1
|
Psenicnik A, Ojanguren-Affilastro AA, Graham MR, Hassan MK, Abdel-Rahman MA, Sharma PP, Santibáñez-López CE. Optimizing Scorpion Toxin Processing through Artificial Intelligence. Toxins (Basel) 2024; 16:437. [PMID: 39453213 PMCID: PMC11511117 DOI: 10.3390/toxins16100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Scorpion toxins are relatively short cyclic peptides (<150 amino acids) that can disrupt the opening/closing mechanisms in cell ion channels. These peptides are widely studied for several reasons including their use in drug discovery. Although improvements in RNAseq have greatly expedited the discovery of new scorpion toxins, their annotation remains challenging, mainly due to their small size. Here, we present a new pipeline to annotate toxins from scorpion transcriptomes using a neural network approach. This pipeline implements basic neural networks to sort amino acid sequences to find those that are likely toxins and thereafter predict the type of toxin represented by the sequence. We anticipate that this pipeline will accelerate the classification of scorpion toxins in forthcoming scorpion genome sequencing projects and potentially serve a useful role in identifying targets for drug development.
Collapse
Affiliation(s)
- Adam Psenicnik
- Department of Biology, Western Connecticut State University, Danbury, CT 06810, USA
| | | | - Matthew R. Graham
- Department of Biology, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Mohamed K. Hassan
- Zoology Department, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | | | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
2
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
3
|
Tibery DV, Nunes JAA, da Mata DO, Menezes LFS, de Souza ACB, Fernandes-Pedrosa MDF, Treptow W, Schwartz EF. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins (Basel) 2024; 16:257. [PMID: 38922152 PMCID: PMC11209618 DOI: 10.3390/toxins16060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.
Collapse
Affiliation(s)
- Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - João Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Adolfo Carlos Barros de Souza
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| |
Collapse
|
4
|
Abbas F, Blömer LA, Millet H, Montnach J, De Waard M, Canepari M. Analysis of the effect of the scorpion toxin AaH-II on action potential generation in the axon initial segment. Sci Rep 2024; 14:4967. [PMID: 38424206 PMCID: PMC10904771 DOI: 10.1038/s41598-024-55315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
The toxin AaH-II, from the scorpion Androctonus australis Hector venom, is a 64 amino acid peptide that targets voltage-gated Na+ channels (VGNCs) and slows their inactivation. While at macroscopic cellular level AaH-II prolongs the action potential (AP), a functional analysis of the effect of the toxin in the axon initial segment (AIS), where VGNCs are highly expressed, was never performed so far. Here, we report an original analysis of the effect of AaH-II on the AP generation in the AIS of neocortical layer-5 pyramidal neurons from mouse brain slices. After determining that AaH-II does not discriminate between Nav1.2 and Nav1.6, i.e. between the two VGNC isoforms expressed in this neuron, we established that 7 nM was the smallest toxin concentration producing a minimal detectable deformation of the somatic AP after local delivery of the toxin. Using membrane potential imaging, we found that, at this minimal concentration, AaH-II substantially widened the AP in the AIS. Using ultrafast Na+ imaging, we found that local application of 7 nM AaH-II caused a large increase in the slower component of the Na+ influx in the AIS. Finally, using ultrafast Ca2+ imaging, we observed that 7 nM AaH-II produces a spurious slow Ca2+ influx via Ca2+-permeable VGNCs. Molecules targeting VGNCs, including peptides, are proposed as potential therapeutic tools. Thus, the present analysis in the AIS can be considered a general proof-of-principle on how high-resolution imaging techniques can disclose drug effects that cannot be observed when tested at the macroscopic level.
Collapse
Affiliation(s)
- Fatima Abbas
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Laila Ananda Blömer
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
| | - Hugo Millet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
| | - Jérôme Montnach
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
| | - Michel De Waard
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France
- Nantes Université, CNRS, INSERM, l'institut du Thorax, 44000, Nantes, France
| | - Marco Canepari
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
- Laboratories of Excellence, Ion Channel Science and Therapeutics, 06560, Valbonne, France.
- Institut National de la Santé et Recherche Médicale, Paris, France.
- Laboratoire Interdisciplinaire de Physique (UMR 5588), Bat. E45, 140 Avenue de la Physique, Domaine Univ., 38402, St Martin d'Hères Cedex, France.
| |
Collapse
|
5
|
Pashmforoosh N, Baradaran M. Peptides with Diverse Functions from Scorpion Venom: A Great Opportunity for the Treatment of a Wide Variety of Diseases. IRANIAN BIOMEDICAL JOURNAL 2023; 27:84-99. [PMID: 37070616 PMCID: PMC10314758 DOI: 10.61186/ibj.3863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 12/17/2023]
Abstract
Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran The venom glands are a rich source of biologically important peptides with pharmaceutical properties. Scorpion venoms have been identified as a reservoir for components that might be considered as great candidates for drug development. Pharmacological properties of the venom compounds have been confirmed in the treatment of different disorders. Ion channel blockers and AMPs are the main groups of scorpion venom components. Despite the existence of several studies about scorpion peptides, there are still valuable components to be discovered. Additionally, owing to the improvement of proteomics and transcriptomics, the number of peptide drugs is steadily increasing, which reflects the importance of these medications. This review evaluates available literatures on some important scorpion venom peptides with pharmaceutical activities. Given that the last three years have been dominated by the COVID-19 from the medical/pharmaceutical perspective, scorpion compounds with the potential against the coronavirus 2 (SARS-CoV-2) are discussed in this review.
Collapse
Affiliation(s)
| | - Masoumeh Baradaran
- Corresponding Author: Masoumeh Baradaran Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; E-mail:
| |
Collapse
|
6
|
Cardoso-Arenas S, Clement H, Arenas I, Olvera F, Zamudio F, Caliskan F, Corrales-García LL, Corzo G. Recombinant expression and antigenicity of two peptide families of neurotoxins from Androctonus sp. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20220026. [PMID: 36578820 PMCID: PMC9769139 DOI: 10.1590/1678-9199-jvatitd-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background Scorpion neurotoxins such as those that modify the mammalian voltage-gated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods In the present study, two in silico designed genes - one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 - and another non-native toxin - named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions - were recombinantly expressed in E. coli Origami. Results Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.
Collapse
Affiliation(s)
- Samuel Cardoso-Arenas
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Herlinda Clement
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Iván Arenas
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Felipe Olvera
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Fernando Zamudio
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ligia Luz Corrales-García
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico.,Department of Food Sciences, School of Pharmaceutical and Food Sciences, University of Antioquia (UdeA), Medellín, Colombia
| | - Gerardo Corzo
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico (UNAM), Cuernavaca, Morelos, Mexico.,Correspondence:
| |
Collapse
|
7
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
Brake N, Mancino AS, Yan Y, Shimomura T, Kubo Y, Khadra A, Bowie D. Closed-state inactivation of cardiac, skeletal, and neuronal sodium channels is isoform specific. J Gen Physiol 2022; 154:213242. [PMID: 35612552 PMCID: PMC9136305 DOI: 10.1085/jgp.202112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/07/2023] Open
Abstract
Voltage-gated sodium (Nav) channels produce the upstroke of action potentials in excitable tissues throughout the body. The gating of these channels is determined by the asynchronous movements of four voltage-sensing domains (VSDs). Past studies on the skeletal muscle Nav1.4 channel have indicated that VSD-I, -II, and -III are sufficient for pore opening, whereas VSD-IV movement is sufficient for channel inactivation. Here, we studied the cardiac sodium channel, Nav1.5, using charge-neutralizing mutations and voltage-clamp fluorometry. Our results reveal that both VSD-III and -IV are necessary for Nav1.5 inactivation, and that steady-state inactivation can be modulated by all VSDs. We also demonstrate that channel activation is partially determined by VSD-IV movement. Kinetic modeling suggests that these observations can be explained from the cardiac channel's propensity to enter closed-state inactivation (CSI), which is significantly higher than that of other Nav channels. We show that skeletal muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.6 all have different propensities for CSI and postulate that these differences produce isoform-dependent roles for the four VSDs.
Collapse
Affiliation(s)
- Niklas Brake
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Adamo S. Mancino
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Yuhao Yan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan,Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada,Correspondence to Derek Bowie:
| |
Collapse
|
9
|
Maatoug S, Cheikh A, Khamessi O, Tabka H, Landoulsi Z, Guigonis JM, Diochot S, Bendahhou S, Benkhalifa R. Cross Pharmacological, Biochemical and Computational Studies of a Human Kv3.1b Inhibitor from Androctonus australis Venom. Int J Mol Sci 2021; 22:ijms222212290. [PMID: 34830172 PMCID: PMC8618407 DOI: 10.3390/ijms222212290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.
Collapse
Affiliation(s)
- Sonia Maatoug
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| | - Amani Cheikh
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Oussema Khamessi
- Laboratoire des Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia;
| | - Hager Tabka
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Faculté des Sciences de Bizerte, Université de Carthage, Bizerte 7021, Tunisia
| | - Zied Landoulsi
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
| | - Jean-Marie Guigonis
- Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des Sciences du Vivant Fréderic Joliot, Commissariat à l′Energie Atomique et aux Énergies Alternatives (CEA), Université Côte d’Azur, F-06107 Nice, France;
| | - Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France;
| | - Saïd Bendahhou
- UMR7370 CNRS, LP2M, Université Côte d’Azur, Labex ICST, Nice, France;
| | - Rym Benkhalifa
- Laboratoire Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur BP74, Tunis 1002, Tunisia; (A.C.); (H.T.); (Z.L.)
- Correspondence: (S.M.); (R.B.); Tel.: +216-98-81-27-32 (R.B.)
| |
Collapse
|
10
|
Li YL, Qu Q, Qi YK, Liu L, Wang KW, Liu Y, Fang GM. Comparison of different strategies towards the chemical synthesis of long-chain scorpion toxin AaH-II. J Pept Sci 2021; 28:e3365. [PMID: 34467600 DOI: 10.1002/psc.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022]
Abstract
Long-chain scorpion toxin AaH-II isolated from Androctonus australis Hector can selectively inhibit mammalian voltage-gated sodium ion channel Nav 1.7 responsible for pain sensation. Efficient chemical synthesis of AaH-II and its derivatives is beneficial to the study of the function and mechanism of Nav 1.7 and the development of potential peptide inhibitors. Herein, we compared three different strategies, namely, direct solid-phase peptide synthesis, hydrazide-based two-segment native chemical ligation, and hydrazide-based three-segment native chemical ligation for the synthesis of AaH-II. The hydrazide-based two-segment native chemical ligation affords the target toxin with the optimal efficiency, which provides a practically robust procedure for the preparation of tool molecules derived from AaH-II to study the biological functions and modulation of Nav 1.7. Our work highlights the importance of selecting suitable segment condensation approach in the chemical synthesis of protein toxins.
Collapse
Affiliation(s)
- Yu-Lei Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yun-Kun Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Ke Wei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ge-Min Fang
- Department of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
11
|
Bayatzadeh MA, Zare Mirakabadi A, Babaei N, Doulah A, Doosti A. Expression and purification of recombinant alpha-toxin AnCra1 from the scorpion Androctonus crassicauda and its functional characterization on mammalian sodium channels. Mol Biol Rep 2021; 48:6303-6312. [PMID: 34379289 DOI: 10.1007/s11033-021-06624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alpha-scorpion toxins with long-chain peptide and four disulfide bonds represent diverse pharmacological profiles for various subtypes of voltage-gated sodium channels. Obtaining the natural toxins are difficult and time-consuming process, which represents the major difficulty to interpreting analysis of their structural and functional properties. METHODS AND RESULTS This study describes the toxin peptide and plasmid construct containing the gene coding for mammalian toxin AnCra1 from the scorpion Androctonus crassicauda venom. We have established genetic construction of fusion protein in pET32a + vector containing thioredoxin (Trx-tag), enterokinase cleavage site and 6xhistidine-tag for efficient expression in Escherichia coli strain RG2 (DE3). The soluble expressed peptide, then purified by Ni-NTA resin affinity chromatography and its purity was confirmed by reverse-phase HPLC and mass spectrometry (7433.54 Da.). The electrophysiological data showed that recombinant AnCra1 selectively inhibits the fast inactivation of hNav1.7 channel (EC50 = 136.7 ± 6.6 nM). CONCLUSIONS Our findings demonstrate that the AnCra1 is structurally and functionally analogous to alpha excitatory toxins; furthermore, expression and purification of bioactive scorpion toxins in bacterial cells can be a practicable and efficient way to obtain a novel source of toxin peptides as tools to study the function and physiological responses of ion channels.
Collapse
Affiliation(s)
- Mohammad Ali Bayatzadeh
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Abbas Zare Mirakabadi
- Venomous Animals and Antivenom Production Department, Razi Vaccine and Serum Research Institute, Agricultural Research- Education and Extension Organization, Hesarak, Karaj, Alborz, Iran.
| | - Nahid Babaei
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Abdolhassan Doulah
- Department of Nursing, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
12
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:science.aav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.,Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
13
|
Abstract
Voltage-gated sodium channels (VGSCs) are critical in generation and conduction of electrical signals in multiple excitable tissues. Natural toxins, produced by animal, plant, and microorganisms, target VGSCs through diverse strategies developed over millions of years of evolutions. Studying of the diverse interaction between VGSC and VGSC-targeting toxins has been contributing to the increasing understanding of molecular structure and function, pharmacology, and drug development potential of VGSCs. This chapter aims to summarize some of the current views on the VGSC-toxin interaction based on the established receptor sites of VGSC for natural toxins.
Collapse
Affiliation(s)
- Yonghua Ji
- Laboratory of Neuropharmacology and Neurotoxicology, Shanghai University, Shanghai, China.
| |
Collapse
|
14
|
Emerich BL, De Lima ME, Martin-Eauclaire MF, Bougis PE. Comparative analyses and implications for antivenom serotherapy of four Moroccan scorpion Buthus occitanus venoms: Subspecies tunetanus, paris, malhommei, and mardochei. Toxicon 2017; 149:26-36. [PMID: 28712915 DOI: 10.1016/j.toxicon.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023]
Abstract
Temporary passive immunity such as serotherapy against venoms requires the full knowledge of all venom's components. Here, four venoms from Moroccan common yellow scorpions belonging to Buthus occitanus, subspecies tunetanus, paris, malhommei, and mardochei, all collected in four different restricted areas, were analysed in deep. They were fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and their molecular masse profile determined by off-line MALDI-TOF mass spectrometry. Characterisation of their main components was achieved by enzyme-linked immunosorbent assay (ELISA) using specific antisera against the major lethal scorpion toxins identified so far, i.e. voltage-gated sodium channels (Nav) modulators α- and β-toxins, as well as diverse potassium channel pore blocker toxins. For fractions with identical RP-HPLC retention times, we observe that their relative quantities show large differences. Moreover, identical masses present simultaneously in the four venoms are infrequent. ELISAs show that the majority of the RP-HPLC compounds cross-react with the antiserum against the "α-like" toxin Bot I, which has been previously identified in the Algerian Buthus occitanus tunetanus venom. Moreover, minor fractions were recognised by the antiserum against the highly lethal "classical" α-toxin of reference AaH II from the Androctonus australis venom. As such, our results bring new sights for further improving scorpion venom serotherapy in Morocco.
Collapse
Affiliation(s)
- Bruna Luiza Emerich
- Aix Marseille Université, CNRS, CRN2M UMR7286, 13344, Marseille, France; Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo-Horizonte, MG, Brazil
| | - Maria Elena De Lima
- Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo-Horizonte, MG, Brazil
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, CRN2M UMR7286, 13344, Marseille, France.
| |
Collapse
|
15
|
Housley DM, Housley GD, Liddell MJ, Jennings EA. Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology 2016; 127:46-78. [PMID: 27729239 DOI: 10.1016/j.neuropharm.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
This review categorizes functionally validated actions of defined scorpion toxin (SCTX) neuropeptides across ion channel subclasses, highlighting key trends in this rapidly evolving field. Scorpion envenomation is a common event in many tropical and subtropical countries, with neuropharmacological actions, particularly autonomic nervous system modulation, causing significant mortality. The primary active agents within scorpion venoms are a diverse group of small neuropeptides that elicit specific potent actions across a wide range of ion channel classes. The identification and functional characterisation of these SCTX peptides has tremendous potential for development of novel pharmaceuticals that advance knowledge of ion channels and establish lead compounds for treatment of excitable tissue disorders. This review delineates the unique specificities of 320 individual SCTX peptides that collectively act on 41 ion channel subclasses. Thus the SCTX research field has significant translational implications for pathophysiology spanning neurotransmission, neurohumoral signalling, sensori-motor systems and excitation-contraction coupling. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- David M Housley
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Michael J Liddell
- Centre for Tropical Environmental and Sustainability Science and College of Science & Engineering, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia
| | - Ernest A Jennings
- College of Medicine and Dentistry, Cairns Campus, James Cook University, Cairns, Queensland 4878, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Queensland 4878, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Cairns Campus, QLD, Australia
| |
Collapse
|
16
|
Ardisson-Araújo DMP, Lima RN, Melo FL, Clem RJ, Huang N, Báo SN, Sosa-Gómez DR, Ribeiro BM. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae. Sci Rep 2016; 6:24612. [PMID: 27273152 PMCID: PMC4895240 DOI: 10.1038/srep24612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/01/2016] [Indexed: 12/19/2022] Open
Abstract
The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation.
Collapse
Affiliation(s)
- Daniel M P Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Rayane Nunes Lima
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Fernando L Melo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ning Huang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sônia Nair Báo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | | | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
17
|
Camargos TS, Bosmans F, Rego SC, Mourão CBF, Schwartz EF. The Scorpion Toxin Tf2 from Tityus fasciolatus Promotes Nav1.3 Opening. PLoS One 2015; 10:e0128578. [PMID: 26083731 PMCID: PMC4470819 DOI: 10.1371/journal.pone.0128578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
We identified Tf2, the first β-scorpion toxin from the venom of the Brazilian scorpion Tityus fasciolatus. Tf2 is identical to Tb2-II found in Tityus bahiensis. We found that Tf2 selectively activates human (h)Nav1.3, a neuronal voltage-gated sodium (Nav) subtype implicated in epilepsy and nociception. Tf2 shifts hNav1.3 activation voltage to more negative values, thereby opening the channel at resting membrane potentials. Seven other tested mammalian Nav channels (Nav1.1-1.2; Nav1.4-1.8) expressed in Xenopus oocytes are insensitive upon application of 1 μM Tf2. Therefore, the identification of Tf2 represents a unique addition to the repertoire of animal toxins that can be used to investigate Nav channel function.
Collapse
Affiliation(s)
- Thalita S. Camargos
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University—School of Medicine, Baltimore, MD, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University—School of Medicine, Baltimore, MD, United States of America
| | - Solange C. Rego
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Caroline B. F. Mourão
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Elisabeth F. Schwartz
- Departamento de Ciências Fisiológicas, Laboratório de Toxinologia, Universidade de Brasília, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
18
|
Wheat germ in vitro translation to produce one of the most toxic sodium channel specific toxins. Biosci Rep 2014; 34:BSR20140050. [PMID: 24924257 PMCID: PMC4114062 DOI: 10.1042/bsr20140050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Envenoming following scorpion sting is a common emergency in many parts of the world. During scorpion envenoming, highly toxic small polypeptides of the venom diffuse rapidly within the victim causing serious medical problems. The exploration of toxin structure-function relationship would benefit from the generation of soluble recombinant scorpion toxins in Escherichia coli. We developed an in vitro wheat germ translation system for the expression of the highly toxic Aah (Androctonus australis hector)II protein that requires the proper formation of four disulphide bonds. Soluble, recombinant N-terminal GST (glutathione S-transferase)-tagged AahII toxin is obtained in this in vitro translation system. After proteolytic removal of the GST-tag, purified rAahII (recombinant AahII) toxin, which contains two extra amino acids at its N terminal relative to the native AahII, is highly toxic after i.c.v. (intracerebroventricular) injection in Swiss mice. An LD50 (median lethal dose)-value of 10 ng (or 1.33 pmol), close to that of the native toxin (LD50 of 3 ng) indicates that the wheat germ in vitro translation system produces properly folded and biological active rAahII. In addition, NbAahII10 (Androctonus australis hector nanobody 10), a camel single domain antibody fragment, raised against the native AahII toxin, recognizes its cognate conformational epitope on the recombinant toxin and neutralizes the toxicity of purified rAahII upon injection in mice. A wheat germ embryo derived cell-free translation system expresses a biologically active, highly toxic scorpion venom protein that is fully neutralized by a camel single domain antibody fragment raised against the native scorpion toxin.
Collapse
|
19
|
Ardisson-Araújo DMP, Morgado FDS, Schwartz EF, Corzo G, Ribeiro BM. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. PLoS One 2013; 8:e84404. [PMID: 24349574 PMCID: PMC3862797 DOI: 10.1371/journal.pone.0084404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/20/2013] [Indexed: 11/22/2022] Open
Abstract
Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3) has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV) expression. Five different forms of Ba3 were assessed; (1) the full-length sequence, (2) the pro-peptide and mature region, (3) only the mature region, and the mature region fused to an (4) insect or a (5) virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect cells.
Collapse
Affiliation(s)
| | | | | | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Bergmann Morais Ribeiro
- Departmento de Biologia Celular, Universidade de Brasília, Brasília, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|
20
|
Abbas N, Gaudioso-Tyzra C, Bonnet C, Gabriac M, Amsalem M, Lonigro A, Padilla F, Crest M, Martin-Eauclaire MF, Delmas P. The scorpion toxin Amm VIII induces pain hypersensitivity through gain-of-function of TTX-sensitive Na+ channels. Pain 2013; 154:1204-15. [DOI: 10.1016/j.pain.2013.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 02/27/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
21
|
Durek T, Vetter I, Wang CIA, Motin L, Knapp O, Adams DJ, Lewis RJ, Alewood PF. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1. ACS Chem Biol 2013; 8:1215-22. [PMID: 23527544 DOI: 10.1021/cb400012k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.
Collapse
Affiliation(s)
- Thomas Durek
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Irina Vetter
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Ching-I Anderson Wang
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Leonid Motin
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Oliver Knapp
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - David J. Adams
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Richard J. Lewis
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Paul F. Alewood
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| |
Collapse
|
22
|
Fabrichny IP, Mondielli G, Conrod S, Martin-Eauclaire MF, Bourne Y, Marchot P. Structural insights into antibody sequestering and neutralizing of Na+ channel α-type modulator from old world scorpion venom. J Biol Chem 2012; 287:14136-48. [PMID: 22371498 DOI: 10.1074/jbc.m111.315382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Old World scorpion Androctonus australis hector (Aah) produces one of the most lethal venoms for humans. Peptidic α-toxins AahI to AahIV are responsible for its potency, with AahII accounting for half of it. All four toxins are high affinity blockers of the fast inactivation phase of mammalian voltage-activated Na(+) channels. However, the high antigenic polymorphism of α-toxins prevents production of a polyvalent neutralizing antiserum, whereas the determinants dictating their trapping by neutralizing antibodies remain elusive. From an anti-AahII mAb, we generated an antigen binding fragment (Fab) with high affinity and selectivity for AahII and solved a 2.3 Å-resolution crystal structure of the complex. Sequestering of the C-terminal region of the bound toxin within a groove formed by the Fab combining loops is associated with a toxin orientation and main and side chain conformations that dictate the AahII antigenic specificity and efficient neutralization. From an anti-AahI mAb, we also preformed and crystallized a high affinity AahI-Fab complex. The 1.6 Å-resolution structure solved revealed a Fab molecule devoid of a bound AahI and with combining loops involved in packing interactions, denoting expulsion of the bound antigen upon crystal formation. Comparative analysis of the groove-like combining site of the toxin-bound anti-AahII Fab and planar combining surface of the unbound anti-AahI Fab along with complementary data from a flexible docking approach suggests occurrence of distinctive trapping orientations for the two toxins relative to their respective Fab. This study provides complementary templates for designing new molecules aimed at capturing Aah α-toxins and suitable for immunotherapy.
Collapse
Affiliation(s)
- Igor P Fabrichny
- Faculté de Médecine Secteur Nord, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, CRN2M, CNRS/Aix-Marseille Université UMR-6231, Institut Fédératif de Recherche Jean Roche, CS80011, F-13344 Marseille cedex 15, France
| | | | | | | | | | | |
Collapse
|
23
|
Raouraoua-Boukari R, Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation 2012; 19:103-10. [PMID: 22248726 DOI: 10.1159/000330241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/03/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Androctonus australis hector (Aah) is the most dangerous scorpion in the Maghreb countries. Its venom contains three major neurotoxins (Aah I, Aah II and Aah III), which are responsible for almost all the lethal effects caused in mammals. These toxins act on the voltage-gated sodium channels of excitable cells. The targets and the lethal effects of these toxins have been extensively studied. However, their effects on the induced immune response after envenoming have not deeply elicited. We therefore investigated the effects induced by Aah venom and its toxic components, mainly its main toxin Aah II, on the activation of the inflammatory process. METHODS Wistar rats were injected by intraperitoneal route with a sublethal dose of Aah venom, FTox-G50, the purified Aah II toxin or with 400 μl of sterile physiological saline solution. Immunological biomarkers such as MPO, NO and ICAM-1 were analyzed in serum in lung tissue. Cytokine levels were also determined in serum at 3, 6 and 24 h after envenoming. RESULTS We report in this study that intraperitoneal injection of the venom or its toxins (the whole toxic fraction or Aah II toxin) caused an inflammatory reaction involving increased neutrophil release into blood and neutrophil accumulation in lung tissue. This cell infiltration was associated with the release of NO, histamine, cytokines (IL-1, IL-6, IL-12, IL-4 and IL-5) and ICAM. CONCLUSION Aah II binding to its targets, in this case Na⁺ channels, may induce a cascade of events such as inflammatory mediator release and neutrophil migration that could contribute to the exacerbation of the systemic inflammatory response and the development of lung injury following scorpion envenoming.
Collapse
Affiliation(s)
- Ryma Raouraoua-Boukari
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie «Houari Boumédienne», Alger, Algérie
| | | | | | | | | |
Collapse
|
24
|
Gaudioso C, Hao J, Martin-Eauclaire MF, Gabriac M, Delmas P. Menthol pain relief through cumulative inactivation of voltage-gated sodium channels. Pain 2011; 153:473-484. [PMID: 22172548 DOI: 10.1016/j.pain.2011.11.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/19/2011] [Accepted: 11/14/2011] [Indexed: 01/02/2023]
Abstract
Menthol is a natural compound of plant origin known to produce cool sensation via the activation of the TRPM8 channel. It is also frequently part of topical analgesic drugs available in a pharmacy, although its mechanism of action is still unknown. Compelling evidence indicates that voltage-gated Na(+) channels are critical for experiencing pain sensation. We tested the hypothesis that menthol may block voltage-gated Na(+) channels in dorsal root ganglion (DRG) neurons. By use of a patch clamp, we evaluated the effects of menthol application on tetrodotoxin (TTX)-resistant Nav1.8 and Nav1.9 channel subtypes in DRG neurons, and on TTX-sensitive Na(+) channels in immortalized DRG neuron-derived F11 cells. The results indicate that menthol inhibits Na(+) channels in a concentration-, voltage-, and frequency-dependent manner. Menthol promoted fast and slow inactivation states, causing use-dependent depression of Na(+) channel activity. In current clamp recordings, menthol inhibited firing at high-frequency stimulation with minimal effects on normal neuronal activity. We found that low concentrations of menthol cause analgesia in mice, relieving pain produced by a Na(+) channel-targeting toxin. We conclude that menthol is a state-selective blocker of Nav1.8, Nav1.9, and TTX-sensitive Na(+) channels, indicating a role for Na(+) channel blockade in the efficacy of menthol as topical analgesic compound.
Collapse
Affiliation(s)
- Christelle Gaudioso
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université, UMR 6231, CNRS, CS80011, Bd Pierre Dramard, 13344 Marseille Cedex 15, France
| | | | | | | | | |
Collapse
|
25
|
Wang RL, Yi S, Liang SP. Mechanism of action of two insect toxins huwentoxin-III and hainantoxin-VI on voltage-gated sodium channels. J Zhejiang Univ Sci B 2010; 11:451-7. [PMID: 20506577 DOI: 10.1631/jzus.b0900393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenocosmia huwena and Selenocosmia hainana are two tarantula species found in southern China. Their venoms contain abundant peptide toxins. Two new neurotoxic peptides, huwentoxin-III (HWTX-III) and hainantoxin-VI (HNTX-VI), were obtained from the venom using ion-exchange chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The mechanism of action of HWTX-III and HNTX-VI on insect neuronal voltage-gated sodium channels (VGSCs) was studied via whole-cell patch clamp techniques. In a fashion similar to delta-atracotoxins, HNTX-VI can induce a slowdown of current inactivation of the VGSC and reduction in the peak of Na+ current in cockroach dorsal unpaired median (DUM) neurons. Meanwhile, 10 micromol/L HNTX-IV caused a positive shift of steady-state inactivation of sodium channel. HWTX-III inhibited VGSCs on DUM neurons (concentration of toxin at half-maximal inhibition (IC(50)) approximately 1.106 micromol/L) in a way much similar to tetrodotoxin (TTX). HWTX-III had no effect on the kinetics of activation and inactivation. The shift in the steady-state inactivation curve was distinct from other depressant spider toxins. The diverse effect and the mechanism of action of the two insect toxins illustrate the diverse biological activities of spider toxins and provide a fresh theoretical foundation to design and develop novel insecticides.
Collapse
Affiliation(s)
- Rui-lan Wang
- Department of Food Science, Guangdong Food and Drug Vocational College, Guangzhou 510520, China.
| | | | | |
Collapse
|
26
|
Martin-Eauclaire MF, Abbas N, Sauze N, Mercier L, Berge-Lefranc JL, Condo J, Bougis PE, Guieu R. Involvement of endogenous opioid system in scorpion toxin-induced antinociception in mice. Neurosci Lett 2010; 482:45-50. [DOI: 10.1016/j.neulet.2010.06.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/11/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
27
|
Solution structure of BmKαTx11, a toxin from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem Biophys Res Commun 2010; 391:627-33. [DOI: 10.1016/j.bbrc.2009.11.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022]
|
28
|
Alvarenga L, Moreau V, Felicori L, Nguyen C, Duarte C, Chavez-Olortegui C, Molina F, Martin-Eauclaire MF, Granier C. Design of antibody-reactive peptides from discontinuous parts of scorpion toxins. Vaccine 2010; 28:970-80. [DOI: 10.1016/j.vaccine.2009.10.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
29
|
Weinberger H, Moran Y, Gordon D, Turkov M, Kahn R, Gurevitz M. Positions under Positive Selection--Key for Selectivity and Potency of Scorpion -Toxins. Mol Biol Evol 2009; 27:1025-34. [DOI: 10.1093/molbev/msp310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Full characterization of three toxins from the Androctonus amoreuxi scorpion venom. Toxicon 2009; 54:460-70. [DOI: 10.1016/j.toxicon.2009.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 05/05/2009] [Accepted: 05/16/2009] [Indexed: 12/19/2022]
|
31
|
Kahn R, Karbat I, Ilan N, Cohen L, Sokolov S, Catterall WA, Gordon D, Gurevitz M. Molecular requirements for recognition of brain voltage-gated sodium channels by scorpion alpha-toxins. J Biol Chem 2009; 284:20684-91. [PMID: 19509294 DOI: 10.1074/jbc.m109.021303] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scorpion alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Na(v)s) and is inactive at insect Na(v)s. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain channel rNa(v)1.2a were identified by mutagenesis. These residues form a bipartite functional surface made of a conserved "core domain" (residues of the loops connecting the secondary structure elements of the molecule core), and a variable "NC domain" (five-residue turn and the C-tail) as was reported for other scorpion alpha-toxins. 2) The functional role of the two domains was validated by their stepwise construction on the similar scaffold of the anti-insect toxin LqhalphaIT. Analysis of the activity of the intermediate constructs highlighted the critical role of Phe(15) of the core domain in toxin potency at rNa(v)1.2a, and has suggested that the shape of the NC-domain is important for toxin efficacy. 3) Based on these findings and by comparison with other scorpion alpha-toxins we were able to eliminate the activity of Lqh2 at rNa(v)1.4 (skeletal muscle), hNa(v)1.5 (cardiac), and rNa(v)1.6 channels, with no hindrance of its activity at Na(v)1.1-1.3. These results suggest that by employing a similar approach the design of further target-selective sodium channel modifiers is imminent.
Collapse
Affiliation(s)
- Roy Kahn
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang M, Liu Q, Luo H, Li J, Tang J, Xiao Y, Liang S. Jingzhaotoxin-II, a novel tarantula toxin preferentially targets rat cardiac sodium channel. Biochem Pharmacol 2008; 76:1716-27. [DOI: 10.1016/j.bcp.2008.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/26/2022]
|
33
|
Sami-Merah S, Hammoudi-Triki D, Martin-Eauclaire MF, Laraba-Djebari F. Combination of two antibody fragments F(ab′)2/Fab: An alternative for scorpion envenoming treatment. Int Immunopharmacol 2008; 8:1386-94. [DOI: 10.1016/j.intimp.2008.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 11/26/2022]
|
34
|
New analysis of the toxic compounds from the Androctonus mauretanicus mauretanicus scorpion venom. Toxicon 2008; 51:835-52. [DOI: 10.1016/j.toxicon.2007.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 12/10/2007] [Accepted: 12/14/2007] [Indexed: 11/23/2022]
|
35
|
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stühmer W, Tytgat J, Gurevitz M. The differential preference of scorpion α-toxins for insect or mammalian sodium channels: Implications for improved insect control. Toxicon 2007; 49:452-72. [PMID: 17215013 DOI: 10.1016/j.toxicon.2006.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Receptor site-3 on voltage-gated sodium channels is targeted by a variety of structurally distinct toxins from scorpions, sea anemones, and spiders whose typical action is the inhibition of sodium current inactivation. This site interacts allosterically with other topologically distinct receptors that bind alkaloids, lipophilic polyether toxins, pyrethroids, and site-4 scorpion toxins. These features suggest that design of insecticides with specificity for site-3 might be rewarding due to the positive cooperativity with other toxins or insecticidal agents. Yet, despite the central role of scorpion alpha-toxins in envenomation and their vast use in the study of channel functions, molecular details on site-3 are scarce. Scorpion alpha-toxins vary greatly in preference for sodium channels of insects and mammals, and some of them are highly active on insects. This implies that despite its commonality, receptor site-3 varies on insect vs. mammalian channels, and that elucidation of these differences could potentially be exploited for manipulation of toxin preference. This review provides current perspectives on (i) the classification of scorpion alpha-toxins, (ii) their mode of interaction with sodium channels and pharmacological divergence, (iii) molecular details on their bioactive surfaces and differences associated with preference for channel subtypes, as well as (iv) a summary of the present knowledge about elements involved in constituting receptor site-3. These details, combined with the variations in allosteric interactions between site-3 and the other receptor sites on insect and mammalian sodium channels, may be useful in new strategies of insect control and future design of anti-insect selective ligands.
Collapse
Affiliation(s)
- Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Voltage-gated Na(+) channels are integral membrane proteins that function as a gateway for a selective permeation of sodium ions across biological membranes. In this way, they are crucial players for the generation of action potentials in excitable cells. Voltage-gated Na(+) channels are encoded by at least nine genes in mammals. The different isoforms have remarkably similar functional properties, but small changes in function and pharmacology are biologically well-defined, as underscored by mutations that cause several diseases and by modulation of a myriad of compounds, respectively. This review will stress on the modulation of voltage-gated Na(+) channels by scorpion alpha-toxins. Nature has designed these two classes of molecules as if they were predestined to each other: an inevitable 'encounter' between a voltage-gated Na(+) channel isoform and an alpha-toxin from scorpion venom indeed results in a dramatically changed Na(+) current phenotype with clear-cut consequences on electrical excitability and sometimes life or death. This fascinating aspect justifies an overview on scorpion venoms, their alpha-toxins and the Na(+) channel targets they are built for, as well as on the molecular determinants that govern the selectivity and affinity of this 'inseparable duo'.
Collapse
Affiliation(s)
- Frank Bosmans
- Laboratory of Toxicology, University of Leuven, O and N 2, Postbus 922, Herestraat 49, 3000 Leuven, Belgium
| | | |
Collapse
|
37
|
Alami M, Céard B, Legros C, Bougis PE, Martin-Eauclaire MF. Genomic characterisation of the toxin Amm VIII from the scorpion Androctonus mauretanicus mauretanicus. Toxicon 2006; 47:531-6. [PMID: 16533515 DOI: 10.1016/j.toxicon.2006.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 12/28/2005] [Accepted: 01/06/2006] [Indexed: 11/20/2022]
Abstract
The genomic DNA sequence encoding the scorpion toxin Amm VIII was amplified from genomic DNA of the scorpion Androctonus mauretanicus mauretanicus from Morocco, subcloned and sequenced. An intron, with a high A+T content (73.5%), split a Gly codon at the end of the precursor signal peptide and the consensus GT/AG splice junction was identified in the Amm VIII gene. This intron of only 166 bp is the smallest intron described so far for a long-chain scorpion toxin gene. In addition, this study led to the identification of three new toxin-related genes. From the deduced amino acid sequences of the encoded precursor proteins, we found that the mature putative toxins were highly similar to the scorpion toxins Leiurus quinquestriatus quinquestriatus IV and Odonthobuthus doriae 1.
Collapse
Affiliation(s)
- Meriem Alami
- Institut Pasteur du Maroc, 1 Rue Abou Kacem Ezzahroui, Casablanca, Morocco
| | | | | | | | | |
Collapse
|
38
|
Martin-Eauclaire MF, Alami M, Giamarchi A, Missimilli V, Rosso JP, Bougis PE. A natural anatoxin, Amm VIII, induces neutralizing antibodies against the potent scorpion alpha-toxins. Vaccine 2006; 24:1990-6. [PMID: 16325311 DOI: 10.1016/j.vaccine.2005.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 10/07/2005] [Accepted: 11/10/2005] [Indexed: 11/19/2022]
Abstract
In this study, we have used Amm VIII, a natural anatoxin from the scorpion Androctonus mauretanicus mauretanicus, to elicit specific polyclonal antibodies in rabbit. Using liquid-phase radioimmunoassay, we have studied its selectivity and its neutralizing activity both in vitro and in vivo for the most lethal scorpion alpha-toxins described, in particular the alpha-toxin of reference AaH II. We have shown that the anti-Amm VIII serum prevents the association of 125I-AaH II with its receptor and is able to remove 125I-AaH II already bound to its site (the half-life of the complex 125I-AaH II-receptor site was 12 min in the absence of anti-Amm VIII serum but decreased to only 2 min in the presence of anti-Amm VIII serum). In vivo, the serum also has a protective effect in mice: 42 LD50 of AaH II by millilitre are neutralized, measured by subcutaneous injection.
Collapse
Affiliation(s)
- M-F Martin-Eauclaire
- CNRS FRE 2738, IFR Jean-Roche, Université de la Méditerranée, Faculté de Médecine Secteur Nord, Bd Pierre Dramard, 13916 Marseille, Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
39
|
Ali SA, Wang B, Alam M, Beck A, Stoeva S, Voelter W, Abbasi A, Duszenko M. Structure-activity relationship of an alpha-toxin Bs-Tx28 from scorpion (Buthus sindicus) venom suggests a new alpha-toxin subfamily. Arch Biochem Biophys 2005; 445:81-94. [PMID: 16309623 DOI: 10.1016/j.abb.2005.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
Scorpion venoms are among the most widely known source of peptidyl neurotoxins used for callipering different ion channels, e.g., for Na(+), K(+), Ca(+) or Cl(-). An alpha-toxin (Bs-Tx28) has been purified from the venom of scorpion Buthus sindicus, a common yellow scorpion of Sindh, Pakistan. The primary structure of Bs-Tx28 was established using a combination of MALDI-TOF-MS, LC-ESI-MS, and automated Edman degradation analysis. Bs-Tx28 consists of 65 amino acid residues (7274.3+/-2Da), including eight cysteine residues, and shows very high sequence identity (82-94%) with other long-chain alpha-neurotoxins, active against receptor site-3 of mammalian (e.g., Lqq-IV and Lqh-IV from scorpions Leiurus sp.) and insect (e.g., BJalpha-IT and Od-1 from Buthotus judaicus and Odonthobuthus doriae, respectively) voltage-gated Na(+) channels. Multiple sequence alignment and phylogenetic analysis of Bs-Tx28 with other known alpha- and alpha-like toxins suggests the presence of a new and separate subfamily of scorpion alpha-toxins. Bs-Tx28 which is weakly active in both, mammals and insects (LD(50) 0.088 and 14.3microg/g, respectively), shows strong induction of the rat afferent nerve discharge in a dose-dependent fashion (EC(50)=0.01microg/mL) which was completely abolished in the presence of tetrodotoxin suggesting the binding of Bs-Tx28 to the TTX-sensitive Na(+)-channel. Three-dimensional structural features of Bs-Tx28, established by homology modeling, were compared with other known classical alpha-mammal (AaH-II), alpha-insect (Lqh-alphaIT), and alpha-like (BmK-M4) toxins and revealed subtle variations in the Nt-, Core-, and RT-CT-domains (functional domains) which constitute a "necklace-like" structure differing significantly in all alpha-toxin subfamilies. On the other hand, a high level of conservation has been observed in the conserved hydrophobic surface with the only substitution of W43 (Y43/42) and an additional hydrophobic character at position F40 (L40/A/V/G39), as compared to the other mentioned alpha-toxins. Despite major differences within the primary structure and activities of Bs-Tx28, it shares a common structural and functional motif (e.g., transRT-farCT) within the RT-CT domain which is characteristic of scorpion alpha-mammal toxins.
Collapse
Affiliation(s)
- Syed Abid Ali
- International Center for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Martin-Eauclaire MF, Ceard B, Bosmans F, Rosso JP, Tytgat J, Bougis PE. New “Birtoxin analogs” from Androctonus australis venom. Biochem Biophys Res Commun 2005; 333:524-30. [PMID: 15963953 DOI: 10.1016/j.bbrc.2005.05.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 05/23/2005] [Indexed: 11/16/2022]
Abstract
From the venom of the scorpion Androctonus australis, we have isolated a new bioactive polypeptide termed AaBTX-L1. When tested on the insect voltage-gated Na(+) channel (para) of the fruit fly, this toxin was able to induce a clear shift in activation (V(1/2)), resulting in the opening of the channel at more negative membrane potentials. Furthermore, AaBTX-L1 was totally devoid of toxicity when injected into mice intracerebroventricularly and did not compete with radiolabeled voltage-gated K(+) and Na(+) channel toxins in binding experiments on rat brain synaptosomes. Using its N-terminal amino acid sequence to design degenerate primers, several clones were amplified by PCR from the A. australis venom gland cDNA library. As a consequence, seven full oligonucleotide sequences encoding "long-chain" polypeptides with only three disulfide bridges have been cloned for the first time and are described here. Remarkably, they share high similarity with the anti-insect toxin Birtoxin from Parabuthus transvaalicus.
Collapse
Affiliation(s)
- Marie-France Martin-Eauclaire
- CNRS FRE 2738, Ingénierie des Protéines, Faculté de Médecine secteur Nord, Institut Jean Roche, Université de la Méditerranée, Bd Pierre Dramard, 13916 Marseille 20, France.
| | | | | | | | | | | |
Collapse
|
41
|
Legros C, Céard B, Vacher H, Marchot P, Bougis PE, Martin-Eauclaire MF. Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochim Biophys Acta Gen Subj 2005; 1723:91-9. [PMID: 15725394 DOI: 10.1016/j.bbagen.2005.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The AaH II toxin from the scorpion Androctonus australis Hector is considered to be the standard alpha-toxin because it selectively binds with the highest known affinity to site 3 of mammalian voltage-activated Na+ channels (Na(v)) on rat brain synaptosomes but does not bind to insect synaptosomes. We generated two different constructs in pMALp allowing us to produce AaH II fused with the maltose-binding protein (MBP) in E. coli. We obtained reasonable amounts of recombinant AaH II after cleavage by enterokinase at the site DDDDK. We show that the introduction of a net negative charge at the C-terminus by the suppression of H64 amidation and the addition of an extra residue to the C-terminus (G65) led to fully active AaH II mutants, exhibiting exactly the same affinity as the native toxin for its target on rat brain synaptosomes. In contrast, the mutation of residue K58 into V, I or E residues drastically reduced toxin activity.
Collapse
Affiliation(s)
- Christian Legros
- Ingénierie des Protéines CNRS FRE 2738, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Secteur Nord, Université de la Méditerranée, Bd Pierre Dramard, 13916, Marseille, cedex 20, France
| | | | | | | | | | | |
Collapse
|
42
|
Xiao Y, Tang J, Yang Y, Wang M, Hu W, Xie J, Zeng X, Liang S. Jingzhaotoxin-III, a novel spider toxin inhibiting activation of voltage-gated sodium channel in rat cardiac myocytes. J Biol Chem 2004; 279:26220-6. [PMID: 15084603 DOI: 10.1074/jbc.m401387200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a cardiotoxin, denoted jingzhaotoxin-III (JZTX-III), from the venom of the Chinese spider Chilobrachys jingzhao. The toxin contains 36 residues stabilized by three intracellular disulfide bridges (I-IV, II-V, and III-VI), assigned by a chemical strategy of partial reduction and sequence analysis. Cloned and sequenced using 3'-rapid amplification of cDNA ends and 5'-rapid amplification of cDNA ends, the full-length cDNA encoded a 63-residue precursor of JZTX-III. Different from other spider peptides, it contains an uncommon endoproteolytic site (-X-Ser-) anterior to mature protein and the intervening regions of 5 residues, which is the smallest in spider toxin cDNAs identified to date. Under whole cell recording, JZTX-III showed no effects on voltage-gated sodium channels (VGSCs) or calcium channels in dorsal root ganglion neurons, whereas it significantly inhibited tetrodotoxin-resistant VGSCs with an IC(50) value of 0.38 microm in rat cardiac myocytes. Different from scorpion beta-toxins, it caused a 10-mV depolarizing shift in the channel activation threshold. The binding site for JZTX-III on VGSCs is further suggested to be site 4 with a simple competitive assay, which at 10 microm eliminated the slowing currents induced by Buthus martensi Karsch I (BMK-I, scorpion alpha-like toxin) completely. JZTX-III shows higher selectivity for VGSC isoforms than other spider toxins affecting VGSCs, and the toxin hopefully represents an important ligand for discriminating cardiac VGSC subtype.
Collapse
Affiliation(s)
- Yucheng Xiao
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|