1
|
Mungra N, Nsole Biteghe FA, Huysamen AM, Hardcastle NS, Bunjun R, Naran K, Lang D, Richter W, Hunter R, Barth S. An Investigation into the In Vitro Targeted Killing of CD44-Expressing Triple-Negative Breast Cancer Cells Using Recombinant Photoimmunotherapeutics Compared to Auristatin-F-Based Antibody-Drug Conjugates. Mol Pharm 2024; 21:4098-4115. [PMID: 39047292 DOI: 10.1021/acs.molpharmaceut.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Centre for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, United States
| | - Fleury A Nsole Biteghe
- College of Science, Department of Biotechnology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Allan M Huysamen
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Natasha S Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
2
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Yin Y, Zhang L. Archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. Appl Microbiol Biotechnol 2023; 107:3131-3142. [PMID: 37036526 DOI: 10.1007/s00253-023-12506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Alkylated bases in DNA created in the presence of endogenous and exogenous alkylating agents are either cytotoxic or mutagenic, or both to a cell. Currently, cells have evolved several strategies for repairing alkylated base. One strategy is a base excision repair process triggered by a specific DNA glycosylase that is used for the repair of the cytotoxic 3-methyladenine. Additionally, the cytotoxic and mutagenic O6-methylguanine (O6-meG) is corrected by O6-methylguanine methyltransferase (MGMT) via directly transferring the methyl group in the lesion to a specific cysteine in this protein. Furthermore, oxidative DNA demethylation catalyzed by DNA dioxygenase is utilized for repairing the cytotoxic 3-methylcytosine (3-meC) and 1-methyladenine (1-meA) in a direct reversal manner. As the third domain of life, Archaea possess 3-methyladenine DNA glycosylase II (AlkA) and MGMT, but no DNA dioxygenase homologue responsible for oxidative demethylation. Herein, we summarize recent progress in structural and biochemical properties of archaeal AlkA and MGMT to gain a better understanding of archaeal DNA alkylation repair, focusing on similarities and differences between the proteins from different archaeal species and between these archaeal proteins and their bacterial and eukaryotic relatives. To our knowledge, it is the first review on archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. KEY POINTS: • Archaeal MGMT plays an essential role in the repair of O 6 -meG • Archaeal AlkA can repair 3-meC and 1-meA.
Collapse
Affiliation(s)
- Youcheng Yin
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
4
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
5
|
Antibody-Based Immunotherapy: Alternative Approaches for the Treatment of Metastatic Melanoma. Biomedicines 2020; 8:biomedicines8090327. [PMID: 32899183 PMCID: PMC7555584 DOI: 10.3390/biomedicines8090327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody–drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.
Collapse
|
6
|
Mattossovich R, Merlo R, Miggiano R, Valenti A, Perugino G. O6-alkylguanine-DNA Alkyltransferases in Microbes Living on the Edge: From Stability to Applicability. Int J Mol Sci 2020; 21:E2878. [PMID: 32326075 PMCID: PMC7216122 DOI: 10.3390/ijms21082878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
The genome of living cells is continuously exposed to endogenous and exogenous attacks, and this is particularly amplified at high temperatures. Alkylating agents cause DNA damage, leading to mutations and cell death; for this reason, they also play a central role in chemotherapy treatments. A class of enzymes known as AGTs (alkylguanine-DNA-alkyltransferases) protects the DNA from mutations caused by alkylating agents, in particular in the recognition and repair of alkylated guanines in O6-position. The peculiar irreversible self-alkylation reaction of these enzymes triggered numerous studies, especially on the human homologue, in order to identify effective inhibitors in the fight against cancer. In modern biotechnology, engineered variants of AGTs are developed to be used as protein tags for the attachment of chemical ligands. In the last decade, research on AGTs from (hyper)thermophilic sources proved useful as a model system to clarify numerous phenomena, also common for mesophilic enzymes. This review traces recent progress in this class of thermozymes, emphasizing their usefulness in basic research and their consequent advantages for in vivo and in vitro biotechnological applications.
Collapse
Affiliation(s)
- Rosanna Mattossovich
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Rosa Merlo
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy;
| | - Anna Valenti
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| | - Giuseppe Perugino
- Institute of Bioscience and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (R.M.); (R.M.)
| |
Collapse
|
7
|
Cytarska J, Anisiewicz A, Baranowska-Łączkowska A, Sikora A, Wietrzyk J, Misiura K, Łączkowski KZ. Triazene salts: Design, synthesis, ctDNA interaction, lipophilicity determination, DFT calculation, and antiproliferative activity against human cancer cell lines. Saudi Pharm J 2019; 27:303-311. [PMID: 30976172 PMCID: PMC6438848 DOI: 10.1016/j.jsps.2018.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/22/2018] [Indexed: 11/26/2022] Open
Abstract
Synthesis, characterization and investigation of antiproliferative activity of nine triazene salts against human cancer cells lines (MV-4-11, MCF-7, JURKAT, HT-29, Hep-G2, HeLa, Du-145 and DAUDI), and normal human mammary epithelial cell line (MCF7-10A) is presented. The structures of novel compounds were determined using 1H and 13C NMR, and GC-APCI-MS analyses. Among the derivatives, compound 2c, 2d, 2e and 2f has very strong activity against biphenotypic B myelomonocytic leukemia MV4-11, with IC50 values from 5.42 to 7.69 µg/ml. The cytotoxic activity of compounds 2c-2f against normal human mammary gland epithelial cells MCF-10A is 6–11 times lower than against cancer cell lines. Our results also show that compounds 2c and 2f have very strong activity against DAUDI and HT-29 with IC50 4.91 µg/ml and 5.59 µg/ml, respectively. Their lipophilicity was determined using reversed-phase ultra-performance liquid chromatography and correlated with antiproliferative activity. Our UV–Vis spectroscopic results indicate also that triazene salts tends to interact with negatively charged DNA phosphate chain. To support the experiment, theoretical calculations of the 1H NMR shifts were carried out within the Density Functional Theory.
Collapse
Affiliation(s)
- Joanna Cytarska
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Artur Anisiewicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | | | - Adam Sikora
- Department of Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Konrad Misiura
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Krzysztof Z Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
8
|
Miggiano R, Valenti A, Rossi F, Rizzi M, Perugino G, Ciaramella M. Every OGT Is Illuminated … by Fluorescent and Synchrotron Lights. Int J Mol Sci 2017; 18:ijms18122613. [PMID: 29206193 PMCID: PMC5751216 DOI: 10.3390/ijms18122613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
O6-DNA-alkyl-guanine-DNA-alkyl-transferases (OGTs) are evolutionarily conserved, unique proteins that repair alkylation lesions in DNA in a single step reaction. Alkylating agents are environmental pollutants as well as by-products of cellular reactions, but are also very effective chemotherapeutic drugs. OGTs are major players in counteracting the effects of such agents, thus their action in turn affects genome integrity, survival of organisms under challenging conditions and response to chemotherapy. Numerous studies on OGTs from eukaryotes, bacteria and archaea have been reported, highlighting amazing features that make OGTs unique proteins in their reaction mechanism as well as post-reaction fate. This review reports recent functional and structural data on two prokaryotic OGTs, from the pathogenic bacterium Mycobacterium tuberculosis and the hyperthermophilic archaeon Sulfolobus solfataricus, respectively. These studies provided insight in the role of OGTs in the biology of these microorganisms, but also important hints useful to understand the general properties of this class of proteins.
Collapse
Affiliation(s)
- Riccardo Miggiano
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Anna Valenti
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Franca Rossi
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Menico Rizzi
- DSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy.
| | - Giuseppe Perugino
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| | - Maria Ciaramella
- Institute of Biosciences and BioResources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
9
|
Genome stability: recent insights in the topoisomerase reverse gyrase and thermophilic DNA alkyltransferase. Extremophiles 2014; 18:895-904. [DOI: 10.1007/s00792-014-0662-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/18/2014] [Indexed: 10/24/2022]
|
10
|
Hussain AF, Krüger HR, Kampmeier F, Weissbach T, Licha K, Kratz F, Haag R, Calderón M, Barth S. Targeted Delivery of Dendritic Polyglycerol–Doxorubicin Conjugates by scFv-SNAP Fusion Protein Suppresses EGFR+ Cancer Cell Growth. Biomacromolecules 2013; 14:2510-20. [DOI: 10.1021/bm400410e] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ahmad Fawzi Hussain
- Department of Gynecology and
Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Harald Rune Krüger
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Florian Kampmeier
- Department of Imaging Sciences
and Biomedical Engineering, King’s College London, Westminster Bridge Road London SE1 7EH, U.K
| | - Tim Weissbach
- Department of Experimental Medicine
and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstrasse 20,
52074, Aachen, Germany
| | - Kai Licha
- mivenion GmbH, Robert-Koch-Platz 4, 10115,
Berlin, Germany
| | - Felix Kratz
- Tumor Biology Center and Proquinase GmbH, Breisacher Strasse 117, 79106, Freiburg,
Germany
| | - Rainer Haag
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Marcelo Calderón
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Stefan Barth
- Department of Experimental Medicine
and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstrasse 20,
52074, Aachen, Germany
- Department of Pharmaceutical
Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074,
Aachen, Germany
| |
Collapse
|
11
|
Perugino G, Vettone A, Illiano G, Valenti A, Ferrara MC, Rossi M, Ciaramella M. Activity and regulation of archaeal DNA alkyltransferase: conserved protein involved in repair of DNA alkylation damage. J Biol Chem 2011; 287:4222-31. [PMID: 22167184 DOI: 10.1074/jbc.m111.308320] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability.
Collapse
Affiliation(s)
- Giuseppe Perugino
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
McManus FP, Fang Q, Booth JDM, Noronha AM, Pegg AE, Wilds CJ. Synthesis and characterization of an O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand cross-link in a 5'-GNC motif and repair by human O(6)-alkylguanine-DNA alkyltransferase. Org Biomol Chem 2010; 8:4414-26. [PMID: 20714665 DOI: 10.1039/c0ob00093k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
O(6)-2'-Deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-links (ICLs) with a four and seven methylene linkage in a 5'-GNC- motif have been synthesized and their repair by human O6-alkylguanine-DNA alkyltransferase (hAGT) investigated. Duplexes containing 11 base-pairs with the ICLs in the center were assembled by automated DNA solid-phase synthesis using a cross-linked 2'-deoxyguanosine dimer phosphoramidite, prepared via a seven step synthesis which employed the Mitsunobu reaction to introduce the alkyl lesion at the O(6) atom of guanine. Introduction of the four and seven carbon ICLs resulted in no change in duplex stability based on UV thermal denaturation experiments compared to a non-cross-linked control. Circular dichroism spectra of these ICL duplexes exhibited features of a B-form duplex, similar to the control, suggesting that these lesions induce little overall change in structure. The efficiency of repair by hAGT was examined and it was shown that hAGT repairs both ICL containing duplexes, with the heptyl ICL repaired more efficiently relative to the butyl cross-link. These results were reproducible with various hAGT mutants including one that contains a novel V148L mutation. The ICL duplexes displayed similar binding affinities to a C145S hAGT mutant compared to the unmodified duplex with the seven carbon containing ICLs displaying slightly higher binding. Experiments with CHO cells to investigate the sensitivity of these cells to busulfan and hepsulfam demonstrate that hAGT reduces the cytotoxicity of hepsulfam suggesting that the O(6)-2'-deoxyguanosine-alkyl-O(6)-2'-deoxyguanosine interstrand DNA cross-link may account for at least part of the cytotoxicity of this agent.
Collapse
Affiliation(s)
- Francis P McManus
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. West, Montréal, QC, CanadaH4B 1R6
| | | | | | | | | | | |
Collapse
|
13
|
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32:261-76. [PMID: 16698182 DOI: 10.1016/j.ctrv.2006.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
DNA adducts at the O6-position of guanine are a result of the carcinogenic, mutagenic and cytotoxic actions of methylating and chloroethylating agents. The presence of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) renders cells resistant to the biological effects induced by agents that attack at this position. O6-Benzylguanine (O6-BG) is a low molecular weight substrate of AGT and therefore, results in sensitizing cells and tumors to alkylating agent-induced cytotoxicity and antitumor activity. Presently, chemotherapy regimens of O6-BG in combination with BCNU, temozolomide and Gliadel are in clinical development. Other ongoing clinical trials include expression of mutant AGT proteins that confer resistance to O6-BG in bone marrow stem cells, in an effort to reduce the potential enhanced toxicity and mutagenicity of alkylating agents in the bone marrow. O6-BG has also been found to enhance the cytotoxicity of agents that do not form adducts at the O6-position of DNA, including platinating agents. O6-BG's mechanism of action with these agents is not fully understood; however, it is independent of AGT activity or AGT inactivation. A better understanding of the effects of this agent will contribute to its clinical usefulness and the design of better analogs to further improve cancer chemotherapy.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Cancer Biology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
14
|
Souliotis VL, Sfikakis PP, Anderson LM, Kyrtopoulos SA. Intra- and intercellular variations in the repair efficiency of O6-methylguanine, and their contribution to kinetic complexity. Mutat Res 2004; 568:155-70. [PMID: 15542103 DOI: 10.1016/j.mrfmmm.2004.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 07/28/2004] [Accepted: 07/28/2004] [Indexed: 05/01/2023]
Abstract
Following administration to rats of various doses of N-nitrosodimethylamine (NDMA), O(6)-methylguanine (O(6)-meG) was lost from the DNA of four tissues (liver, white blood cells, lymph nodes, bone marrow) over two, sharply demarcated phases with substantially differing repair rates. Repair during each phase followed approximately first-order kinetics in O(6)-meG, even after a high dose of NDMA which caused substantial depletion of O(6)-alkylguanine-DNA alkyltransferase (AGT), a suicide repair protein. This is compatible with rate-determining adduct repair being brought about by a distinct, minor pool of AGT molecules which is rapidly replenished by de novo AGT synthesis. Similar biphasic repair kinetics were also observed in HepG2 cells treated in vitro with NDMA. In this case, the first phase of repair was inhibited by alpha-amanitin, an inhibitor of RNA polymerase II-mediated transcription. However, no dependence on transcriptional activity was found when O(6)-meG repair in specific gene sequences with different transcriptional status in rat liver was examined, suggesting that the effects of alpha-amanitin in HepG2 cells did not reflect inhibition of preferential repair of transcribed sequences. Repair was also examined in rat liver hepatocytes and non-parenchymal cells separately after administration of NDMA at non-AGT depleting doses. Within each cell-population, the repair followed single phase, first-order kinetics, with adduct loss from AGT-rich hepatocytes being significantly faster than from the relatively AGT-deficient non-parenchymal cells. In conclusion, differences in the AGT content of different cell subpopulations in the liver (and probably in other tissues), as well as additional cellular factors affecting repair efficiency, appear to determine the observed variation in the kinetics of repair of O(6)-meG. The additional cellular factors involved appear not to be related to the transcriptional state of the sequences being repaired, but may reflect different states of chromatin condensation.
Collapse
Affiliation(s)
- Vassilis L Souliotis
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, 48 Vassileos Constantinou Ave., Athens 11635, Greece.
| | | | | | | |
Collapse
|