1
|
Effect of the actin- and calcium-regulating activities of ITPKB on the metastatic potential of lung cancer cells. Biochem J 2018; 475:2057-2071. [DOI: 10.1042/bcj20180238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) exhibits oncogenic activity in lung cancer cells by regulating Ins(1,4,5)P3-mediated calcium release and cytoskeletal dynamics. Since, in normal cells, ITPKA is mainly expressed in the brain, it is an excellent target for selected therapy of lung cancer. However, ITPKB is strongly expressed in normal lung tissues, but is down-regulated in lung cancer cells by miR-375, assuming that ITPKB might have tumor suppressor activity. In addition, ITPKB binds to F-actin making it likely that, similar to ITPKA, it controls actin dynamics. Thus, the treatment of ITPKA-expressing lung cancer with ITPKA inhibitors simultaneously inhibiting ITPKB may counteract the therapy. Based on these considerations, we analyzed if ITPKB controls actin dynamics and if the protein reduces aggressive progression of lung cancer cells. We found that ITPKB bundled F-actin in cell-free systems. However, the stable expression of ITPKB in H1299 lung cancer cells, exhibiting very low endogenous ITPKB expression, had no significant effect on the actin structure. In addition, our data show that ITPKB negatively controls transmigration of H1299 cells in vitro by blocking Ins(1,4,5)P3-mediated calcium release. On the other hand, colony formation was stimulated by ITPKB, independent of Ins(1,4,5)P3-mediated calcium signals. However, dissemination of H1299 cells from the skin to the lung in NOD scid gamma mice was not significantly affected by ITPKB expression. In summary, ITPKB does not affect the cellular actin structure and does not suppress dissemination of human lung cancer cells in mice. Thus, our initial hypotheses that ITPKB exhibits tumor suppressor activity could not be supported.
Collapse
|
2
|
Shimizu N, Sato N, Kikuchi T, Ishizaki T, Kobayashi K, Kita K, Takimoto K. A sustained increase in the intracellular Ca²⁺ concentration induces proteolytic cleavage of EAG2 channel. Int J Biochem Cell Biol 2014; 59:126-34. [PMID: 25542181 DOI: 10.1016/j.biocel.2014.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
Voltage-gated EAG2 channel is abundant in the brain and enhances cancer cell growth by controlling cell volume. The channel contains a cyclic nucleotide-binding homology (CNBH) domain and multiple calmodulin-binding motifs. Here we show that a raised intracellular Ca(2+) concentration causes proteolytic digestion of heterologously expressed and native EAG2 channels. A treatment of EAG2-expressing cells with the Ca(2+) ionophore A23187 for 1h reduces the full-length protein by ∼80% with a concomitant appearance of 30-35-kDa peptides. Similarly, a treatment with the Ca(2+)-ATPase inhibitor thapsigargin for 3h removes 30-35-kDa peptides from ∼1/3 of the channel protein. Moreover, an incubation of the isolated rat brain membrane with CaCl2 leads to the generation of fragments with similar sizes. This Ca(2+)-induced digestion is not seen with EAG1. Mutations in a C-terminal calmodulin-binding motif alter the degrees and positions of the cleavage. Truncated channels that mimic the digested proteins exhibit a reduced current density and altered channel gating. In particular, these shorter channels lack a rapid activation typical in EAG channels with more than 20-mV positive shifts in voltage dependence of activation. The truncation also eliminates the ability of EAG2 channel to reduce cell volume. These results suggest that a sustained increase in the intracellular Ca(2+) concentration leads to proteolytic cleavage at the C-terminal cytosolic region following the CNBH domain by altering its interaction with calmodulin. The observed Ca(2+)-induced proteolytic cleavage of EAG2 channel may act as an adaptive response under physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Nobuhiro Shimizu
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Natsumi Sato
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Teppei Kikuchi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Takuro Ishizaki
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kazuto Kobayashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kaori Kita
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Koichi Takimoto
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
3
|
Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biol Psychiatry 2014; 76:315-23. [PMID: 24315552 PMCID: PMC4640900 DOI: 10.1016/j.biopsych.2013.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND The experience of early stress contributes to the etiology of several psychiatric disorders and can lead to lasting deficits in working memory and attention. These executive functions require activation of the prefrontal cortex (PFC) by muscarinic M1 acetylcholine (ACh) receptors. Such Gαq-protein coupled receptors trigger the release of calcium (Ca(2+)) from internal stores and elicit prolonged neuronal excitation. METHODS In brain slices of rat PFC, we employed multiphoton imaging simultaneously with whole-cell electrophysiological recordings to examine potential interactions between ACh-induced Ca(2+) release and excitatory currents in adulthood, across postnatal development, and following the early stress of repeated maternal separation, a rodent model for depression. We also investigated developmental changes in related genes in these groups. RESULTS Acetylcholine-induced Ca(2+) release potentiates ACh-elicited excitatory currents. In the healthy PFC, this potentiation of muscarinic excitation emerges in young adulthood, when executive function typically reaches maturity. However, the developmental consolidation of muscarinic ACh signaling is abolished in adults with a history of early stress, where ACh responses retain an adolescent phenotype. In prefrontal cortex, these rats show a disruption in the expression of multiple developmentally regulated genes associated with Gαq and Ca(2+) signaling. Pharmacologic and ionic manipulations reveal that the enhancement of muscarinic excitation in the healthy adult PFC arises via the electrogenic process of sodium/Ca(2+) exchange. CONCLUSIONS This work illustrates a long-lasting disruption in ACh-mediated cortical excitation following early stress and raises the possibility that such cellular mechanisms may disrupt the maturation of executive function.
Collapse
|
4
|
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3:a004317. [PMID: 21441595 PMCID: PMC3098671 DOI: 10.1101/cshperspect.a004317] [Citation(s) in RCA: 340] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
Collapse
Affiliation(s)
- Djalila Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium
| | | | | | | | | |
Collapse
|
5
|
Nalaskowski MM, Fliegert R, Ernst O, Brehm MA, Fanick W, Windhorst S, Lin H, Giehler S, Hein J, Lin YN, Mayr GW. Human inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) is a nucleocytoplasmic shuttling protein specifically enriched at cortical actin filaments and at invaginations of the nuclear envelope. J Biol Chem 2011; 286:4500-10. [PMID: 21148483 PMCID: PMC3039344 DOI: 10.1074/jbc.m110.173062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/02/2010] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Institute of Biochemistry and Molecular Biology I-Cellular Signal Transduction, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
7
|
Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 2008; 38:78-100. [PMID: 18686046 DOI: 10.1007/s12035-008-8036-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/17/2008] [Indexed: 12/19/2022]
Abstract
Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic neuronal function. However, alterations in calcium homeostasis lead to persistent, pathologic activation of calpain in a number of neurodegenerative diseases. Pathologic activation of calpain results in the cleavage of a number of neuronal substrates that negatively affect neuronal structure and function, leading to inhibition of essential neuronal survival mechanisms. In this review, we examine the mechanistic underpinnings of calcium dysregulation resulting in calpain activation in the acute neurodegenerative diseases such as cerebral ischemia and in the chronic neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion-related encephalopathy, and amylotrophic lateral sclerosis. The premise of this paper is that analysis of the signaling and transcriptional consequences of calpain-mediated cleavage of its various substrates for any neurodegenerative disease can be extrapolated to all of the neurodegenerative diseases vulnerable to calcium dysregulation.
Collapse
|
8
|
Abstract
The calpain family of proteases is causally linked to postischemic neurodegeneration. However, the precise mechanisms by which calpains contribute to postischemic neuronal death have not been fully elucidated. This review outlines the key features of the calpain system, and the evidence for its causal role in postischemic neuronal pathology. Furthermore, the consequences of specific calpain substrate cleavage at various subcellular locations are explored. Calpain substrates within synapses, plasma membrane, endoplasmic reticulum, lysosomes, mitochondria, and the nucleus, as well as the overall effect of postischemic calpain activity on calcium regulation and cell death signaling are considered. Finally, potential pathways for calpain-mediated neurodegeneration are outlined in an effort to guide future studies aimed at understanding the downstream pathology of postischemic calpain activity and identifying optimal therapeutic strategies.
Collapse
Affiliation(s)
- Matthew B Bevers
- Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4283, USA
| | | |
Collapse
|
9
|
Lloyd-Burton SM, Yu JCH, Irvine RF, Schell MJ. Regulation of Inositol 1,4,5-Trisphosphate 3-Kinases by Calcium and Localization in Cells. J Biol Chem 2007; 282:9526-9535. [PMID: 17284449 DOI: 10.1074/jbc.m610253200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) 3-kinases (IP(3)Ks) are a group of calmodulin-regulated inositol polyphosphate kinases (IPKs) that convert the second messenger Ins(1,4,5)P(3) into inositol 1,3,4,5-tetrakisphosphate. However, what they contribute to the complexities of Ca(2+) signaling, and how, is still not fully understood. In this study, we have used a simple Ca(2+) imaging assay to compare the abilities of various Ins (1,4,5)P(3)-metabolizing enzymes to regulate a maximal histamine-stimulated Ca(2+) signal in HeLa cells. Using transient transfection, we overexpressed green fluorescent protein-tagged versions of all three mammalian IP(3)K isoforms, including mutants with disrupted cellular localization or calmodulin regulation, and then imaged the Ca(2+) release stimulated by 100 microm histamine. Both localization to the F-actin cytoskeleton and calmodulin regulation enhance the efficiency of mammalian IP(3)Ks to dampen the Ins (1,4,5)P(3)-mediated Ca(2+) signals. We also compared the effects of the these IP(3)Ks with other enzymes that metabolize Ins(1,4,5)P(3), including the Type I Ins(1,4,5)P(3) 5-phosphatase, in both membrane-targeted and soluble forms, the human inositol polyphosphate multikinase, and the two isoforms of IP(3)K found in Drosophila. All reduce the Ca(2+) signal but to varying degrees. We demonstrate that the activity of only one of two IP(3)K isoforms from Drosophila is positively regulated by calmodulin and that neither isoform associates with the cytoskeleton. Together the data suggest that IP(3)Ks evolved to regulate kinetic and spatial aspects of Ins (1,4,5)P(3) signals in increasingly complex ways in vertebrates, consistent with their probable roles in the regulation of higher brain and immune function.
Collapse
Affiliation(s)
- Samantha M Lloyd-Burton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Jowie C H Yu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Robin F Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| | - Michael J Schell
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| |
Collapse
|
10
|
Nalaskowski MM, Windhorst S, Stockebrand MC, Mayr GW. Subcellular localisation of human inositol 1,4,5-trisphosphate 3-kinase C: species-specific use of alternative export sites for nucleo-cytoplasmic shuttling indicates divergent roles of the catalytic and N-terminal domains. Biol Chem 2006; 387:583-93. [PMID: 16740130 DOI: 10.1515/bc.2006.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The three isoforms of human Ins(1,4,5)P3 3-kinase (IP3K) show remarkable differences in their intracellular targeting. Whereas predominant targeting to the cytoskeleton and endoplasmic reticulum has been shown for IP3K-A and IP3K-B, rat IP3K-C shuttles actively between the nucleus and cytoplasm. In the present study we examined the expression and intracellular localisation of endogenous IP3K-C in different mammalian cell lines using an isoform-specific antibody. In addition, human IP3K-C, showing remarkable differences to its rat homologue in the N-terminal targeting domain, was tagged with EGFP and used to examine active transport mechanisms into and out of the nucleus. We found both a nuclear import activity residing in its N-terminal domain and a nuclear export activity sensitive to treatment with leptomycin B. Different from the rat isoform, an exportin 1-dependent nuclear export site of the human enzyme resides outside the N-terminal targeting domain in the catalytic enzyme domain. A phylogenetic survey of vertebrate IP3K sequences indicates that in each of the three isoforms a nuclear export signal has evolved in the catalytic domain either de novo (IP3K-A) or as a substitute for an earlier evolved corresponding N-terminal signal (IP3K-B and IP3K-C). In higher vertebrates, and in particular in primates, re-export of nuclear IP3K activity may be guaranteed by the mechanism discovered.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Institut für Biochemie und Molekularbiologie I: Zelluläre Signaltransduktion, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | |
Collapse
|
11
|
Irvine RF, Lloyd-Burton SM, Yu JCH, Letcher AJ, Schell MJ. The regulation and function of inositol 1,4,5-trisphosphate 3-kinases. ACTA ACUST UNITED AC 2006; 46:314-23. [PMID: 16857241 PMCID: PMC1820747 DOI: 10.1016/j.advenzreg.2006.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Robin F Irvine
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | | | |
Collapse
|
12
|
Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen'kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skryma R, Prevarskaya N. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 2006; 66:2038-47. [PMID: 16489003 DOI: 10.1158/0008-5472.can-05-0376] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One major clinical problem with prostate cancer is the cells' ability to survive and proliferate upon androgen withdrawal. Because Ca2+ is central to growth control, understanding the mechanisms of Ca2+ homeostasis involved in prostate cancer cell proliferation is imperative for new therapeutic strategies. Here, we show that agonist-mediated stimulation of alpha1-adrenergic receptors (alpha1-AR) promotes proliferation of the primary human prostate cancer epithelial (hPCE) cells by inducing store-independent Ca2+ entry and subsequent activation of nuclear factor of activated T cells (NFAT) transcription factor. Such an agonist-induced Ca2+ entry (ACE) relied mostly on transient receptor potential canonical 6 (TRPC6) channels, whose silencing by antisense hybrid depletion decreased both hPCE cell proliferation and ACE. In contrast, ACE and related growth arrest associated with purinergic receptors (P2Y-R) stimulation involved neither TRPC6 nor NFAT. Our findings show that alpha1-AR signaling requires the coupled activation of TRPC6 channels and NFAT to promote proliferation of hPCE cells and thereby suggest TRPC6 as a novel potential therapeutic target.
Collapse
Affiliation(s)
- Stephanie Thebault
- Laboratoire de Physiologie Cellulaire, Institut National de la Sante et de la Recherche Medicale, Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yu J, Lloyd-Burton S, Irvine R, Schell M. Regulation of the localization and activity of inositol 1,4,5-trisphosphate 3-kinase B in intact cells by proteolysis. Biochem J 2006; 392:435-41. [PMID: 16173920 PMCID: PMC1316281 DOI: 10.1042/bj20050829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IP3K (inositol 1,4,5-trisphosphate 3-kinase) catalyses the Ca2+-regulated phosphorylation of the second messenger Ins(1,4,5)P3, thereby inactivating the signal to release Ca2+ and generating Ins(1,3,4,5)P4. Here we have investigated the localization and activity of IP3KB and its modulation by proteolysis. We found that the N- and C-termini (either side of residue 262) of IP3KB localized predominantly to the actin cytoskeleton and ER (endoplasmic reticulum) respectively, both in COS-7 cells and in primary astrocytes. The functional relevance of this was demonstrated by showing that full-length (actin-localized) IP3KB abolished the histamine-induced Ca2+ response in HeLa cells more effectively than truncated constructs localized to the ER or cytosol. The superior efficacy of full-length IP3KB was also attenuated by disruption of the actin cytoskeleton. By transfecting COS-7 cells with double-tagged IP3KB, we show that the translocation from actin to ER may be a physiologically regulated process caused by Ca2+-modulated constitutive proteolysis in intact cells.
Collapse
Affiliation(s)
- Jowie C. H. Yu
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | | | - Robin F. Irvine
- *Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be sent (email )
| | - Michael J. Schell
- †Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, U.S.A
| |
Collapse
|
14
|
Hayashi M, Fukuzawa T, Sorimachi H, Maeda T. Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 2005; 25:9478-90. [PMID: 16227598 PMCID: PMC1265799 DOI: 10.1128/mcb.25.21.9478-9490.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In many fungi, transcriptional responses to alkaline pH are mediated by conserved signal transduction machinery. In the homologous system in Saccharomyces cerevisiae, the zinc-finger transcription factor Rim101 is activated under alkaline conditions to regulate transcription of target genes. The activation of Rim101 is exerted through proteolytic processing of its C-terminal inhibitory domain. Regulated processing of Rim101 requires several proteins, including the calpain-like protease Rim13/Cpl1, a putative protease scaffold Rim20, putative transmembrane proteins Rim9, and Rim21/Pal2, and Rim8/Pal3 of unknown biochemical function. To identify new regulatory components and thereby determine the order of action among the components in the pathway, we screened for suppressors of rim9Delta and rim21Delta mutations. Three identified suppressors-did4/vps2, vps24, and vps4-all belonged to "class E" vps mutants, which are commonly defective in multivesicular body sorting. These mutations suppress rim8, rim9, and rim21 but not rim13 or rim20, indicating that Rim8, Rim9, and Rim21 act upstream of Rim13 and Rim20 in the pathway. Disruption of DID4, VPS24, or VPS4, by itself, uncouples pH sensing from Rim101 processing, leading to constitutive Rim101 activation. Based on extensive epistasis analysis between pathway-activating and -inactivating mutations, a model for architecture and regulation of the Rim101 pathway is proposed.
Collapse
Affiliation(s)
- Michio Hayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
15
|
Thebault S, Zholos A, Enfissi A, Slomianny C, Dewailly E, Roudbaraki M, Parys J, Prevarskaya N. Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol 2005; 204:320-8. [PMID: 15672411 DOI: 10.1002/jcp.20301] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prostate smooth muscle cells predominantly express alpha1-adrenoceptors (alpha1-AR). alpha1-AR antagonists induce prostate smooth muscle relaxation and therefore they are useful therapeutic compounds for the treatment of benign prostatic hyperplasia symptoms. However, the Ca(2+) entry pathways associated with the activation of alpha1-AR in the prostate have yet to be elucidated. In many cell types, mammalian homologues of transient receptor potential (TRP) genes, first identified in Drosophila, encode TRPC (canonical TRP) proteins. They function as receptor-operated channels (ROCs) which are involved in various physiological processes such as contraction, proliferation, apoptosis, and differentiation. To date, the expression and function of TRPC channels have not been studied in prostate smooth muscle. In fura-2 loaded PS1 (a prostate smooth muscle cell line) which express endogenous alpha1A-ARs, alpha-agonists epinephrine (EPI), and phenylephrine (PHE) induced Ca(2+) influx which depended on the extracellular Ca(2+) and PLC activation but was independent of PKC activation. Thus, we have tested two membrane-permeable analogues of diacylglycerol (DAG), oleoyl-acyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG). They initiated Ca(2+) influx whose properties were similar to those induced by the alpha-agonists. Sensitivity to 2-aminoethyl diphenylborate (2-APB), SKF-96365 and flufenamate implies that Ca(2+)-permeable channels mediated both alpha-agonist- and OAG-evoked Ca(2+) influx. Following the sarcoplasmic reticulum (SR) Ca(2+) store depletion by thapsigargin (Tg), a SERCA inhibitor, OAG and PHE were both still able to activate Ca(2+) influx. However, OAG failed to enhance Ca(2+) influx when added in the presence of an alpha-agonist. RT-PCR and Western blotting performed on PS1 cells revealed the presence of mRNAs and the corresponding TRPC3 and TRPC6 proteins. Experiments using an antisense strategy showed that both alpha-agonist- and OAG-induced Ca(2+) influx required TRPC3 and TRPC6, whereas the Tg-activated ("capacitative") Ca(2+) entry involved only TRPC3 encoded protein. It may be thus concluded that PS1 cells express TRPC3 and TRPC6 proteins which function as receptor- and store-operated Ca(2+) entry pathways.
Collapse
Affiliation(s)
- S Thebault
- Laboratoire de Physiologie Cellulaire, INSERM EMI 0228, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pattni K, Banting G. Ins(1,4,5)P3 metabolism and the family of IP3-3Kinases. Cell Signal 2005; 16:643-54. [PMID: 15093605 DOI: 10.1016/j.cellsig.2003.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 10/24/2003] [Indexed: 11/17/2022]
Abstract
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.
Collapse
Affiliation(s)
- Krupa Pattni
- Department of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | |
Collapse
|
17
|
Hascakova-Bartova R, Pouillon V, Dewaste V, Moreau C, Jacques C, Banting G, Schurmans S, Erneux C. Identification and subcellular distribution of endogenous Ins(1,4,5)P(3) 3-kinase B in mouse tissues. Biochem Biophys Res Commun 2004; 323:920-5. [PMID: 15381088 DOI: 10.1016/j.bbrc.2004.08.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 11/19/2022]
Abstract
Inositol 1,4,5-trisphosphate 3-kinase (IP(3)-3K) catalyses the phosphorylation of inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three mammalian isoforms have been reported and referred to as IP(3)-3KA, IP(3)-3KB, and IP(3)-3KC. IP(3)-3KB is particularly sensitive to proteolysis at the N-terminus, a mechanism known to generate active fragments of lower molecular mass. Endogenous IP(3)-3KB has therefore not been formally identified in tissues. We have probed a series of murine tissues with an antibody directed against the C-terminus of IP(3)-3KB and used IP(3)-3KB deficient mouse tissues as negative controls. IP(3)-3KB was shown to be particularly well expressed in brain, lung, and thymus with molecular masses of 110-120kDa. The identification of the native IP(3)-3KB by Western blotting for the first time will facilitate further studies of regulation of its activity by specific proteases and/or phosphorylation.
Collapse
Affiliation(s)
- Romana Hascakova-Bartova
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Brehm M, Schreiber I, Bertsch U, Wegner A, Mayr G. Identification of the actin-binding domain of Ins(1,4,5)P3 3-kinase isoform B (IP3K-B). Biochem J 2004; 382:353-62. [PMID: 15130091 PMCID: PMC1133948 DOI: 10.1042/bj20031751] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/30/2004] [Accepted: 05/06/2004] [Indexed: 12/31/2022]
Abstract
Dewaste et al. [Dewaste, Moreau, De Smedt, Bex, De Smedt, Wuytaack, Missiaen and Erneux (2003) Biochem. J. 374, 41-49] showed that over-expressed EGFP (enhanced green fluorescent protein) fused to Ins(1,4,5)P3 3-kinase B (IP3K-B) co-localizes with the cytoskeleton, as well as with the endoplasmic reticulum and the plasma membrane. The domains responsible for these subcellular localizations are not yet identified. For the endogenous enzyme, we confirmed both actin and endoplasmic reticulum localization by employing a high affinity antibody against IP3K-B. F-actin targeting is exclusively dependent on the non-catalytic N-terminal region of IP3K-B. By expressing fragments of this N-terminal domain as EGFP-fusion proteins and inspecting transfected cells by confocal microscopy, we characterized a distinct 63-amino-acid domain comprising amino acids 108-170 of the enzyme which is responsible for F-actin targeting. A truncation of this fragment from both sides revealed that the full size of this segment is essential for this function. Deletion of this segment in a full-length over-expressed IP3K-B-EGFP-fusion protein completely abolished F-actin interaction. Direct interaction of this actin-binding segment with only F-actin, but not with G-actin, was observed in vitro using a bacterially expressed, affinity-purified GST (glutathione S-transferase)-Rattus norvegicus IP3K (aa 108-170) fusion protein. Helix-breaking mutations within this isolated segment abolished the F-actin binding properties both in vitro and when over-expressed in cells, indicating that an intact secondary structure is essential for actin targeting. The segment shows sequence similarities to the actin-binding region in IP3K-A, but no similarity to other actin-binding domains.
Collapse
Key Words
- actin-binding domain
- f-actin
- ins(1,4,5)p3 3-kinase b
- subcellular localization
- abd, actin-binding domain
- dtt, dithiothreitol
- ecfp, enhanced cyan fluorescent protein
- egfp, enhanced green fluorescent protein
- er, endoplasmic reticulum
- f-abd, f-actin-binding domain
- gap, gtpase-activating protein
- gst, glutathione s-transferase
- hs, homo sapiens
- ip3k, ins(1,4,5)p3 3-kinase
- nls, nuclear localization sequence
- nrk, normal rat kidney
- 5′-race, rapid amplification of cdna 5′-ends
- rn, rattus norvegicus
- rt-pcr, reverse transcriptase-pcr
- tca, trichloroacetic acid
- wt, wild-type
- l139p, leu139→pro
Collapse
Affiliation(s)
- Maria A. Brehm
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Isabell Schreiber
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| | - Uwe Bertsch
- †Institut für Neuropathologie, Ludwig-Maximilians Universität, Zentrum f. Neuropathologie und Prionforschung, Feodor-Lynen-Strasse 23, München 81377, Germany
| | - Albrecht Wegner
- ‡Institute of Physiological Chemistry, Ruhr University, Universitaetsstr. 150, Bochum 44780, Germany
| | - Georg W. Mayr
- *Institut für Biochemie and Molekularbiologie I: Zelluläre Signaltransduktion, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany
| |
Collapse
|