1
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
2
|
Szekér P, Bodó T, Klima K, Csóti Á, Hanh NN, Murányi J, Hajdara A, Szántó TG, Panyi G, Megyeri M, Péterfi Z, Farkas S, Gyöngyösi N, Hornyák P. KcsA-Kv1.x chimeras with complete ligand-binding sites provide improved predictivity for screening selective Kv1.x blockers. J Biol Chem 2024; 300:107155. [PMID: 38479597 PMCID: PMC11002876 DOI: 10.1016/j.jbc.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/12/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024] Open
Abstract
Despite significant advances in the development of therapeutic interventions targeting autoimmune diseases and chronic inflammatory conditions, lack of effective treatment still poses a high unmet need. Modulating chronically activated T cells through the blockade of the Kv1.3 potassium channel is a promising therapeutic approach; however, developing selective Kv1.3 inhibitors is still an arduous task. Phage display-based high throughput peptide library screening is a rapid and robust approach to develop promising drug candidates; however, it requires solid-phase immobilization of target proteins with their binding site preserved. Historically, the KcsA bacterial channel chimera harboring only the turret region of the human Kv1.3 channel was used for screening campaigns. Nevertheless, literature data suggest that binding to this type of chimera does not correlate well with blocking potency on the native Kv1.3 channels. Therefore, we designed and successfully produced advanced KcsA-Kv1.3, KcsA-Kv1.1, and KcsA-Kv1.2 chimeric proteins in which both the turret and part of the filter regions of the human Kv1.x channels were transferred. These T+F (turret-filter) chimeras showed superior peptide ligand-binding predictivity compared to their T-only versions in novel phage ELISA assays. Phage ELISA binding and competition results supported with electrophysiological data confirmed that the filter region of KcsA-Kv1.x is essential for establishing adequate relative affinity order among selected peptide toxins (Vm24 toxin, Hongotoxin-1, Kaliotoxin-1, Maurotoxin, Stichodactyla toxin) and consequently obtaining more reliable selectivity data. These new findings provide a better screening tool for future drug development efforts and offer insight into the target-ligand interactions of these therapeutically relevant ion channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tibor Gábor Szántó
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - György Panyi
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | | - Norbert Gyöngyösi
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
3
|
AlShammari AK, Abd El-Aziz TM, Al-Sabi A. Snake Venom: A Promising Source of Neurotoxins Targeting Voltage-Gated Potassium Channels. Toxins (Basel) 2023; 16:12. [PMID: 38251229 PMCID: PMC10820993 DOI: 10.3390/toxins16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The venom derived from various sources of snakes represents a vast collection of predominantly protein-based toxins that exhibit a wide range of biological actions, including but not limited to inflammation, pain, cytotoxicity, cardiotoxicity, and neurotoxicity. The venom of a particular snake species is composed of several toxins, while the venoms of around 600 venomous snake species collectively encompass a substantial reservoir of pharmacologically intriguing compounds. Despite extensive research efforts, a significant portion of snake venoms remains uncharacterized. Recent findings have demonstrated the potential application of neurotoxins derived from snake venom in selectively targeting voltage-gated potassium channels (Kv). These neurotoxins include BPTI-Kunitz polypeptides, PLA2 neurotoxins, CRISPs, SVSPs, and various others. This study provides a comprehensive analysis of the existing literature on the significance of Kv channels in various tissues, highlighting their crucial role as proteins susceptible to modulation by diverse snake venoms. These toxins have demonstrated potential as valuable pharmacological resources and research tools for investigating the structural and functional characteristics of Kv channels.
Collapse
Affiliation(s)
- Altaf K. AlShammari
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| |
Collapse
|
4
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Barassé V, Jouvensal L, Boy G, Billet A, Ascoët S, Lefranc B, Leprince J, Dejean A, Lacotte V, Rahioui I, Sivignon C, Gaget K, Ribeiro Lopes M, Calevro F, Da Silva P, Loth K, Paquet F, Treilhou M, Bonnafé E, Touchard A. Discovery of an Insect Neuroactive Helix Ring Peptide from Ant Venom. Toxins (Basel) 2023; 15:600. [PMID: 37888631 PMCID: PMC10610885 DOI: 10.3390/toxins15100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.
Collapse
Affiliation(s)
- Valentine Barassé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Laurence Jouvensal
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
- Unité de Formation et de Recherche (UFR) Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Guillaume Boy
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Arnaud Billet
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Steven Ascoët
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Benjamin Lefranc
- Inserm, Univ Rouen Normandie, NorDiC Unité Mixte de Recherche (UMR) 1239, 76000 Rouen, France
| | - Jérôme Leprince
- Inserm, Univ Rouen Normandie, NorDiC Unité Mixte de Recherche (UMR) 1239, 76000 Rouen, France
| | - Alain Dejean
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3-Paul Sabatier (UPS), 31062 Toulouse, France
- Unité Mixte de Recherche (UMR) Écologie des Forêts de Guyane (EcoFoG), AgroParisTech, Centre de Cooperation Internationale en Recherche Agronomique pour le Développement (CIRAD), Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université des Antilles, Université de Guyane, 97379 Kourou, France
| | - Virginie Lacotte
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Isabelle Rahioui
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Catherine Sivignon
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Karen Gaget
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Mélanie Ribeiro Lopes
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Federica Calevro
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Pedro Da Silva
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National des Sciences Appliquées (INSA) de Lyon, Biologie Fonctionnelle, Insectes et Interactions (BF2i), Unité Mixte de Recherche (UMR) 203, Université de Lyon, 69621 Villeurbanne, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
- Unité de Formation et de Recherche (UFR) Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche (UPR) 4301, 45071 Orléans, France
| | - Michel Treilhou
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Elsa Bonnafé
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| | - Axel Touchard
- EA-7417, Institut National Universitaire Champollion, Place de Verdun, 81012 Albi, France
| |
Collapse
|
6
|
Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Tytgat J, Vassilevski AA. Methionine-isoleucine dichotomy at a key position in scorpion toxins inhibiting voltage-gated potassium channels. Toxicon 2023; 231:107181. [PMID: 37301298 DOI: 10.1016/j.toxicon.2023.107181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Previous studies have identified some key amino acid residues in scorpion toxins blocking potassium channels. In particular, the most numerous toxins belonging to the α-KTx family and affecting voltage-gated potassium channels (KV) present a conserved K-C-X-N motif in the C-terminal half of their sequence. Here, we show that the X position of this motif is almost always occupied by either methionine or isoleucine. We compare the activity of three pairs of peptides that differ just by this residue on a panel of KV1 channels and find that toxins bearing methionine affect preferentially KV1.1 and 1.6 isoforms. The refined K-C-M/I-N motif stands out as the principal structural element of α-KTx conferring high affinity and selectivity to KV channels.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, Leuven, 3000, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, 3000, Belgium
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
7
|
Lyukmanova EN, Mironov PA, Kulbatskii DS, Shulepko MA, Paramonov AS, Chernaya EM, Logashina YA, Andreev YA, Kirpichnikov MP, Shenkarev ZO. Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer. Toxins (Basel) 2023; 15:378. [PMID: 37368679 DOI: 10.3390/toxins15060378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Phα1β (PnTx3-6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1-Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41-Cys52) stapled to ICK by two disulfides exhibits the µs-ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1-5, Cys2-7, Cys3-12, Cys4-10, Cys6-11, Cys8-9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1-S4 gating domains from a membrane-bound state.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel A Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Mikhail A Shulepko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Elizaveta M Chernaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Analysis of Some Putative Novel Peptides from Iranian Scorpion Venom Glands, Hemiscorpius lepturus, Using cDNA Library Construction. Jundishapur J Nat Pharm Prod 2023. [DOI: 10.5812/jjnpp-133423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: To date, more than 300,000 distinct peptides have been identified in scorpion venom. However, only a limited number of these peptides have been described. Objectives: We characterized some putative peptides from the venom gland cDNA library of the Iranian yellow scorpion Hemiscorpius lepturus”. Methods: Total RNA was extracted from yellow Iranian scorpion glands. Single-stranded cDNA (sscDNA) and double-stranded cDNA (dscDNA) were synthesized by polymerase chain reaction (PCR). A cDNA library was achieved by inserting dscDNA into a special vector and subsequently transformed to chemically competent Escherichia coli as a host. The library was screened by culturing the liquid library on Lysogeny broth (LB)-agar plates. Analysis of positive clones was performed by plasmid extraction and the sequencing of the inserts. Finally, all cDNA sequences were analyzed and characterized by bioinformatics software. Results: One hundred colonies were randomly analyzed. Eighty-nine cDNA sequences had acceptable quality for bioinformatics analysis. Five sequences were selected for further analysis. The peptides related to these sequences were divided into two groups, non-disulfide bridge peptides (NDBP) and disulfide bridge peptides (DBP), the application of which in health and medical issues has been suggested. Conclusions: The data obtained in this study may be an important resource for further in vivo and in vitro functional assays to identify valuable therapeutic peptides.
Collapse
|
9
|
Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins (Basel) 2022; 15:8. [PMID: 36668828 PMCID: PMC9863223 DOI: 10.3390/toxins15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Collapse
|
10
|
Conformations of disulfides are conserved in inhibitory cystine knot (ICK) motif polypeptides. Toxicon 2022; 219:106926. [PMID: 36167143 DOI: 10.1016/j.toxicon.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
The inhibitory cystine knot (ICK) motif is an evolutionarily optimized disulfide-rich peptide motif widely present in diverse phyla with distinct biological functions. Cysteine disulfides are highly conserved in the ICK motif with C1-C4 (Disulfide-I), C2-C5(Disulfide-II), and C3-C6(Disulfide-III) connectivities in a sequence. Disulfide-I and disulfide-II form a loop and the disulfide-III tethers through the loop forming a knotted fold. The current report has analysed the conformation of disulfides in the ICK motif using the side-chain torsional angles of cysteine disulfide. In crystal structures: 88% of Disulfide-I have (+,-)SynRHHook, 92% of Disulfide-II have (+,-)RHSpiral, and 100% of Disulfide-III have (-,-)LHSpiral conformations. In NMR structures, conformational diversity has been observed for each of the cysteine disulfides of the ICK motif. The highest percentage occurrence in NMR structures: 27% of Disulfide-I have (+,-)SynRHHook, 36% of Disulfide-II have (+,-)RHSpiral, and 50% of Disulfide-III have (-,-)LHSpiral conformations. In the view of the method of identification of disulfides between cysteine residues using NMR spectroscopy, the NMR structure represents an ensemble of conformations of disulfides instead of specific disulfide conformation. The retention of the conformation in both X-ray and NMR structures supports the conservation of conformation of disulfides in the ICK motif. The tendency to exhibit specific conformation of disulfide even with variations in 3D structures supports the evolutionarily optimized nature of the ICK motif.
Collapse
|
11
|
TRPV1 Modulator Ameliorates Alzheimer-Like Amyloid- β Neuropathology via Akt/Gsk3 β-Mediated Nrf2 Activation in the Neuro-2a/APP Cell Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1544244. [PMID: 36065437 PMCID: PMC9440841 DOI: 10.1155/2022/1544244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder for which there is no effective therapeutic strategy. PcActx peptide from the transcriptome of zoantharian Palythoa caribaeorum has recently been identified and verified as a novel antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). In the present study, we further investigated the neuroprotective potential of PcActx peptide and its underlying mechanism of action, in an N2a/APP cell model of AD. Both Western blot and RT-PCR analysis revealed that PcActx peptide markedly inhibited the production of amyloid-related proteins and the expression of BACE1, PSEN1, and PSEN2. Moreover, PcActx peptide notably attenuated the capsaicin-stimulated calcium response and prevented the phosphorylation of CaMKII and CaMKIV (calcium-mediated proteins) in N2a/APP cells. Further investigation indicated that PcActx peptide significantly suppressed ROS generation through Nrf2 activation, followed by enhanced NQO1 and HO-1 levels. In addition, PcActx peptide remarkably improved Akt phosphorylation at Ser 473 (active) and Gsk3β phosphorylation at Ser 9 (inactive), while pharmacological inhibition of the Akt/Gsk3β pathway significantly attenuated PcActx-induced Nrf2 activation and amyloid downregulation. In conclusion, PcActx peptide functions as a TRPV1 modulator of intercellular calcium homeostasis, prevents AD-like amyloid neuropathology via Akt/Gsk3β-mediated Nrf2 activation, and shows promise as an alternative therapeutic agent for AD.
Collapse
|
12
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
13
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Montnach J, Blömer LA, Lopez L, Filipis L, Meudal H, Lafoux A, Nicolas S, Chu D, Caumes C, Béroud R, Jopling C, Bosmans F, Huchet C, Landon C, Canepari M, De Waard M. In vivo spatiotemporal control of voltage-gated ion channels by using photoactivatable peptidic toxins. Nat Commun 2022; 13:417. [PMID: 35058427 PMCID: PMC8776733 DOI: 10.1038/s41467-022-27974-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Photoactivatable drugs targeting ligand-gated ion channels open up new opportunities for light-guided therapeutic interventions. Photoactivable toxins targeting ion channels have the potential to control excitable cell activities with low invasiveness and high spatiotemporal precision. As proof-of-concept, we develop HwTxIV-Nvoc, a UV light-cleavable and photoactivatable peptide that targets voltage-gated sodium (NaV) channels and validate its activity in vitro in HEK293 cells, ex vivo in brain slices and in vivo on mice neuromuscular junctions. We find that HwTxIV-Nvoc enables precise spatiotemporal control of neuronal NaV channel function under all conditions tested. By creating multiple photoactivatable toxins, we demonstrate the broad applicability of this toxin-photoactivation technology.
Collapse
Affiliation(s)
- Jérôme Montnach
- l'institut du thorax, INSERM, CNRS, UNIV NANTES, F-44007, Nantes, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Laila Ananda Blömer
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS UMR 5588, 38402, St Martin d'Hères, cedex, France
| | - Ludivine Lopez
- l'institut du thorax, INSERM, CNRS, UNIV NANTES, F-44007, Nantes, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Smartox Biotechnology, 6 rue des Platanes, F-38120, Saint-Egrève, France
| | - Luiza Filipis
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS UMR 5588, 38402, St Martin d'Hères, cedex, France
| | - Hervé Meudal
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans, 45071, France
| | - Aude Lafoux
- Therassay Platform, IRS2-Université de Nantes, Nantes, France
| | - Sébastien Nicolas
- l'institut du thorax, INSERM, CNRS, UNIV NANTES, F-44007, Nantes, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Duong Chu
- Queen's University Faculty of Medicine, Kingston, ON, Canada
| | - Cécile Caumes
- Smartox Biotechnology, 6 rue des Platanes, F-38120, Saint-Egrève, France
| | - Rémy Béroud
- Smartox Biotechnology, 6 rue des Platanes, F-38120, Saint-Egrève, France
| | - Chris Jopling
- Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier, France
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Corinne Huchet
- Therassay Platform, IRS2-Université de Nantes, Nantes, France
| | - Céline Landon
- Center for Molecular Biophysics, CNRS, rue Charles Sadron, CS 80054, Orléans, 45071, France
| | - Marco Canepari
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, CNRS UMR 5588, 38402, St Martin d'Hères, cedex, France
| | - Michel De Waard
- l'institut du thorax, INSERM, CNRS, UNIV NANTES, F-44007, Nantes, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
- Smartox Biotechnology, 6 rue des Platanes, F-38120, Saint-Egrève, France.
| |
Collapse
|
15
|
Wang X, Liao Q, Chen H, Gong G, Siu SWI, Chen Q, Kam H, Ung COL, Cheung KK, Rádis-Baptista G, Wong CTT, Lee SMY. Toxic Peptide From Palythoa caribaeorum Acting on the TRPV1 Channel Prevents Pentylenetetrazol-Induced Epilepsy in Zebrafish Larvae. Front Pharmacol 2021; 12:763089. [PMID: 34925021 PMCID: PMC8672801 DOI: 10.3389/fphar.2021.763089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 11/25/2022] Open
Abstract
PcActx peptide, identified from the transcriptome of zoantharian Palythoa caribaeorum, was clustered into the phylogeny of analgesic polypeptides from sea anemone Heteractis crispa (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures. Through in silico and in vitro analysis, PcActx peptide was shown to be a potential TRPV1 channel blocker. In vivo studies showed that the linear and oxidized PcActx peptides caused concentration-dependent increases in mortality of zebrafish larvae. However, monotreatment with PcActx peptides below the maximum tolerated doses (MTD) did not affect locomotor behavior. Moreover, PcActx peptides (both linear and oxidized forms) could effectively reverse pentylenetetrazol (PTZ)-induced seizure-related behavior in zebrafish larvae and prevent overexpression of c-fos and npas4a at the mRNA level. The excessive production of ROS induced by PTZ was markedly attenuated by both linear and oxidized PcActx peptides. It was also verified that the oxidized PcActx peptide was more effective than the linear one. In particular, oxidized PcActx peptide notably modulated the mRNA expression of genes involved in calcium signaling and γ-aminobutyric acid (GABA)ergic-glutamatergic signaling, including calb1, calb2, gabra1, grm1, gria1b, grin2b, gat1, slc1a2b, gad1b, and glsa. Taken together, PcActx peptide, as a novel neuroactive peptide, exhibits prominent anti-epileptic activity, probably through modulating calcium signaling and GABAergic-glutamatergic signaling, and is a promising candidate for epilepsy management.
Collapse
Affiliation(s)
- Xiufen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shirley Weng In Siu
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
| | - Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceará, Fortaleza, Brazil
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
16
|
Colombian Scorpion Centruroides margaritatus: Purification and Characterization of a Gamma Potassium Toxin with Full-Block Activity on the hERG1 Channel. Toxins (Basel) 2021; 13:toxins13060407. [PMID: 34201318 PMCID: PMC8273696 DOI: 10.3390/toxins13060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
The Colombian scorpion Centruroides margaritatus produces a venom considered of low toxicity. Nevertheless, there are known cases of envenomation resulting in cardiovascular disorders, probably due to venom components that target ion channels. Among them, the humanether-à-go-go-Related gene (hERG1) potassium channels are critical for cardiac action potential repolarization and alteration in its functionality are associated with cardiac disorders. This work describes the purification and electrophysiological characterization of a Centruroides margaritatus venom component acting on hERG1 channels, the CmERG1 toxin. This novel peptide is composed of 42 amino acids with a MW of 4792.88 Da, folded by four disulfide bonds and it is classified as member number 10 of the γ-KTx1 toxin family. CmERG1 inhibits hERG1 currents with an IC50 of 3.4 ± 0.2 nM. Despite its 90.5% identity with toxin ɣ-KTx1.1, isolated from Centruroides noxius, CmERG1 completely blocks hERG1 current, suggesting a more stable plug of the hERG channel, compared to that formed by other ɣ-KTx.
Collapse
|
17
|
Ryan RYM, Seymour J, Loukas A, Lopez JA, Ikonomopoulou MP, Miles JJ. Immunological Responses to Envenomation. Front Immunol 2021; 12:661082. [PMID: 34040609 PMCID: PMC8141633 DOI: 10.3389/fimmu.2021.661082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Venoms are complex mixtures of toxic compounds delivered by bite or sting. In humans, the consequences of envenomation range from self-limiting to lethal. Critical host defence against envenomation comprises innate and adaptive immune strategies targeted towards venom detection, neutralisation, detoxification, and symptom resolution. In some instances, venoms mediate immune dysregulation that contributes to symptom severity. This review details the involvement of immune cell subtypes and mediators, particularly of the dermis, in host resistance and venom-induced immunopathology. We further discuss established venom-associated immunopathology, including allergy and systemic inflammation, and investigate Irukandji syndrome as a potential systemic inflammatory response. Finally, this review characterises venom-derived compounds as a source of immune modulating drugs for treatment of disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
| | - Jamie Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD, Australia
- QIMR Berghofer Medical Research Institute, The University of Queensland, Herston, QLD, Australia
| | - Maria P. Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - John J. Miles
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
18
|
Tabakmakher VM, Kuzmenkov AI, Gigolaev AM, Pinheiro-Junior EL, Peigneur S, Efremov RG, Tytgat J, Vassilevski AA. Artificial Peptide Ligand of Potassium
Channel KV1.1 with High Selectivity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Deng Z, Zeng Q, Tang J, Zhang B, Chai J, Andersen JF, Chen X, Xu X. Anti-inflammatory effects of FS48, the first potassium channel inhibitor from the salivary glands of the flea Xenopsylla cheopis. J Biol Chem 2021; 296:100670. [PMID: 33864815 PMCID: PMC8131326 DOI: 10.1016/j.jbc.2021.100670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The voltage-gated potassium (Kv) 1.3 channel plays a crucial role in the immune responsiveness of T-lymphocytes and macrophages, presenting a potential target for treatment of immune- and inflammation related-diseases. FS48, a protein from the rodent flea Xenopsylla cheopis, shares the three disulfide bond feature of scorpion toxins. However, its three-dimensional structure and biological function are still unclear. In the present study, the structure of FS48 was evaluated by circular dichroism and homology modeling. We also described its in vitro ion channel activity using patch clamp recording and investigated its anti-inflammatory activity in LPS-induced Raw 264.7 macrophage cells and carrageenan-induced paw edema in mice. FS48 was found to adopt a common αββ structure and contain an atypical dyad motif. It dose-dependently exhibited the Kv1.3 channel in Raw 264.7 and HEK 293T cells, and its ability to block the channel pore was demonstrated by the kinetics of activation and competition binding with tetraethylammonium. FS48 also downregulated the secretion of proinflammatory molecules NO, IL-1β, TNF-α, and IL-6 by Raw 264.7 cells in a manner dependent on Kv1.3 channel blockage and the subsequent inactivation of the MAPK/NF-κB pathways. Finally, we observed that FS48 inhibited the paw edema formation, tissue myeloperoxidase activity, and inflammatory cell infiltrations in carrageenan-treated mice. We therefore conclude that FS48 identified from the flea saliva is a novel potassium channel inhibitor displaying anti-inflammatory activity. This discovery will promote understanding of the bloodsucking mechanism of the flea and provide a new template molecule for the design of Kv1.3 channel blockers.
Collapse
Affiliation(s)
- Zhenhui Deng
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Intitutes of Health, Bethesda, Maryland, USA
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Saikia C, Ben-Nissan G, Reuveny E, Karbat I. Production of recombinant venom peptides as tools for ion channel research. Methods Enzymol 2021; 654:169-201. [PMID: 34120712 DOI: 10.1016/bs.mie.2021.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal venom is a rich source for peptide toxins that bind and modulate the function of ion channels. Owing to their ability to bind receptor sites on the channel protein with high affinity and specificity, peptide neurotoxins have become an indispensable tool for ion channel research. Recent breakthroughs in structural biology and advances in computer simulations of biomolecules have sparked a new interest in animal toxins as probes of channel protein structure and function. Here, we focus on methods used to produce animal toxins for research purposes using recombinant expression. The specific challenges associated with heterologous production of venom peptides are discussed, and several methods targeting these issues are presented with an emphasis on E. coli based systems. An efficient protocol for the bacterial expression, folding, and purification of recombinant venom peptides is described.
Collapse
Affiliation(s)
- Chandamita Saikia
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
22
|
New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins (Basel) 2021; 13:toxins13010029. [PMID: 33406803 PMCID: PMC7824768 DOI: 10.3390/toxins13010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The Tibellus oblongus spider is an active predator that does not spin webs and remains poorly investigated in terms of venom composition. Here, we present a new toxin, named Tbo-IT2, predicted by cDNA analysis of venom glands transcriptome. The presence of Tbo-IT2 in the venom was confirmed by proteomic analyses using the LC-MS and MS/MS techniques. The distinctive features of Tbo-IT2 are the low similarity of primary structure with known animal toxins and the unusual motif of 10 cysteine residues distribution. Recombinant Tbo-IT2 (rTbo-IT2), produced in E. coli using the thioredoxin fusion protein strategy, was structurally and functionally studied. rTbo-IT2 showed insecticidal activity on larvae of the housefly Musca domestica (LD100 200 μg/g) and no activity on the panel of expressed neuronal receptors and ion channels. The spatial structure of the peptide was determined in a water solution by NMR spectroscopy. The Tbo-IT2 structure is a new example of evolutionary adaptation of a well-known inhibitor cystine knot (ICK) fold to 5 disulfide bonds configuration, which determines additional conformational stability and gives opportunities for insectotoxicity and probably some other interesting features.
Collapse
|
23
|
Richard SA, Kampo S, Sackey M, Hechavarria ME, Buunaaim ADB. The Pivotal Potentials of Scorpion Buthus Martensii Karsch-Analgesic-Antitumor Peptide in Pain Management and Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4234273. [PMID: 33178316 PMCID: PMC7647755 DOI: 10.1155/2020/4234273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 01/26/2023]
Abstract
Scorpion Buthus martensii Karsch -analgesic-antitumor peptide (BmK AGAP) has been used to treat diseases like tetanus, tuberculosis, apoplexy, epilepsy, spasm, migraine headaches, rheumatic pain, and cancer in China. AGAP is a distinctive long-chain scorpion toxin with a molecular mass of 7142 Da and composed of 66 amino acids cross-linked by four disulfide bridges. Voltage-gated sodium channels (VGSCs) are present in excitable membranes and partakes in essential roles in action potentials generation as compared to the significant function of voltage-gated calcium channels (VGCCs). A total of nine genes (Nav1.1-Nav1.9) have been recognized to encode practical sodium channel isoforms. Nav1.3, Nav1.7, Nav1.8, and Nav1.9 have been recognized as potential targets for analgesics. Nav1.8 and Nav1.9 are associated with nociception initiated by inflammation signals in the neuronal pain pathway, while Nav1.8 is fundamental for neuropathic pain at low temperatures. AGAP has a sturdy inhibitory influence on both viscera and soma pain. AGAP potentiates the effects of MAPK inhibitors on neuropathic as well as inflammation-associated pain. AGAP downregulates the secretion of phosphorylated p38, phosphorylated JNK, and phosphorylated ERK 1/2 in vitro. AGAP has an analgesic activity which may be an effective therapeutic agent for pain management because of its downregulation of PTX3 via NF-κB and Wnt/beta-catenin signaling pathway. In cancers like colon cancer, breast cancer, lymphoma, and glioma, rAGAP was capable of blocking the proliferation. Thus, AGAP is a promising therapy for these tumors. Nevertheless, research is needed with other tumors.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Sylvanus Kampo
- Department of Anesthesia and Critical Care, School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | | | - Alexis D. B. Buunaaim
- Department of Surgery, School of Medicine and Health Science, University for Development Studies, Tamale, Ghana
| |
Collapse
|
24
|
Yang S, Wang Y, Wang L, Kamau P, Zhang H, Luo A, Lu X, Lai R. Target switch of centipede toxins for antagonistic switch. SCIENCE ADVANCES 2020; 6:eabb5734. [PMID: 32821839 PMCID: PMC7413724 DOI: 10.1126/sciadv.abb5734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/26/2020] [Indexed: 05/02/2023]
Abstract
Animal venoms are powerful, highly evolved chemical weapons for defense and predation. While venoms are used mainly to lethally antagonize heterospecifics (individuals of a different species), nonlethal envenomation of conspecifics (individuals of the same species) is occasionally observed. Both the venom and target specifications underlying these two forms of envenomation are still poorly understood. Here, we show a target-switching mechanism in centipede (Scolopendra subspinipes) venom. On the basis of this mechanism, a major toxin component [Ssm Spooky Toxin (SsTx)] in centipede venom inhibits the Shal channel in conspecifics but not in heterospecifics to cause short-term, recoverable, and nonlethal envenomation. This same toxin causes fatal heterospecific envenomation, for example, by switching its target to the Shaker channels in heterospecifics without inhibiting the Shaker channel of conspecific S. subspinipes individuals. These findings suggest that venom components exhibit intricate coevolution with their targets in both heterospecifics and conspecifics, which enables a single toxin to develop graded intraspecific and interspecific antagonistic interactions.
Collapse
Affiliation(s)
- Shilong Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yunfei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan 650091, China
| | - Peter Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hao Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiancui Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of bioactive peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Corresponding author.
| |
Collapse
|
25
|
Gigolaev AM, Kuzmenkov AI, Peigneur S, Tabakmakher VM, Pinheiro-Junior EL, Chugunov AO, Efremov RG, Tytgat J, Vassilevski AA. Tuning Scorpion Toxin Selectivity: Switching From K V1.1 to K V1.3. Front Pharmacol 2020; 11:1010. [PMID: 32733247 PMCID: PMC7358528 DOI: 10.3389/fphar.2020.01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023] Open
Abstract
Voltage-gated potassium channels (KVs) perform vital physiological functions and are targets in different disorders ranging from ataxia and arrhythmia to autoimmune diseases. An important issue is the search for and production of selective ligands of these channels. Peptide toxins found in scorpion venom named KTx excel in both potency and selectivity with respect to some potassium channel isoforms, which may present only minute differences in their structure. Despite several decades of research the molecular determinants of KTx selectivity are still poorly understood. Here we analyze MeKTx13-3 (Kalium ID: α-KTx 3.19) from the lesser Asian scorpion Mesobuthus eupeus, a high-affinity KV1.1 blocker (IC50 ~2 nM); it also affects KV1.2 (IC50 ~100 nM), 1.3 (~10 nM) and 1.6 (~60 nM). By constructing computer models of its complex with KV1.1-1.3 channels we identify specific contacts between the toxin and the three isoforms. We then perform mutagenesis to disturb the identified contacts with KV1.1 and 1.2 and produce recombinant MeKTx13-3_AAAR, which differs by four amino acid residues from the parent toxin. As predicted by the modeling, this derivative shows decreased activity on KV1.1 (IC50 ~550 nM) and 1.2 (~200 nM). It also has diminished activity on KV1.6 (~1500 nM) but preserves KV1.3 affinity as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. In effect, we convert a selective KV1.1 ligand into a new specific KV1.3 ligand. MeKTx13-3 and its derivatives are attractive tools to study the structure-function relationship in potassium channel blockers.
Collapse
Affiliation(s)
- Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Valentin M Tabakmakher
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | | | - Anton O Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Leuven, Belgium
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| |
Collapse
|
26
|
Zhu W, Gao H, Luo X, Ye X, Ding L, Hao J, Shu Z, Li S, Li J, Chen Z. Cloning and identification of a new multifunctional Ascaris-type peptide from the hemolymph of Buthus martensii Karsch. Toxicon 2020; 184:167-174. [PMID: 32565098 DOI: 10.1016/j.toxicon.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Only a few work have been done for peptides from non-venom gland tissues of venomous animals. Here, with the help of the whole body transcriptomic and the hemolymph proteomic data of the Chinese scorpion Buthus martensii Karsch, we identified the first Ascaris-type peptide BmHDP from scorpion hemolymph. The precursor of BmHDP has 80 residues, including a 16 residue signal peptide and a 64 residue mature peptide. The mature peptide has 10 conserved cysteines and adopts a conserved Ascaris-type fold. Using combined inclusion body refolding and biochemical identification strategies, recombinant BmHDP was obtained successfully. Protease inhibitory assays showed that BmHDP inhibited chymotrypsin apparently at a concentration of 8 nM. Patch-clamp experiments showed that BmHDP inhibited the Kv1.3 potassium channel apparently at a concentration of 1000 nM. Coagulation experiment assays showed that BmHDP inhibited intrinsic coagulation pathway apparently at a concentration of 500 nM. To the best of our knowledge, BmHDP is the first Ascaris-type peptide from scorpion hemolymph. Our work highlighted a functional link between scorpion non-venom gland peptides and venom gland toxin peptides, and suggested that scorpion hemolymph might be a new source of bioactive peptides.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Huanhuan Gao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Li Ding
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Zhan Shu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Jian Li
- Department of Human Parasitology, College of Basic Medical Sciences, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Institute of Biomedicine and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
27
|
Park BG, Peigneur S, Esaki N, Yamaguchi Y, Ryu JH, Tytgat J, Kim JI, Sato K. Solution Structure and Functional Analysis of HelaTx1: The First Toxin Member of the κ-KTx5 Subfamily. BMB Rep 2020. [PMID: 32172732 PMCID: PMC7262511 DOI: 10.5483/bmbrep.2020.53.5.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage- gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.
Collapse
Affiliation(s)
- Bong Gyu Park
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, P.O. Box 922, Leuven 3000, Belgium
| | - Nao Esaki
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| | - Yoko Yamaguchi
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| | - Jae Ha Ryu
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, P.O. Box 922, Leuven 3000, Belgium
| | - Jae Il Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Kazuki Sato
- Department of Environmental Sciences, Fukuoka Women’s University, Fukuoka 813-8529, Japan
| |
Collapse
|
28
|
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020; 18:E173. [PMID: 32245015 PMCID: PMC7143316 DOI: 10.3390/md18030173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.
Collapse
Affiliation(s)
- Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
| | - Aleksandra Belovanovic
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Milica Micic-Vicovac
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 ADY7 Dublin, Ireland;
| | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| |
Collapse
|
29
|
Li S, Sunchen S, He D, Qin C, Zuo Z, Shen B, Cao Z, Hong W, Miao L. ImKTx96, a peptide blocker of the Kv1.2 ion channel from the venom of the scorpion Isometrus maculates. Peptides 2020; 123:170172. [PMID: 31626826 DOI: 10.1016/j.peptides.2019.170172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/13/2023]
Abstract
Scorpion venom contains diverse bioactive peptides that can recognize and interact with membrane proteins such as ion channels. These natural toxins are believed to be useful tools for exploring the structure and function of ion channels. In this study, we characterized a K+-channel toxin gene, ImKTx96, from the venom gland cDNA library of the scorpion Isometrus maculates. The peptide deduced from the ImKTx96 precursor nucleotide sequence contains a signal peptide of 27 amino acid residues and a mature peptide of 29 residues with three disulfide bridges. Multiple sequence alignment indicated that ImKTx96 is similar with the scorpion toxins that typically target K+-channels. The recombined ImKTx96 peptide (rImKTx96) was expressed in the Escherichia coli system, and purified by GST-affinity chromatography and RP-HPLC. Results from whole-cell patch-clamp experiments revealed that rImKTx96 can inhibit the current of the Kv1.2 ion channel expressed in HEK293 cells. The 3D structure of ImKTx96 was constructed by molecular modeling, and the complex formed by ImKTx96 interacting with the Kv1.2 ion channel was obtained by molecular docking. Based on its structural features and pharmacological functions, ImKTx96 was identified as one member of K+-channel scorpion toxin α-KTx10 group and may be useful as a molecular probe for investigating the structure and function of the Kv1.2 ion channel.
Collapse
Affiliation(s)
- Sipian Li
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Shuwen Sunchen
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China
| | - Dangui He
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Chenhu Qin
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Zheng Zuo
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Bingzheng Shen
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China
| | - Zhijian Cao
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China; Hubei Province Engineering and Technology Research, Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan 430072, PR China
| | - Wei Hong
- State Key Laboratory of Virology, Renmin Hospital, Wuhan University, Wuhan 430072, PR China.
| | - Lixia Miao
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
30
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
31
|
Characterization, molecular modeling and phylogenetic analysis of a long mammalian neurotoxin from the venom of the Iranian scorpion Androctonus crassicauda. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Chow CY, Chin YKY, Walker AA, Guo S, Blomster LV, Ward MJ, Herzig V, Rokyta DR, King GF. Venom Peptides with Dual Modulatory Activity on the Voltage-Gated Sodium Channel Na V1.1 Provide Novel Leads for Development of Antiepileptic Drugs. ACS Pharmacol Transl Sci 2019; 3:119-134. [PMID: 32259093 DOI: 10.1021/acsptsci.9b00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 01/14/2023]
Abstract
Voltage-gated sodium (NaV) channels play a fundamental role in normal neurological function, especially via the initiation and propagation of action potentials. The NaV1.1 subtype is found in inhibitory interneurons of the brain and it is essential for maintaining a balance between excitation and inhibition in neuronal networks. Heterozygous loss-of-function mutations of SCN1A, the gene encoding NaV1.1, underlie Dravet syndrome (DS), a severe pediatric epilepsy. We recently demonstrated that selective inhibition of NaV1.1 inactivation prevents seizures and premature death in a mouse model of DS. Thus, selective modulators of NaV1.1 might be useful therapeutics for treatment of DS as they target the underlying molecular deficit. Numerous scorpion-venom peptides have been shown to modulate the activity of NaV channels, but little is known about their activity at NaV1.1. Here we report the isolation, sequence, three-dimensional structure, recombinant production, and functional characterization of two peptidic modulators of NaV1.1 from venom of the buthid scorpion Hottentotta jayakari. These peptides, Hj1a and Hj2a, are potent agonists of NaV1.1 (EC50 of 17 and 32 nM, respectively), and they present dual α/β activity by modifying both the activation and inactivation properties of the channel. NMR studies of rHj1a indicate that it adopts a cystine-stabilized αβ fold similar to known scorpion toxins. Although Hj1a and Hj2a have only limited selectivity for NaV1.1, their unusual dual mode of action provides an alternative approach to the development of selective NaV1.1 modulators for the treatment of DS.
Collapse
Affiliation(s)
- Chun Yuen Chow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda V Blomster
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306, United States
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
33
|
Elnahriry KA, Wai DC, Krishnarjuna B, Badawy NN, Chittoor B, MacRaild CA, Williams-Noonan BJ, Surm JM, Chalmers DK, Zhang AH, Peigneur S, Mobli M, Tytgat J, Prentis P, Norton RS. Structural and functional characterisation of a novel peptide from the Australian sea anemone Actinia tenebrosa. Toxicon 2019; 168:104-112. [DOI: 10.1016/j.toxicon.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
|
34
|
Conformational dynamics of [Formula: see text]-conotoxin PnIB in complex solvent systems. Mol Divers 2019; 24:1291-1299. [PMID: 31502188 DOI: 10.1007/s11030-019-09993-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
Cone snails are slow-moving animals that secure survival by injecting to their prey a concoction of highly potent and stable neurotoxic peptides called conotoxins. These small toxins (~ 10-30 AA) interact with ion channels and their diverse structures account for various variables such as the environment and the prey of preference. This study probed the conformational space of α-conotoxin PnIB from Conus pennaceus by performing all-atom molecular dynamics simulations on the conotoxin in complex solvent systems of water and octanol. Secondary structure analyses showed a uniform conformation for the pure (C100Oc, C100W) and minute (C95Oc, C5Oc) systems. In C50Oc, however, structural changes were observed. The original helices were converted to turns and were shown to happen simultaneously with the elongation of the helix and shortening of end-to-end distance. The transitions complement the orientation of the peptide at the interface. The shift to the broken helix conformation is marked by the rearrangement of solvent molecules to a framework that favors the accumulation of water molecules at residues 6-11 of the H2 region. This promotes specific protein-solvent interactions that facilitate secondary structure transitions. As PnIB has shown favorable binding toward neuronal nicotinic acetylcholine receptors, this study may provide insights on this conotoxin's therapeutic potential. Description: Structural changes in PnIB are accompanied by a simultaneous change in solvent density.
Collapse
|
35
|
Schütter N, Barreto YC, Vardanyan V, Hornig S, Hyslop S, Marangoni S, Rodrigues-Simioni L, Pongs O, Dal Belo CA. Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA 2-Type Toxin from Micrurus dumerilii carinicauda Coral Snake Venom. Toxins (Basel) 2019; 11:E335. [PMID: 31212818 PMCID: PMC6628393 DOI: 10.3390/toxins11060335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin's action on acetylcholine release at mammalian neuromuscular junctions.
Collapse
Affiliation(s)
- Niklas Schütter
- Institute for Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of the Saarland, D-66421 Hamburg, Germany.
| | - Yuri Correia Barreto
- Interdisciplinary Centre for Research in Biotechnology (CIPBiotec), Federal University of Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel 97300-000, RS, Brazil.
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology NAS RA, Hastratyan 7, Yerevan 0014, Armenia.
| | - Sönke Hornig
- Center for Molecular Neurobiology Hamburg, Experimental Neuropediatrics, UKE Hamburg, 20251 Hamburg, Germany.
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP, Brazil.
| | - Sérgio Marangoni
- Department of Biochemistry, Institute of Biology, State University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas 13083-862, SP, Brazil.
| | - Léa Rodrigues-Simioni
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP, Brazil.
| | - Olaf Pongs
- Institute for Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of the Saarland, D-66421 Hamburg, Germany.
| | - Cháriston André Dal Belo
- Interdisciplinary Centre for Research in Biotechnology (CIPBiotec), Federal University of Pampa (UNIPAMPA), Campus São Gabriel, São Gabriel 97300-000, RS, Brazil.
| |
Collapse
|
36
|
The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella. Mol Biol Evol 2019; 36:2001-2012. [DOI: 10.1093/molbev/msz132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
The cnidarian Nematostella vectensis has become an established lab model, providing unique opportunities for venom evolution research. The Nematostella venom system is multimodal: involving both nematocytes and ectodermal gland cells, which produce a toxin mixture whose composition changes throughout the life cycle. Additionally, their modes of interaction with predators and prey vary between eggs, larvae, and adults, which is likely shaped by the dynamics of the venom system.
Nv1 is a major component of adult venom, with activity against arthropods (through specific inhibition of sodium channel inactivation) and fish. Nv1 is encoded by a cluster of at least 12 nearly identical genes that were proposed to be undergoing concerted evolution. Surprisingly, we found that Nematostella venom includes several Nv1 paralogs escaping a pattern of general concerted evolution, despite belonging to the Nv1-like family. Here, we show two of these new toxins, Nv4 and Nv5, are lethal for zebrafish larvae but harmless to arthropods, unlike Nv1. Furthermore, unlike Nv1, the newly identified toxins are expressed in early life stages. Using transgenesis and immunostaining, we demonstrate that Nv4 and Nv5 are localized to ectodermal gland cells in larvae.
The evolution of Nv4 and Nv5 can be described either as neofunctionalization or as subfunctionalization. Additionally, the Nv1-like family includes several pseudogenes being an example of nonfunctionalization and venom evolution through birth-and-death mechanism. Our findings reveal the evolutionary history for a toxin radiation and point toward the ecological function of the novel toxins constituting a complex cnidarian venom.
Collapse
|
37
|
Gregory AJ, Voit-Ostricki L, Lovas S, Watts CR. Effects of Selective Substitution of Cysteine Residues on the Conformational Properties of Chlorotoxin Explored by Molecular Dynamics Simulations. Int J Mol Sci 2019; 20:E1261. [PMID: 30871150 PMCID: PMC6470725 DOI: 10.3390/ijms20061261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022] Open
Abstract
Chlorotoxin (CTX) is a 36⁻amino acid peptide with eight Cys residues that forms four disulfide bonds. It has high affinity for the glioma-specific chloride channel and matrix metalloprotease-2. Structural and binding properties of CTX analogs with various Cys residue substitutions with l-α-aminobutyric acid (Abu) have been previously reported. Using 4.2 µs molecular dynamics, we compared the conformational and essential space sampling of CTX and analogs with selective substitution of the Cys residues and associated disulfide bonds with either Abu or Ser. The native and substituted peptides maintained a high degree of α-helix propensity from residues 8 through 21, with the exception of substitution of the Cys⁵⁻Cys28 residues with Ser and the Cys16⁻Cys33 residues with Abu. In agreement with previous circular dichroism spectropolarimetry results, the C-terminal β-sheet content varied less from residues 25 through 29 and 32 through 36 and was well conserved in most analogs. The Cys16⁻Cys33 and Cys20⁻Cys35 disulfide-bonded residues appear to be required to maintain the αβ motif of CTX. Selective substitution with the hydrophilic Ser, may mitigate the destabilizing effect of Cys16⁻Cys33 substitution through the formation of an inter residue H-bond from Ser16:OγH to Ser33:OγH bridged by a water molecule. All peptides shared considerable sampled conformational space, which explains the retained receptor binding of the non-native analogs.
Collapse
Affiliation(s)
- Andrew J Gregory
- Department of Neurosurgery, Mayo Clinic Health System-Franciscan Healthcare in La Crosse, La Crosse, WI 54601, USA.
| | - Leah Voit-Ostricki
- Department of Neurosurgery, Mayo Clinic Health System-Franciscan Healthcare in La Crosse, La Crosse, WI 54601, USA.
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA.
| | - Charles R Watts
- Department of Neurosurgery, Mayo Clinic Health System-Franciscan Healthcare in La Crosse, La Crosse, WI 54601, USA.
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
38
|
Heep J, Klaus A, Kessel T, Seip M, Vilcinskas A, Skaljac M. Proteomic Analysis of the Venom from the Ruby Ant Myrmica rubra and the Isolation of a Novel Insecticidal Decapeptide. INSECTS 2019; 10:E42. [PMID: 30717163 PMCID: PMC6409562 DOI: 10.3390/insects10020042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022]
Abstract
Ants are a biodiverse group of insects that have evolved toxic venom containing many undiscovered bioactive molecules. In this study, we found that the venom of the ruby ant Myrmica rubra is a rich source of peptides. LC-MS analysis revealed the presence of 142 different peptides varying in molecular weight, sequence length, and hydrophobicity. One of the most abundant peaks was selected for further biochemical and functional characterization. Combined Edman degradation and de novo peptide sequencing revealed the presence of a novel decapeptide (myrmicitoxin) with the amino acid sequence NH₂-IDPKLLESLA-CONH₂. The decapeptide was named U-MYRTX-MRArub1 and verified against a synthetic standard. The amidated peptide was tested in a synthetic form to determine the antimicrobial activity towards the bacterial pathogens and insecticidal potential against pea aphids (Acyrthosiphon pisum). This peptide did not show antimicrobial activity but it significantly reduced the survival of aphids. It also increased the sensitivity of the aphids to two commonly used chemical insecticides (imidacloprid and methomyl). Since ant venom research is still in its infancy, the findings of this first study on venom peptides derived from M. rubra highlight these insects as an important and rich source for discovery of novel lead structures with potential application in pest control.
Collapse
Affiliation(s)
- John Heep
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Alica Klaus
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Tobias Kessel
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Maximilian Seip
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Marisa Skaljac
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstrasse 2, 35394 Giessen, Germany.
| |
Collapse
|
39
|
Tamadon H, Ghasemi Z, Ghasemi F, Hosseinmardi N, Vatanpour H, Janahmadi M. Characterization of Functional Effects of Two New Active Fractions Isolated From Scorpion Venom on Neuronal Ca 2+ Spikes: A Possible Action on Ca 2+-Dependent Dependent K + Channels. Basic Clin Neurosci 2019. [PMID: 31031893 PMCID: PMC6484188 DOI: 10.32598/bcn.9.10.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION It is a long time that natural toxin research is conducted to unlock the medical potential of toxins. Although venoms-toxins cause pathophysiological conditions, they may be effective to treat several diseases. Since toxins including scorpion toxins target voltage-gated ion channels, they may have profound effects on excitable cells. Therefore, elucidating the cellular and electrophysiological impacts of toxins, particularly scorpion toxins would be helpful in future drug development opportunities. METHODS Intracellular recording was made from F1 cells of Helix aspersa in the presence of calcium Ringer solution in which Na+ and K+ channels were blocked. Then, the modulation of channel function in the presence of extracellular application of F4 and F6 toxins and kaliotoxin (KTX; 50 nM and 1 μM) was examined by assessing the electrophysiological characteristics of calcium spikes. RESULTS The two active toxin fractions, similar to KTX, a known Ca2+-activated K+ channel blocker, reduced the amplitude of AHP, enhanced the firing frequency of calcium spikes and broadened the duration of Ca2+ spikes. Therefore, it might be inferred that these two new fractions induce neuronal hyperexcitability possibly, in part, by blocking calcium-activated potassium channel current. However, this supposition requires further investigation using voltage clamping technique. CONCLUSION These toxin fractions may act as blocker of calcium-activated potassium channels.
Collapse
Affiliation(s)
- Hanieh Tamadon
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, School of Medicine, Tarbiat
Modares University, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vatanpour
- Department of Toxicology and Pharmacology, School of
Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Neuroscience Research Center,
School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Corresponding Author: Mahyar
Janahmadi, PhD.Address: Department of Physiology, Neuroscience Research
Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Tel: +98 (21) 22439971
E-mail:;
| |
Collapse
|
40
|
Dash TS, Shafee T, Harvey PJ, Zhang C, Peigneur S, Deuis JR, Vetter I, Tytgat J, Anderson MA, Craik DJ, Durek T, Undheim EAB. A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure 2018; 27:315-326.e7. [PMID: 30554841 DOI: 10.1016/j.str.2018.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 10/27/2022]
Abstract
Disulfide-rich peptides (DRPs) play diverse physiological roles and have emerged as attractive sources of pharmacological tools and drug leads. Here we describe the 3D structure of a centipede venom peptide, U-SLPTX15-Sm2a, whose family defines a unique class of one of the most widespread DRP folds known, the cystine-stabilized α/β fold (CSαβ). This class, which we have named the two-disulfide CSαβ fold (2ds-CSαβ), contains only two internal disulfide bonds as opposed to at least three in all other confirmed CSαβ peptides, and constitutes one of the major neurotoxic peptide families in centipede venoms. We show the 2ds-CSαβ is widely distributed outside centipedes and is likely an ancient fold predating the split between prokaryotes and eukaryotes. Our results provide insights into the ancient evolutionary history of a widespread DRP fold and highlight the usefulness of 3D structures as evolutionary tools.
Collapse
Affiliation(s)
- Thomas S Dash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Shafee
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chuchu Zhang
- Department of Physiology, University of California, San Francisco, CA 94143, USA
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; School of Pharmacy, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven 3000, Belgium
| | - Marilyn A Anderson
- La Trobe Institute for Molecular Science, La Trobe University, VIC 3083, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
41
|
Govindu PCV, Mohanan A, Dolle A, Gowd KH. Conformations of cysteine disulfides of peptide toxins: Advantage of differentiating forward and reverse asymmetric disulfide conformers. J Biomol Struct Dyn 2018; 37:2017-2029. [DOI: 10.1080/07391102.2018.1475257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Panchada Ch V Govindu
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Athul Mohanan
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashwini Dolle
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| |
Collapse
|
42
|
Sunagar K, Columbus-Shenkar YY, Fridrich A, Gutkovich N, Aharoni R, Moran Y. Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biol 2018; 16:108. [PMID: 30261880 PMCID: PMC6161364 DOI: 10.1186/s12915-018-0578-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an “explosive” organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development. However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1—cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte-specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development, and evolution of cnidocytes. Electronic supplementary material The online version of this article (10.1186/s12915-018-0578-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kartik Sunagar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel. .,Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Arie Fridrich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Nadya Gutkovich
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
43
|
K V1.2 channel-specific blocker from Mesobuthus eupeus scorpion venom: Structural basis of selectivity. Neuropharmacology 2018; 143:228-238. [PMID: 30248306 DOI: 10.1016/j.neuropharm.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/25/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Scorpion venom is an unmatched source of selective high-affinity ligands of potassium channels. There is a high demand for such compounds to identify and manipulate the activity of particular channel isoforms. The objective of this study was to obtain and characterize a specific ligand of voltage-gated potassium channel KV1.2. As a result, we report the remarkable selectivity of the peptide MeKTx11-1 (α-KTx 1.16) from Mesobuthus eupeus scorpion venom to this channel isoform. MeKTx11-1 is a high-affinity blocker of KV1.2 (IC50 ∼0.2 nM), while its activity against KV1.1, KV1.3, and KV1.6 is 10 000, 330 and 45 000 fold lower, respectively, as measured using the voltage-clamp technique on mammalian channels expressed in Xenopus oocytes. Two substitutions, G9V and P37S, convert MeKTx11-1 to its natural analog MeKTx11-3 (α-KTx 1.17) having 15 times lower activity and reduced selectivity to KV1.2. We produced MeKTx11-1 and MeKTx11-3 as well as their mutants MeKTx11-1(G9V) and MeKTx11-1(P37S) recombinantly and demonstrated that point mutations provide an intermediate effect on selectivity. Key structural elements that explain MeKTx11-1 specificity were identified by molecular modeling of the toxin-channel complexes. Confirming our molecular modeling predictions, site-directed transfer of these elements from the pore region of KV1.2 to KV1.3 resulted in the enhanced sensitivity of mutant KV1.3 channels to MeKTx11-1. We conclude that MeKTx11-1 may be used as a selective tool in neurobiology.
Collapse
|
44
|
Engineering varied serine protease inhibitors by converting P1 site of BF9, a weakly active Kunitz-type animal toxin. Int J Biol Macromol 2018; 120:1190-1197. [PMID: 30172807 DOI: 10.1016/j.ijbiomac.2018.08.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/14/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022]
Abstract
Although there were a lot of weakly active animal toxins in the venoms, their values and applications are still mysterious, such as BF9, which is a Kunitz-type toxin isolated from the venom of the elapid snake Bungarus fasciatus. Here, we used BF9 to be a molecular scaffold, and engineered eight BF9-derived peptides by changing P1 site Asn17 of BF9, such as BF9-N17Y and BF9-N17T designed from the polar subfamily, BF9-N17L and BF9-N17G designed from the Non-polar subfamily, BF9-N17D designed from acidic subfamily, and BF9-N17H, BF9-N17K and BF9-N17R designed from basic subfamily. Through enzyme inhibitor experiment assays, we found a potent and selective chymotrypsin inhibitor BF9-N17Y, a potent and selective coagulation factor XIa inhibitor BF9-N17H, and two highly potent coagulation factor XIa inhibitors BF9-N17K and BF9-N17. APTT and PT assays further showed that BF9-N17H, BF9-N17K and BF9-N17R were three novel anticoagulants with selectively intrinsic coagulation pathway inhibitory activity. Considering that natural weakly active animal toxins are also a huge peptide resource, our present work might open a new window about pharmacological applications of weakly active animal toxins, which might be good templates for potent and selective molecular probe and lead drug designs.
Collapse
|
45
|
Cnidarian peptide neurotoxins: a new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov Today 2018; 24:189-197. [PMID: 30165198 DOI: 10.1016/j.drudis.2018.08.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/13/2018] [Accepted: 08/10/2018] [Indexed: 01/17/2023]
Abstract
Cnidaria provide the largest source of bioactive peptides for new drug development. The venoms contain enzymes, potent pore-forming toxins and neurotoxins. The neurotoxins can immobilize predators rapidly when discharged via modifying sodium-channel-gating or blocking the potassium channel during the repolarization stage. Most cnidarian neurotoxins remain conserved under the strong influence of negative selection. Neuroactive peptides targeting the central nervous system through affinity with ion channels could provide insight leading to drug treatment of neurological diseases, which arise from ion channel dysfunctions. Although marine resources offer thousands of possible peptides, only one peptide derived from Cnidaria: ShK-186, also named dalazatide, has reached the pharmaceutical market. This review focuses on neuroprotective agents derived from cnidarian neurotoxic peptides.
Collapse
|
46
|
Khemili D, Valenzuela C, Laraba-Djebari F, Hammoudi-Triki D. Differential effect of Androctonus australis hector venom components on macrophage K V channels: electrophysiological characterization. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:1-13. [PMID: 30006779 DOI: 10.1007/s00249-018-1323-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.
Collapse
Affiliation(s)
- Dalila Khemili
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
47
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
48
|
Ojeda PG, Ramírez D, Alzate-Morales J, Caballero J, Kaas Q, González W. Computational Studies of Snake Venom Toxins. Toxins (Basel) 2017; 10:E8. [PMID: 29271884 PMCID: PMC5793095 DOI: 10.3390/toxins10010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.
Collapse
Affiliation(s)
- Paola G Ojeda
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - David Ramírez
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomedicas, Universidad Autonoma de Chile, 3460000 Talca, Chile.
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), Universidad de Talca, 3460000 Talca, Chile.
- Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, 3460000 Talca, Chile.
| |
Collapse
|
49
|
Schmidt RS, Macêdo JP, Steinmann ME, Salgado AG, Bütikofer P, Sigel E, Rentsch D, Mäser P. Transporters of Trypanosoma brucei-phylogeny, physiology, pharmacology. FEBS J 2017; 285:1012-1023. [PMID: 29063677 DOI: 10.1111/febs.14302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei comprise the causative agents of sleeping sickness, T. b. gambiense and T. b. rhodesiense, as well as the livestock-pathogenic T. b. brucei. The parasites are transmitted by the tsetse fly and occur exclusively in sub-Saharan Africa. T. brucei are not only lethal pathogens but have also become model organisms for molecular parasitology. We focus here on membrane transport proteins of T. brucei, their contribution to homeostasis and metabolism in the context of a parasitic lifestyle, and their pharmacological role as potential drug targets or routes of drug entry. Transporters and channels in the plasma membrane are attractive drug targets as they are accessible from the outside. Alternatively, they can be exploited to selectively deliver harmful substances into the trypanosome's interior. Both approaches require the targeted transporter to be essential: in the first case to kill the trypanosome, in the second case to prevent drug resistance due to loss of the transporter. By combining functional and phylogenetic analyses, we were mining the T. brucei predicted proteome for transporters of pharmacological significance. Here, we review recent progress in the identification of transporters of lipid precursors, amino acid permeases and ion channels in T. brucei.
Collapse
Affiliation(s)
- Remo S Schmidt
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Juan P Macêdo
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | | | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
50
|
Linial M, Rappoport N, Ofer D. Overlooked Short Toxin-Like Proteins: A Shortcut to Drug Design. Toxins (Basel) 2017; 9:E350. [PMID: 29109389 PMCID: PMC5705965 DOI: 10.3390/toxins9110350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Short stable peptides have huge potential for novel therapies and biosimilars. Cysteine-rich short proteins are characterized by multiple disulfide bridges in a compact structure. Many of these metazoan proteins are processed, folded, and secreted as soluble stable folds. These properties are shared by both marine and terrestrial animal toxins. These stable short proteins are promising sources for new drug development. We developed ClanTox (classifier of animal toxins) to identify toxin-like proteins (TOLIPs) using machine learning models trained on a large-scale proteomic database. Insects proteomes provide a rich source for protein innovations. Therefore, we seek overlooked toxin-like proteins from insects (coined iTOLIPs). Out of 4180 short (<75 amino acids) secreted proteins, 379 were predicted as iTOLIPs with high confidence, with as many as 30% of the genes marked as uncharacterized. Based on bioinformatics, structure modeling, and data-mining methods, we found that the most significant group of predicted iTOLIPs carry antimicrobial activity. Among the top predicted sequences were 120 termicin genes from termites with antifungal properties. Structural variations of insect antimicrobial peptides illustrate the similarity to a short version of the defensin fold with antifungal specificity. We also identified 9 proteins that strongly resemble ion channel inhibitors from scorpion and conus toxins. Furthermore, we assigned functional fold to numerous uncharacterized iTOLIPs. We conclude that a systematic approach for finding iTOLIPs provides a rich source of peptides for drug design and innovative therapeutic discoveries.
Collapse
Affiliation(s)
- Michal Linial
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Nadav Rappoport
- Institute for Computational Health Sciences, UCSF, San Francisco, CA 94158, USA.
| | - Dan Ofer
- Department of Biological Chemistry, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|