1
|
Hemeda LR, El Hassab MA, Abdelgawad MA, Khaleel EF, Abdel-Aziz MM, Binjubair FA, Al-Rashood ST, Eldehna WM, El-Ashrey MK. Discovery of pyrimidine-tethered benzothiazole derivatives as novel anti-tubercular agents towards multi- and extensively drug resistant Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2023; 38:2250575. [PMID: 37649381 PMCID: PMC10472891 DOI: 10.1080/14756366.2023.2250575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
In this study, new benzothiazole-pyrimidine hybrids (5a-c, 6, 7a-f, and 8-15) were designed and synthesised. Two different functionalities on the pyrimidine moiety of lead compound 4 were subjected to a variety of chemical changes with the goal of creating various functionalities and cyclisation to further elucidate the target structures. The potency of the new molecules was tested against different tuberculosis (TB) strains. The results indicated that compounds 5c, 5b, 12, and 15 (MIC = 0.24-0.98 µg/mL) are highly active against the first-line drug-sensitive strain of Mycobacterium tuberculosis (ATCC 25177). Thereafter, the anti-tubercular activity was evaluated against the two drug-resistant TB strains; ATCC 35822 and RCMB 2674, where, many compounds exhibited good activity with MIC = 0.98-62.5 3 µg/mL and 3.9-62.5 µg/mL, respectively. Compounds 5c and 15 having the highest anti-tubercular efficiency towards sensitive strain, displayed the best activity for the resistant strains by showing the MIC = 0.98 and 1.95 µg/mL for MDR TB, and showing the MIC = 3.9 and 7.81 µg/mL for XDR TB, consecutively. Finally, molecular docking studies were performed for the two most active compounds 5c and 15 to explore their enzymatic inhibitory activities.
Collapse
Affiliation(s)
- Loah R. Hemeda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Mohamed K. El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Srisanga K, Suthapot P, Permsirivisarn P, Govitrapong P, Tungpradabkul S, Wongtrakoongate P. Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. J Proteomics 2019; 194:14-24. [DOI: 10.1016/j.jprot.2018.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 12/16/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022]
|
3
|
Eukaryotic-type serine/threonine kinase mediated phosphorylation at Thr 169 perturbs mycobacterial guanylate kinase activity. Biosci Rep 2017; 37:BSR20171048. [PMID: 28963370 PMCID: PMC5686395 DOI: 10.1042/bsr20171048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Guanylate kinase is an essential and conserved enzyme in nucleotide biosynthetic pathway that transfers phosphoryl group of ATP to GMP for yielding GDP. Here, we report the phosphorylation of guanylate kinase from Mycobacterium tuberculosis (mGmk) by eukaryotic-type Ser/Thr kinase, PknA. Mass spectrometric studies identified Thr101 and Thr169 as phosphorylatable residues in mGmk. To evaluate the significance of phosphorylation in these threonines, two point (T101A and T169A) and one double (T101A-T169A) mutants were generated. The kinase assay with these mutant proteins revealed the major contribution of Thr169 compared with Thr101 in the phosphorylation of mGmk. Kinetic analysis indicated that p-mGmk was deficient in its enzymatic activity compared with that of its un-phosphorylated counterpart. Surprisingly, its phosphoablated (T169A) as well as phosphomimic (T169E) variants exhibited decreased activity as was observed with p-mGmk. Structural analysis suggested that phosphorylation of Thr169 might affect its interaction with Arg166, which is crucial for the functioning of mGmk. In fact, the R166A and R166K mutant proteins displayed a drastic decrease in enzymatic activity compared with that of the wild-type mGmk. Molecular dynamics (MD) studies of mGmk revealed that upon phosphorylation of Thr169, the interactions of Arg165/Arg166 with Glu158, Asp121 and residues of the loop in GMP-binding domain are perturbed. Taken together, our results illuminate the mechanistic insights into phosphorylation-mediated modulation of the catalytic activity of mGmk.
Collapse
|
4
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
5
|
Blackwood BP, Wood DR, Yuan C, Nicolas J, De Plaen IG, Farrow KN, Chou P, Turner JR, Hunter CJ. A Role for cAMP and Protein Kinase A in Experimental Necrotizing Enterocolitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:401-417. [PMID: 27939131 DOI: 10.1016/j.ajpath.2016.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 01/08/2023]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease that has been associated with Cronobacter sakazakii and typically affects premature infants. Although NEC has been actively investigated, little is known about the mechanisms underlying the pathophysiology of epithelial injury and intestinal barrier damage. Cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) are important mediators and regulators of apoptosis. To test the hypothesis that C. sakazakii increases cAMP and PKA activation in experimental NEC resulting in increased epithelial apoptosis, we investigated the effects of C. sakazakii on cAMP and PKA in vitro and in vivo. Specifically, rat intestinal epithelial cells and a human intestinal epithelial cell line were infected with C. sakazakii, and cAMP levels and phosphorylation of PKA were measured. An increase in cAMP was demonstrated after infection, as well as an increase in phosphorylated PKA. Similarly, increased intestinal cAMP and PKA phosphorylation were demonstrated in a rat pup model of NEC. These increases were correlated with increased intestinal epithelial apoptosis. The additional of a PKA inhibitor (KT5720) significantly ameliorated these effects and decreased the severity of experimental NEC. Findings were compared with results from human tissue samples. Collectively, these observations indicate that cAMP and PKA phosphorylation are associated with increased apoptosis in NEC and that inhibition of PKA activation protects against apoptosis and experimental NEC.
Collapse
Affiliation(s)
- Brian P Blackwood
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas R Wood
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Carrie Yuan
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joseph Nicolas
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Isabelle G De Plaen
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathryn N Farrow
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pauline Chou
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine J Hunter
- Division of Pediatric Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
6
|
Heroven AK, Dersch P. Coregulation of host-adapted metabolism and virulence by pathogenic yersiniae. Front Cell Infect Microbiol 2014; 4:146. [PMID: 25368845 PMCID: PMC4202721 DOI: 10.3389/fcimb.2014.00146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/30/2014] [Indexed: 01/07/2023] Open
Abstract
Deciphering the principles how pathogenic bacteria adapt their metabolism to a specific host microenvironment is critical for understanding bacterial pathogenesis. The enteric pathogenic Yersinia species Yersinia pseudotuberculosis and Yersinia enterocolitica and the causative agent of plague, Yersinia pestis, are able to survive in a large variety of environmental reservoirs (e.g., soil, plants, insects) as well as warm-blooded animals (e.g., rodents, pigs, humans) with a particular preference for lymphatic tissues. In order to manage rapidly changing environmental conditions and interbacterial competition, Yersinia senses the nutritional composition during the course of an infection by special molecular devices, integrates this information and adapts its metabolism accordingly. In addition, nutrient availability has an impact on expression of virulence genes in response to C-sources, demonstrating a tight link between the pathogenicity of yersiniae and utilization of nutrients. Recent studies revealed that global regulatory factors such as the cAMP receptor protein (Crp) and the carbon storage regulator (Csr) system are part of a large network of transcriptional and posttranscriptional control strategies adjusting metabolic changes and virulence in response to temperature, ion and nutrient availability. Gained knowledge about the specific metabolic requirements and the correlation between metabolic and virulence gene expression that enable efficient host colonization led to the identification of new potential antimicrobial targets.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Institut für Mikrobiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
7
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:446. [PMID: 25232361 PMCID: PMC4153020 DOI: 10.3389/fpls.2014.00446] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 05/16/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State UniversityPullman, WA, USA
- *Correspondence: Kiwamu Tanaka, Department of Plant Pathology, Washington State University, P.O. BOX 646430, Pullman, WA 99164, USA e-mail:
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
8
|
Tanaka K, Choi J, Cao Y, Stacey G. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25232361 DOI: 10.3389/fpls.2014.00446.ecollection] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca(2+) elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University Pullman, WA, USA
| | - Jeongmin Choi
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Yangrong Cao
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA
| |
Collapse
|
9
|
Robin GP, Ortiz E, Szurek B, Brizard JP, Koebnik R. Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae. J Proteomics 2013; 97:256-64. [PMID: 23603630 DOI: 10.1016/j.jprot.2013.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED Pathogenicity of the rice pathogenic bacterium Xanthomonas oryzae pv. oryzae depends on a Hrp (hypersensitive response and pathogenicity) type III secretion system; the expression of which is induced in planta. Expression of the hrp operons is under transcriptional control of two key regulatory proteins, HrpG and HrpX. To identify new proteins that are co-regulated with the type III secretion system, we employed comparative proteomics. Cells of X. oryzae pv. oryzae ectopically expressing hrpX were compared to wild-type cells grown in vitro. Twenty protein spots with different abundances in both samples were identified by 2D-DIGE and LC-MS/MS. Seven spots could be unambiguously identified, corresponding to the HrpB1 protein, two different peptidyl-prolyl cis-trans isomerases, a component of an ATP binding cassette (ABC) transport system, an adenylate kinase, and a secreted protein of unknown function. Interestingly, the isoelectric point of the adenylate kinase was found to be under control of HrpX, most likely due to post-translational modification. Indeed, two glutamate residues of the adenylate kinase were found to be methylated but this modification did not account for the shift in electrophoretic mobility. In summary, we identified new HrpX-regulated proteins of X. oryzae pv. oryzae that might be important for pathogenicity. This article is part of a Special Issue entitled: Trends in microbial proteomics. BIOLOGICAL SIGNIFICANCE We use 2D-DIGE to compare the proteomes of rice-pathogenic xanthomonads. We identify seven proteins that are co-regulated with the type III secretion system. We find post-translational glutamate methylation of a bacterial adenylate cyclase. The newly identified HrpX-regulated proteins might be important for pathogenicity.
Collapse
Affiliation(s)
- Guillaume P Robin
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Erika Ortiz
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Boris Szurek
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Jean-Paul Brizard
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France
| | - Ralf Koebnik
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia-CNRS-IRD, UMR 5096, IRD Montpellier, France.
| |
Collapse
|
10
|
Han H, Liu C, Wang Q, Xuan C, Zheng B, Tang J, Yan J, Zhang J, Li M, Cheng H, Lu G, Gao GF. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology (Reading) 2012; 158:1852-1866. [DOI: 10.1099/mic.0.057448-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Huiming Han
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cuihua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Quanhui Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Chunling Xuan
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Beiwen Zheng
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiaqi Tang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing 210002, PR China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingren Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing 630030, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hao Cheng
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George F. Gao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
11
|
Shanmugam M, Parasuraman S. Evolutionarily Conserved Essential Genes from Arctic Bacteria: A Tool for Vaccination. J Young Pharm 2012; 4:55-7. [PMID: 22523463 PMCID: PMC3326785 DOI: 10.4103/0975-1483.93569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Temperature-sensitive bacterial pathogens generated by the substitution of essential genes from cold-loving bacteria: potential use as live vaccines. J Mol Med (Berl) 2011; 89:437-44. [PMID: 21229224 DOI: 10.1007/s00109-010-0721-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 01/31/2023]
Abstract
Temperature-sensitive (TS) viruses have been used for decades as vaccines capable of limited replication in their hosts. Although attenuated bacteria, such as the Bacille Calmette-Guérin anti-tuberculosis vaccine, have been used for almost a century, it is only recently that there has been progress in using TS bacterial strains as live vaccines. Decades of work on essential bacterial genes and the recent explosion in the number of available bacterial genomic sequences set the groundwork for the identification of essential genes from diverse bacteria. This knowledge has allowed for the substitution of essential genes from cold-loving bacteria into the chromosomes of pathogenic bacteria. Many of these gene substitutions generated TS pathogenic bacterial strains, and some were demonstrated to provide protective immunity in mice. This work opens the possibility of engineering many pathogenic bacteria to create TS strains that can be used as vaccines.
Collapse
|
13
|
Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One 2009; 4:e7023. [PMID: 19759820 PMCID: PMC2736372 DOI: 10.1371/journal.pone.0007023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/13/2009] [Indexed: 12/22/2022] Open
Abstract
Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD(50) of at least 10(7) cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sara Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eytan Elhanany
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
14
|
Dzeja P, Terzic A. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. Int J Mol Sci 2009; 10:1729-1772. [PMID: 19468337 PMCID: PMC2680645 DOI: 10.3390/ijms10041729] [Citation(s) in RCA: 312] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 03/26/2009] [Accepted: 04/02/2009] [Indexed: 12/20/2022] Open
Abstract
Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.
Collapse
Affiliation(s)
- Petras Dzeja
- Author to whom correspondence should be addressed; E-mail:
(P.D.)
| | | |
Collapse
|
15
|
Rosso ML, Chauvaux S, Dessein R, Laurans C, Frangeul L, Lacroix C, Schiavo A, Dillies MA, Foulon J, Coppée JY, Médigue C, Carniel E, Simonet M, Marceau M. Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression. BMC Microbiol 2008; 8:211. [PMID: 19055764 PMCID: PMC2631605 DOI: 10.1186/1471-2180-8-211] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In man, infection by the Gram-negative enteropathogen Yersinia pseudotuberculosis is usually limited to the terminal ileum. However, in immunocompromised patients, the microorganism may disseminate from the digestive tract and thus cause a systemic infection with septicemia. RESULTS To gain insight into the metabolic pathways and virulence factors expressed by the bacterium at the blood stage of pseudotuberculosis, we compared the overall gene transcription patterns (the transcriptome) of bacterial cells cultured in either human plasma or Luria-Bertani medium. The most marked plasma-triggered metabolic consequence in Y. pseudotuberculosis was the switch to high glucose consumption, which is reminiscent of the acetogenic pathway (known as "glucose overflow") in Escherichia coli. However, upregulation of the glyoxylate shunt enzymes suggests that (in contrast to E. coli) acetate may be further metabolized in Y. pseudotuberculosis. Our data also indicate that the bloodstream environment can regulate major virulence genes (positively or negatively); the yadA adhesin gene and most of the transcriptional units of the pYV-encoded type III secretion apparatus were found to be upregulated, whereas transcription of the pH6 antigen locus was strongly repressed. CONCLUSION Our results suggest that plasma growth of Y. pseudotuberculosis is responsible for major transcriptional regulatory events and prompts key metabolic reorientations within the bacterium, which may in turn have an impact on virulence.
Collapse
Affiliation(s)
- Marie-Laure Rosso
- Inserm U801, Lille, F-59019, Université Lille II, Faculté de Médecine Henri Warembourg), Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chauvaux S, Rosso ML, Frangeul L, Lacroix C, Labarre L, Schiavo A, Marceau M, Dillies MA, Foulon J, Coppée JY, Médigue C, Simonet M, Carniel E. Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. MICROBIOLOGY-SGM 2007; 153:3112-3124. [PMID: 17768254 DOI: 10.1099/mic.0.2007/006213-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yersinia pestis is the aetiologic agent of plague. Without appropriate treatment, the pathogen rapidly causes septicaemia, the terminal and fatal phase of the disease. In order to identify bacterial genes which are essential during septicaemic plague in humans, we performed a transcriptome analysis on the fully virulent Y. pestis CO92 strain grown in either decomplemented human plasma or Luria-Bertani medium, incubated at either 28 or 37 degrees C and harvested at either the mid-exponential or the stationary growth phase. Y. pestis genes involved in 12 iron-acquisition systems and one iron-storage system (bfr, bfd) were specifically induced in human plasma. Of these, the ybt and tonB genes (encoding the yersiniabactin siderophore virulence factor and the siderophore transporter, respectively) were induced at 37 degrees C, i.e. under conditions mimicking the mammalian environment. Growth in human plasma also upregulated genes involved in the synthesis of five fimbrial-like structures (including the Psa virulence factor), and in purine/pyrimidine metabolism (the nrd genes). Genes known to play a role in the virulence of several bacterial pathogens (such as those encoding the Lpp lipoprotein and non-iron metal-uptake proteins) were induced in human plasma, during either the exponential or the stationary phase. Finally, 120 genes encoding proteins of unknown function were upregulated in human plasma. Eleven of these genes were specifically transcribed at 37 degrees C and may thus represent new virulence factors that are important during the septicaemic phase of human plague.
Collapse
Affiliation(s)
- Sylvie Chauvaux
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | - Jeannine Foulon
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| | | | | | | | - Elisabeth Carniel
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris cedex 15, France
| |
Collapse
|
17
|
Gaynor EC, Wells DH, MacKichan JK, Falkow S. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 2005; 56:8-27. [PMID: 15773975 DOI: 10.1111/j.1365-2958.2005.04525.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Although relatively little is understood about its mechanisms of pathogenesis, its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni or any other epsilon-proteobacteria. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Microarray analyses comparing wild-type to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis and, further, may lend novel insight into unexplored features of the stringent response in other prokaryotic organisms.
Collapse
Affiliation(s)
- Erin C Gaynor
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| | | | | | | |
Collapse
|
18
|
Gu Y, Gordon DM, Amutha B, Pain D. A GTP:AMP phosphotransferase, Adk2p, in Saccharomyces cerevisiae. Role of the C terminus in protein folding/stabilization, thermal tolerance, and enzymatic activity. J Biol Chem 2005; 280:18604-9. [PMID: 15753074 DOI: 10.1074/jbc.m500847200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinases participate in maintaining the homeostasis of cellular nucleotides. Depending on the yeast strains, the GTP:AMP phosphotransferase is encoded by the nuclear gene ADK2 with or without a single base pair deletion/insertion near the 3' end of the open reading frame, and the corresponding protein exists as either Adk2p (short) or Adk2p (long) in the mitochondrial matrix. These two forms are identical except that the three C-terminal residues of Adk2p (short) are changed in Adk2p (long), and the latter contains an additional nine amino acids at the C terminus of the protein. The short form of Adk2p has so far been considered to be inactive (Schricker, R., Magdolen, V., Strobel, G., Bogengruber, E., Breitenbach, M., and Bandlow, W. (1995) J. Biol. Chem. 270, 31103-31110). Using purified proteins, we show that at the physiological temperature for yeast growth (30 degrees C), both short and long forms of Adk2p are enzymatically active. However, in contrast to the short form, Adk2p (long) is quite resistant to thermal inactivation, urea denaturation, and degradation by trypsin. Unfolding of the long form by high concentrations of urea greatly stimulated its import into isolated mitochondria. Using an integration-based gene-swapping approach, we found that regardless of the yeast strains used, the steady state levels of endogenous Adk2p (long) in mitochondria were 5-10-fold lower compared with those of Adk2p (short). Together, these results suggest that the modified C-terminal domain in Adk2p (long) is not essential for enzyme activity, but it contributes to and strengthens protein folding and/or stability and is particularly important for maintaining enzyme activity under stress conditions.
Collapse
Affiliation(s)
- Yajuan Gu
- Department of Pharmacology and Physiology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103-1709, USA
| | | | | | | |
Collapse
|
19
|
Mukhopadhyay S, Miller RD, Summersgill JT. Analysis of Altered Protein Expression Patterns of Chlamydia pneumoniae by an Integrated Proteome-Works System. J Proteome Res 2004; 3:878-83. [PMID: 15359744 DOI: 10.1021/pr0400031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified, analyzed, and quantified differential protein expression profile of five C. pneumoniae proteins, Adk (adenylate kinase), AhpC (thiol-specific antioxidant), CrpA (15 KD cysteine rich protein), Map (methionine aminopeptidae), and Cpn0710 (hypothetical protein) under normal versus persistent growth conditions induced by interferon-gamma, at different time intervals of their replicative cycle by successfully employing the latest proteomic analysis tool, PDQuest 2-D analysis software. We have also determined that this software represents a reliable analytical tool for mapping protein expression patterns in C. pneumoniae.
Collapse
|