated that Pus1p from C. elegans has no enzymatic activity on U2 snRNA when expressed in yeast cells, whereas in similar experiments, position 44 in yeast U2 snRNA (equivalent to position 43 in vertebrates) is a genuine substrate for Pus1p from S. cerevisiae, S. pombe, Drosophila, Xenopus, and mouse. However, when we analyzed U2 snRNAs from Pus1 knockout mice and the pus1Δ S. pombe strain, we could not detect any changes in their modification patterns when compared to wild-type U2 snRNAs. In S. pombe, we found a novel box H/ACA RNA encoded downstream from the RPC10 gene and experimentally verified its guide RNA activity for positioning Ψ43 and Ψ44 in U2 snRNA. In vertebrates, we showed that SCARNA8 (also known as U92 scaRNA) is a guide for U2-Ψ43 in addition to its previously established targets U2-Ψ34/Ψ44.
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations. Sci Rep 2016; 6:26202. [PMID: 27197761 PMCID: PMC4873756 DOI: 10.1038/srep26202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial myopathy with lactic acidosis and sideroblastic anemia (MLASA) is an oxidative phosphorylation disorder, with primary clinical manifestations of myopathic exercise intolerance and a macrocytic sideroblastic anemia. One cause of MLASA is recessive mutations in PUS1, which encodes pseudouridine (Ψ) synthase 1 (Pus1p). Here we describe a mouse model of MLASA due to mutations in PUS1. As expected, certain Ψ modifications were missing in cytoplasmic and mitochondrial tRNAs from Pus1−/− animals. Pus1−/− mice were born at the expected Mendelian frequency and were non-dysmorphic. At 14 weeks the mutants displayed reduced exercise capacity. Examination of tibialis anterior (TA) muscle morphology and histochemistry demonstrated an increase in the cross sectional area and proportion of myosin heavy chain (MHC) IIB and low succinate dehydrogenase (SDH) expressing myofibers, without a change in the size of MHC IIA positive or high SDH myofibers. Cytochrome c oxidase activity was significantly reduced in extracts from red gastrocnemius muscle from Pus1−/− mice. Transmission electron microscopy on red gastrocnemius muscle demonstrated that Pus1−/− mice also had lower intermyofibrillar mitochondrial density and smaller mitochondria. Collectively, these results suggest that alterations in muscle metabolism related to mitochondrial content and oxidative capacity may account for the reduced exercise capacity in Pus1−/− mice.
Collapse
|
3
|
Sibert BS, Patton JR. Pseudouridine synthase 1: a site-specific synthase without strict sequence recognition requirements. Nucleic Acids Res 2011; 40:2107-18. [PMID: 22102571 PMCID: PMC3299991 DOI: 10.1093/nar/gkr1017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudouridine synthase 1 (Pus1p) is an unusual site-specific modification enzyme in that it can modify a number of positions in tRNAs and can recognize several other types of RNA. No consensus recognition sequence or structure has been identified for Pus1p. Human Pus1p was used to determine which structural or sequence elements of human tRNASer are necessary for pseudouridine (Ψ) formation at position 28 in the anticodon stem-loop (ASL). Some point mutations in the ASL stem of tRNASer had significant effects on the levels of modification and compensatory mutation, to reform the base pair, restored a wild-type level of Ψ formation. Deletion analysis showed that the tRNASer TΨC stem-loop was a determinant for modification in the ASL. A mini-substrate composed of the ASL and TΨC stem-loop exhibited significant Ψ formation at position 28 and a number of mutants were tested. Substantial base pairing in the ASL stem (3 out of 5 bp) is required, but the sequence of the TΨC loop is not required for modification. When all nucleotides in the ASL stem other than U28 were changed in a single mutant, but base pairing was retained, a near wild-type level of modification was observed.
Collapse
Affiliation(s)
- Bryan S Sibert
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|
4
|
Sibert BS, Fischel-Ghodsian N, Patton JR. Partial activity is seen with many substitutions of highly conserved active site residues in human Pseudouridine synthase 1. RNA (NEW YORK, N.Y.) 2008; 14:1895-1906. [PMID: 18648068 PMCID: PMC2525951 DOI: 10.1261/rna.984508] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 05/12/2008] [Indexed: 05/26/2023]
Abstract
Pseudouridine synthase 1 (Pus1p) is an enzyme that converts uridine to Pseudouridine (Psi) in tRNA and other RNAs in eukaryotes. The active site of Pus1p is composed of stretches of amino acids that are highly conserved and it is hypothesized that mutation of select residues would impair the enzyme's ability to catalyze the formation of Psi. However, most mutagenesis studies have been confined to substitution of the catalytic aspartate, which invariably results in an inactive enzyme in all Psi synthases tested. To determine the requirements for particular amino acids at certain absolutely conserved positions in Pus1p, three residues (R116, Y173, R267) that correspond to amino acids known to compose the active site of TruA, a bacterial Psi synthase that is homologous to Pus1p, were mutated in human Pus1p (hPus1p). The effects of those mutations were determined with three different in vitro assays of pseudouridylation and several tRNA substrates. Surprisingly, it was found that each of these components of the hPus1p active site could tolerate certain amino acid substitutions and in fact most mutants exhibited some activity. The most active mutants retained near wild-type activity at positions 27 or 28 in the substrate tRNA, but activity was greatly reduced or absent at other positions in tRNA readily modified by wild-type hPus1p.
Collapse
Affiliation(s)
- Bryan S Sibert
- Department of Pathology, Microbiology, and Immunology, University of South Carolina, School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
5
|
Behm-Ansmant I, Massenet S, Immel F, Patton JR, Motorin Y, Branlant C. A previously unidentified activity of yeast and mouse RNA:pseudouridine synthases 1 (Pus1p) on tRNAs. RNA (NEW YORK, N.Y.) 2006; 12:1583-93. [PMID: 16804160 PMCID: PMC1524882 DOI: 10.1261/rna.100806] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mouse pseudouridine synthase 1 (mPus1p) was the first vertebrate RNA:pseudouridine synthase that was cloned and characterized biochemically. The mPus1p was previously found to catalyze Psi formation at positions 27, 28, 34, and 36 in in vitro produced yeast and human tRNAs. On the other hand, the homologous Saccharomyces cerevisiae scPus1p protein was shown to modify seven uridine residues in tRNAs (26, 27, 28, 34, 36, 65, and 67) and U44 in U2 snRNA. In this work, we expressed mPus1p in yeast cells lacking scPus1p and studied modification of U2 snRNA and several yeast tRNAs. Our data showed that, in these in vivo conditions, the mouse enzyme efficiently modifies yeast U2 snRNA at position 44 and tRNAs at positions 27, 28, 34, and 36. However, a tRNA:Psi26-synthase activity of mPus1p was not observed. Furthermore, we found that both scPus1p and mPus1p, in vivo and in vitro, have a previously unidentified activity at position 1 in cytoplasmic tRNAArg(ACG). This modification can take place in mature tRNA, as well as in pre-tRNAs with 5' and/or 3' extensions. Thus, we identified the protein carrying one of the last missing yeast tRNA:Psi synthase activities. In addition, our results reveal an additional activity of mPus1p at position 30 in tRNA that scPus1p does not possess.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Patton JR, Padgett RW. Pseudouridine modification in Caenorhabditis elegans spliceosomal snRNAs: unique modifications are found in regions involved in snRNA-snRNA interactions. BMC Mol Biol 2005; 6:20. [PMID: 16236171 PMCID: PMC1276797 DOI: 10.1186/1471-2199-6-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/19/2005] [Indexed: 01/25/2023] Open
Abstract
Background Pseudouridine (Ψ) is an abundant modified nucleoside in RNA and a number of studies have shown that the presence of Ψ affects RNA structure and function. The positions of Ψ in spliceosomal small nuclear RNAs (snRNAs) have been determined for a number of species but not for the snRNAs from Caenorhabditis elegans (C. elegans), a popular experimental model system of development. Results As a prelude to determining the function of or requirement for this modification in snRNAs, we have mapped the positions of Ψ in U1, U2, U4, U5, and U6 snRNAs from worms using a specific primer extension method. As with other species, C. elegans U2 snRNA has the greatest number of Ψ residues, with nine, located in the 5' half of the U2 snRNA. U5 snRNA has three Ψs, in or near the loop of the large stem-loop that dominates the structure of this RNA. U6 and U1 snRNAs each have one Ψ, and two Ψ residues were found in U4 snRNA. Conclusion The total number of Ψs found in the snRNAs of C. elegans is significantly higher than the minimal amount found in yeasts but it is lower than that seen in sequenced vertebrate snRNAs. When the actual sites of modification on C. elegans snRNAs are compared with other sequenced snRNAs most of the positions correspond to modifications found in other species. However, two of the positions modified on C. elegans snRNAs are unique, one at position 28 on U2 snRNA and one at position 62 on U4 snRNA. Both of these modifications are in regions of these snRNAs that interact with U6 snRNA either in the spliceosome or in the U4/U6 small nuclear ribonucleoprotein particle (snRNP) and the presence of Ψ may be involved in strengthening the intermolecular association of the snRNAs.
Collapse
Affiliation(s)
- Jeffrey R Patton
- Department of Pathology and Microbiology, University of South Carolina School of Medicine Columbia, SC 29208 USA
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry and Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854 USA
| |
Collapse
|
7
|
Patton JR, Bykhovskaya Y, Mengesha E, Bertolotto C, Fischel-Ghodsian N. Mitochondrial Myopathy and Sideroblastic Anemia (MLASA). J Biol Chem 2005; 280:19823-8. [PMID: 15772074 DOI: 10.1074/jbc.m500216200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A missense mutation in the PUS1 gene affecting a highly conserved amino acid has been associated with mitochondrial myopathy and sideroblastic anemia (MLASA), a rare autosomal recessive oxidative phosphorylation disorder. The PUS1 gene encodes the enzyme pseudouridine synthase 1 (Pus1p) that is known to pseudouridylate tRNAs in other species. Total RNA was isolated from lymphoblastoid cell lines established from patients, parents, unaffected siblings, and unrelated controls, and the tRNAs were assayed for the presence of pseudouridine (Psi) at the expected positions. Mitochondrial and cytoplasmic tRNAs from MLASA patients are lacking modification at sites normally modified by Pus1p, whereas tRNAs from controls, unaffected siblings, or parents all have Psi at these positions. In addition, there was no Pus1p activity in an extract made from a cell line derived from a patient with MLASA. Immunohistochemical staining of Pus1p in cell lines showed nuclear, cytoplasmic, and mitochondrial distribution of the protein, and there is no difference in staining between patients and unaffected family members. MLASA is thus associated with absent or greatly reduced tRNA pseudouridylation at specific sites, implicating this pathway in its molecular pathogenesis.
Collapse
MESH Headings
- Anemia, Sideroblastic/complications
- Anemia, Sideroblastic/enzymology
- Anemia, Sideroblastic/genetics
- Base Sequence
- Cell Line
- Genes, Recessive
- Humans
- Hydro-Lyases/genetics
- Mitochondrial Myopathies/complications
- Mitochondrial Myopathies/enzymology
- Mitochondrial Myopathies/genetics
- Molecular Sequence Data
- Mutation, Missense
- Nucleic Acid Conformation
- Pseudouridine/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
Collapse
Affiliation(s)
- Jeffrey R Patton
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, Columbia, USA
| | | | | | | | | |
Collapse
|
8
|
Zhao X, Patton JR, Davis SL, Florence B, Ames SJ, Spanjaard RA. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell 2004; 15:549-58. [PMID: 15327771 DOI: 10.1016/j.molcel.2004.06.044] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 06/08/2004] [Accepted: 06/17/2004] [Indexed: 11/18/2022]
Abstract
Nuclear receptors (NRs) induce transcription through association with coactivator complexes. We identified a pseudouridine synthase (PUS), mPus1p, as a coactivator for retinoic acid receptor (mRAR)gamma and other NR-dependent transactivation. mPus1p is a member of the truA subfamily of PUSs, a class of enzymes that isomerize uridine to pseudouridine in noncoding RNAs, such as tRNA, to ensure proper folding and function. mPus1p binds the first zinc finger of mRARgamma and also associates with other NRs. Interestingly, mPus1p pseudouridylates coactivator Steroid Receptor RNA Activator (SRA), and when coexpressed, mPus1p and SRA cooperatively enhance mRARgamma-mediated transcription. mPus1p, mRARgamma, and SRA exist in a retinoid-independent, promoter bound complex in the nucleus although mPus1p is also expressed in the nucleolus, where it likely modifies tRNA. Finally, we show that mPus1p-coactivator function required SRA, mPus1p-associated mRARgamma binding, and PUS activities. mPus1p-dependent pseudouridylation of SRA represents an additional type of posttranscriptional modification of a NR-coactivator complex that is important for NR signaling.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Humans
- Hydro-Lyases/genetics
- Hydro-Lyases/metabolism
- Macromolecular Substances
- Mice
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Long Noncoding
- RNA, Untranslated/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/physiology
- Transcription, Genetic
- Transcriptional Activation
- Two-Hybrid System Techniques
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Xiansi Zhao
- Department of Otolaryngology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
9
|
Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38. [PMID: 14715921 PMCID: PMC384350 DOI: 10.1093/nar/gkh185] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/02/2003] [Accepted: 12/02/2003] [Indexed: 11/12/2022] Open
Abstract
Transfer RNA's role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA's ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA's anticodon and those 3'-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U*U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon-codon interactions and expanding others.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA.
| |
Collapse
|
10
|
Behm-Ansmant I, Urban A, Ma X, Yu YT, Motorin Y, Branlant C. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Psi-synthase also acting on tRNAs. RNA (NEW YORK, N.Y.) 2003; 9:1371-82. [PMID: 14561887 PMCID: PMC1287059 DOI: 10.1261/rna.5520403] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Accepted: 08/15/2003] [Indexed: 05/19/2023]
Abstract
The Saccharomyces cerevisiae Pus7 protein was recently characterized as a novel RNA:pseudouridine (Psi)-synthase acting at position 35 in U2 snRNA. However, U2 snRNA was the only potential substrate tested for this enzyme. In this work, we demonstrated that although Pus7p is responsible for the formation of only one of the six Psi residues present in yeast UsnRNAs, it catalyzes U to Psi conversion at position 13 in cytoplasmic tRNAs and at position 35 in pre-tRNA(Tyr). Sites of RNA modification by Pus7p were identified by analysis of the in vivo RNA modification defects resulting from the absence of active Pus7p production and by in vitro tests using extracts from WT and genetically modified yeast cells. For demonstration of the direct implication of Pus7p in RNA modification, the activity of the WT and mutated Pus7p recombinant proteins was tested on in vitro produced tRNA and pre-tRNA transcripts. Mutation of an aspartic acid residue (D256) that is conserved in all Pus7 homologs abolishes the enzymatic activity both in vivo and in vitro. This suggests the direct involvement of D256 in catalysis. Target sites of Pus7p in RNAs share a common sequence Pu(G/C)UNPsiAPu (Pu = purine, N = any nucleotide), which is expected to be important for substrate recognition. Modification of tRNAs by Pus7p explains the presence of Pus7p homologs in archaea and some bacteria species, which do not have U2 snRNA, and in vertebrates, where Psi34 (equivalent to Psi35 in yeast) formation in U2 snRNA is an H/ACA snoRNA guided process. Our results increase the number of known RNA modification enzymes acting on different types of cellular RNAs.
Collapse
Affiliation(s)
- Isabelle Behm-Ansmant
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|