1
|
Ausili A. Despite their structural similarities, the cytosolic isoforms of human Hsp90 show different behaviour in thermal unfolding due to their conformation: An FTIR study. Arch Biochem Biophys 2023; 740:109599. [PMID: 37028636 DOI: 10.1016/j.abb.2023.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Heat shock proteins 90 (Hsp90) are chaperones that promote the proper folding of other proteins under high temperature stress situations. Hsp90s are highly conserved and ubiquitous proteins, and in mammalian cells, they are localized in the cytoplasm, endoplasmic reticulum, and mitochondria. Cytoplasmic Hsp90 are named Hsp90α and Hsp90β and differ mainly in their expression pattern: Hsp90α is expressed under stress conditions, while Hsp90β is a constitutive protein. Structurally, both share the same characteristics by presenting three well-conserved domains, one of which, the N-terminal domain, has a binding site for ATP to which various drugs targeting this protein, including radicicol, can bind. The protein is mainly found in dimeric form and adopts different conformations depending on the presence of ligands, co-chaperones and client proteins. In this study, some aspects of structure and thermal unfolding of cytoplasmic human Hsp90 were analysed by infrared spectroscopy. The effect on Hsp90β of binding with a non-hydrolysable ATP analogue and radicicol was also examined. The results obtained showed that despite the high similarity in secondary structure the two isoforms exhibit substantial differences in their behaviour during thermal unfolding, as Hsp90α exhibits higher thermal stability, slower denaturation process and different event sequence during unfolding. Ligand binding strongly stabilizes Hsp90β and slightly modifies the secondary structure of the protein as well. Most likely, these structural and thermostability characteristics are closely related to the conformational cycling of the chaperone and its propensity to exist in monomer or dimer form.
Collapse
Affiliation(s)
- Alessio Ausili
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
| |
Collapse
|
2
|
Ausili A, Corbalán-García S, Gómez-Fernández JC. The binding of different model membranes with PKCε C2 domain is not dependent on membrane curvature but affects the sequence of events during unfolding. Arch Biochem Biophys 2021; 705:108910. [PMID: 33991498 DOI: 10.1016/j.abb.2021.108910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/28/2022]
Abstract
The C2 domain of novel protein kinases C (nPKC) binds to membranes in a Ca2+-independent way contributing to the activation of these enzymes. We have studied the C2 domain of one of these nPKCs, namely PKCε, and confirmed that it establishes a strong interaction with POPA, which is clearly visible through changes in chemical shifts detected through 31P-MAS-NMR and the protection that it exerts on the domain against thermal denaturation seen through DSC and FT-IR. In this study, using two-dimensional correlation analysis (2D-COS) applied to infrared spectra, we determined the sequence of events that occur during the thermal unfolding of the domain and highlighted some differences when phosphatidic acid or cardiolipin are present. Finally, by means of FRET and DLS experiments, we wanted to determine the effect of membrane curvature on the domain/membrane interaction by using lysophosphatidylcholine to introduce positive curvature as a control and we observed that the effect of these phospholipids on the protein binding is not exerted through the change of membrane curvature.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain.
| | - Senena Corbalán-García
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain
| | - Juan C Gómez-Fernández
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, International Campus of Excellence Mare Nostrum, Universidad de Murcia, Apartado. 4021, E-30100, Murcia, Spain
| |
Collapse
|
3
|
Sinha D, Sinha D, Banerjee N, Rai P, Seal S, Chakraborty T, Chatterjee S, Sau S. A conserved arginine residue in a staphylococcal anti-sigma factor is required to preserve its kinase activity, structure, and stability. J Biomol Struct Dyn 2020; 40:4972-4986. [PMID: 33356973 DOI: 10.1080/07391102.2020.1864475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RsbW, σB, and RsbV, encoded by Staphylococcus aureus and related bacteria, act as an anti-sigma factor, an sigma factor, and an anti-anti-sigma factor, respectively. The interaction between RsbW and σB blocks the transcription initiation activity of the latter protein. RsbW also functions as a serine kinase and phosphorylates RsbV in the presence of ATP. Our modeling study indicates that the RsbW-RsbV complex is stabilized by twenty-four intermolecular non-covalent bonds. Of the bond-forming RsbW residues, Arg 23, and Glu 49 are conserved residues. To understand the roles of Arg 23 in RsbW, rRsbW[R23A], a recombinant S. aureus RsbW (rRsbW) harboring Arg to Ala change at position 23, was investigated using various probes. The results reveal that rRsbW[R23A], like rRsbW, exists as the dimers in the aqueous solution. However, rRsbW[R23A], unlike rRsbW, neither interacted with a chimeric RsbV (rRsbV) nor formed the phosphorylated rRsbV in the presence of ATP. Furthermore, the tertiary structure and hydrophobic surface area of rRsbW[R23A] matched little with those of rRsbW. Conversely, both rRsbW[R23A] and rRsbW showed interaction with a recombinant σB (rσB). rRsbW and rRsbW[R23A] were also unfolded via the formation of at least one intermediate in the presence of urea. However, the thermodynamic stability of rRsbW significantly differed from that of rRsbW[R23A]. Our molecular dynamics (MD) simulation study also reveals the substantial change of structure, dimension, and stability of RsbW due to the above mutation. The ways side chain of critical Arg 23 contributes to maintaining the tertiary structure, and stability of RsbW was elaborately discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debasmita Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Debabrata Sinha
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Priya Rai
- Department of Biophysics, Bose Institute, Kolkata, West Bengal, India
| | - Soham Seal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | | | | | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Scirè A, Tanfani F, Ausili A. A Spectroscopic Study on Secondary Structure and Thermal Unfolding of the Plant Toxin Gelonin Confirms Some Typical Structural Characteristics and Unravels the Sequence of Thermal Unfolding Events. Toxins (Basel) 2019; 11:toxins11090483. [PMID: 31443430 PMCID: PMC6783991 DOI: 10.3390/toxins11090483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/17/2022] Open
Abstract
Gelonin from the Indian plant Gelonium multiflorum belongs to the type I ribosome-inactivating proteins (RIPs). Like other members of RIPs, this toxin glycoprotein inhibits protein synthesis of eukaryotic cells; hence, it is largely used in the construction of immunotoxins composed of cell-targeted antibodies. Lysosomal degradation is one of the main issues in targeted tumor therapies, especially for type I RIP-based toxins, as they lack the translocation domains. The result is an attenuated cytosolic delivery and a decrease of the antitumor efficacy of these plant-derived toxins; therefore, strategies to permit their release from endosomal vesicles or modifications of the toxins to make them resistant to degradation are necessary to improve their efficacy. Using infrared spectroscopy, we thoroughly analyzed both the secondary structure and the thermal unfolding of gelonin. Moreover, by the combination of two-dimensional correlation spectroscopy and phase diagram method, it was possible to deduce the sequence of events during the unfolding, confirming the typical characteristic of the RIP members to denature in two steps, as a sequential loss of tertiary and secondary structure was detected at 58 °C and at 65 °C, respectively. Additionally, some discrepancies in the unfolding process between gelonin and saporin-S6, another type I RIP protein, were detected.
Collapse
Affiliation(s)
- Andrea Scirè
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Fabio Tanfani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Alessio Ausili
- Departamento de Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30100 Murcia, Spain.
| |
Collapse
|
5
|
Effects of Random Mutagenesis and In Vivo Selection on the Specificity and Stability of a Thermozyme. Catalysts 2019. [DOI: 10.3390/catal9050440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Factors that give enzymes stability, activity, and substrate recognition result from the combination of few weak molecular interactions, which can be difficult to study through rational protein engineering approaches. We used irrational random mutagenesis and in vivo selection to test if a β-glycosidase from the thermoacidophile Saccharolobus solfataricus (Ssβ-gly) could complement an Escherichia coli strain unable to grow on lactose. The triple mutant of Ssβ-gly (S26L, P171L, and A235V) was more active than the wild type at 85 °C, inactivated at this temperature almost 300-fold quicker, and showed a 2-fold higher kcat on galactosides. The three mutations, which were far from the active site, were analyzed to test their effect at the structural level. Improved activity on galactosides was induced by the mutations. The S26L and P171L mutations destabilized the enzyme through the removal of a hydrogen bond and increased flexibility of the peptide backbone, respectively. However, the flexibility added by S26L mutation improved the activity at T > 60 °C. This study shows that random mutagenesis and biological selection allowed the identification of residues that are critical in determining thermal activity, stability, and substrate recognition.
Collapse
|
6
|
Tao Y, Wu Y, Zhang L. Advancements of two dimensional correlation spectroscopy in protein researches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:185-193. [PMID: 29409703 DOI: 10.1016/j.saa.2018.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 05/26/2023]
Abstract
The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.
Collapse
Affiliation(s)
- Yanchun Tao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Liping Zhang
- Department of Foundation, Jilin Business and Technology College, No. 1666 Kalunhu Street, Changchun 130507, China.
| |
Collapse
|
7
|
Wu Y, Zhang L, Jung YM, Ozaki Y. Two-dimensional correlation spectroscopy in protein science, a summary for past 20years. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:291-299. [PMID: 28823970 DOI: 10.1016/j.saa.2017.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/04/2017] [Indexed: 05/26/2023]
Abstract
Two-dimensional correlation spectroscopy (2DCOS) has been widely used to Infrared, Raman, Near IR, Optical Activity (ROA), Vibrational Circular Dichroism (VCD) and Fluorescence spectroscopy. In addition, several new developments, such as 2D hetero-correlation analysis, moving-window two-dimensional (MW2D) correlation, model based correlation (βν and kν correlation analyses) have also well incorporated into protein research. They have been used to investigate secondary structure, denaturation, folding and unfolding changes of protein, and have contributed greatly to the field of protein science. This review provides an overview of the applications of 2DCOS in the field of protein science for the past 20 year, especially to memory our old friend, Dr. Boguslawa Czarnik-Matusewicz, for her great contribution in this research field. The powerful utility of 2DCOS combined with various analytical techniques in protein studies is summarized. The noteworthy developments and perspective of 2DCOS in this field are highlighted finally.
Collapse
Affiliation(s)
- Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Liping Zhang
- Department of Foundation, Jilin Business and Technology College, No. 1666 Kalunhu Street, Changchun 130507, China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yukihiro Ozaki
- School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
8
|
Sánchez M, Scirè A, Tanfani F, Ausili A. The thermal unfolding of the ribosome-inactivating protein saporin-S6 characterized by infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1357-64. [DOI: 10.1016/j.bbapap.2015.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
9
|
Cobucci-Ponzano B, Strazzulli A, Iacono R, Masturzo G, Giglio R, Rossi M, Moracci M. Novel thermophilic hemicellulases for the conversion of lignocellulose for second generation biorefineries. Enzyme Microb Technol 2015. [PMID: 26215346 DOI: 10.1016/j.enzmictec.2015.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The biotransformation of lignocellulose biomasses into fermentable sugars is a very complex procedure including, as one of the most critical steps, the (hemi) cellulose hydrolysis by specific enzymatic cocktails. We explored here, the potential of stable glycoside hydrolases from thermophilic organisms, so far not used in commercial enzymatic preparations, for the conversion of glucuronoxylan, the major hemicellulose of several energy crops. Searches in the genomes of thermophilic bacteria led to the identification, efficient production, and detailed characterization of novel xylanase and α-glucuronidase from Alicyclobacillus acidocaldarius (GH10-XA and GH67-GA, respectively) and a α-glucuronidase from Caldicellulosiruptor saccharolyticus (GH67-GC). Remarkably, GH10-XA, if compared to other thermophilic xylanases from this family, coupled good specificity on beechwood xylan and the best stability at 65 °C (3.5 days). In addition, GH67-GC was the most stable α-glucuronidases from this family and the first able to hydrolyse both aldouronic acid and aryl-α-glucuronic acid substrates. These enzymes, led to the very efficient hydrolysis of beechwood xylan by using 7- to 9-fold less protein (concentrations <0.3 μM) and in much less reaction time (2h vs 12h) if compared to other known biotransformations catalyzed by thermophilic enzymes. In addition, remarkably, together with a thermophilic β-xylosidase, they catalyzed the production of xylose from the smart cooking pre-treated biomass of one of the most promising energy crops for second generation biorefineries. We demonstrated that search by the CAZy Data Bank of currently available genomes and detailed enzymatic characterization of recombinant enzymes allow the identification of glycoside hydrolases with novel and interesting properties and applications.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Andrea Strazzulli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Iacono
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Giuseppe Masturzo
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Rosa Giglio
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| | - Marco Moracci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
10
|
Ausili A, Vitale A, Labella T, Rosso F, Barbarisi A, Gómez-Fernández JC, D’Auria S. Alcohol dehydrogenase from the hyperthermophilic archaeon Pyrobaculum aerophilum: Stability at high temperature. Arch Biochem Biophys 2012; 525:40-6. [DOI: 10.1016/j.abb.2012.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/25/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|
11
|
Cobucci-Ponzano B, Zorzetti C, Strazzulli A, Bedini E, Corsaro MM, Sulzenbacher G, Rossi M, Moracci M. Exploitation of β-glycosyl azides for the preparation of α-glycosynthases. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.679814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Cobucci-Ponzano B, Perugino G, Strazzulli A, Rossi M, Moracci M. Thermophilic Glycosynthases for Oligosaccharides Synthesis. Methods Enzymol 2012; 510:273-300. [DOI: 10.1016/b978-0-12-415931-0.00015-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Scirè A, Tanfani F, Bertoli E, Furlani E, Nadozie HON, Cerutti H, Cortelazzo A, Bini L, Guerranti R. The belonging of gpMuc, a glycoprotein from Mucuna pruriens seeds, to the Kunitz-type trypsin inhibitor family explains its direct anti-snake venom activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:887-895. [PMID: 21397480 DOI: 10.1016/j.phymed.2011.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 12/20/2010] [Accepted: 02/07/2011] [Indexed: 05/30/2023]
Abstract
In Nigeria, Mucuna pruriens seeds are locally prescribed as an oral prophylactic for snake bite and it is claimed that when two seeds are swallowed they protect the individual for a year against snake bites. In order to understand the Mucuna pruriens antisnake properties, the proteins from the acqueous extract of seeds were purified by three chromatographic steps: ConA affinity chromatography, tandem anionic-cationic exchange and gel filtration, obtaining a fraction conventionally called gpMucB. This purified fraction was analysed by SDS-PAGE obtaining 3 bands with apparent masses ranging from 20 to 24 kDa, and by MALDI-TOF which showed two main peaks of 21 and 23 kDa and another small peak of 19 kDa. On the other hand, gel filtration analysis of the native protein indicated a molecular mass of about 70 kDa suggesting that in its native form, gpMucB is most likely an oligomeric multiform protein. Infrared spectroscopy of gpMucB indicated that the protein is particularly thermostable both at neutral and acidic pHs and that it is an all beta protein. All data suggest that gpMucB belongs to the Kunitz-type trypsin inhibitor family explaining the direct anti-snake venom activity of Mucuna pruriens seeds.
Collapse
Affiliation(s)
- Andrea Scirè
- Dipartimento di Biochimica, Biologia, e Genetica, Università Politecnica delle Marche, Via Ranieri, 60131 Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cobucci-Ponzano B, Perugino G, Rossi M, Moracci M. Engineering the stability and the activity of a glycoside hydrolase. Protein Eng Des Sel 2010; 24:21-6. [PMID: 20980336 DOI: 10.1093/protein/gzq085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycosidases, the enzymes responsible in nature for the catabolism of carbohydrates, are well-studied catalysts widely used in industrial biotransformations and oligosaccharide synthesis, which are also attractive targets for drug development. Glycosidases from hyperthermophilic organisms (thriving at temperatures > 85 °C) are also interesting models to understand the molecular basis of protein stability and to produce robust tools for industrial applications. Here, we review the results obtained in the last two decades by our group on a β-glycosidase from the hyperthermophilic Archaeon Sulfolobus solfataricus. Our findings will be presented in the general context of the stability of proteins from hyperthermophiles and of the chemo-enzymatic synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Beatrice Cobucci-Ponzano
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | |
Collapse
|
15
|
Fabian H, Yu Z, Wang Y, Naumann D. Generalized 2D and time-resolved FTIR studies of protein unfolding events. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.02.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Scirè A, Marabotti A, Staiano M, Briand L, Varriale A, Bertoli E, Tanfani F, D'Auria S. Structure and stability of a rat odorant-binding protein: another brick in the wall. J Proteome Res 2009; 8:4005-13. [PMID: 19537758 DOI: 10.1021/pr900346z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of temperature on the structure of the rat odorant-binding protein was investigated by spectroscopic and in silico methodologies. In particular, in this work, we examined the structural features of the rat OBP-1F by Fourier-transform infrared spectroscopy and molecular dynamics investigations. The obtained spectroscopic results were analyzed using the following three different methods based on the unexchanged amide hydrogens of the protein sample: (1) the analysis of difference spectra; (2) the generalized 2D-IR correlation spectroscopy; (3) the phase diagram method. The three methods indicated that at high temperatures the rOBP-1F structure undergoes a relaxation process involving the protein tertiary organization before undergoing the denaturation and aggregation processes, suggesting the presence of an intermediate state such as a molten globule-like state. Importantly, the proposed analyses represent a general approach that could be applied to the study of protein stability.
Collapse
Affiliation(s)
- Andrea Scirè
- Department of Biochemistry, Biology, and Genetics, Universita Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Shashilov VA, Lednev IK. 2D correlation deep UV resonance raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc 2007; 130:309-17. [PMID: 18067295 DOI: 10.1021/ja076225s] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The early stages of hen egg white lysozyme (HEWL) fibrillation were quantitatively characterized by two-dimensional correlation deep UV resonance Raman spectroscopy (2D-DUVRR) in terms of the sequential order of events and their characteristic times. The evolution of individual secondary structural elements was established through the correlation between Amide I, Amide III, and Calpha-H bending Raman bands. The temporal order of tertiary and individual secondary structural changes was probed through the cross-correlation of phenylalanine and Amide Raman bands. Both the sequential order and the characteristic times of tertiary and secondary structural changes allowed for reconstructing the molecular mechanism of lysozyme structural changes at the early stages of fibrillation. The 2D-DUVRR analysis of our data indicated that melting of the alpha-helix happened after the formation of the disordered structure, which was termed as apparent inverse order of secondary structural changes. We demonstrated that this apparent inverse order of events is typical for all chemical reactions involving the formation of intermediate(s), which may lead to the serious misinterpretation of 2D correlation results. We proposed a new simulation-aided approach for reconstructing and quantitatively characterizing the reaction mechanism of a (bio)chemical reaction that accounts for the apparent inverse order of events.
Collapse
Affiliation(s)
- Victor A Shashilov
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222, USA
| | | |
Collapse
|
18
|
Ausili A, Cobucci-Ponzano B, Di Lauro B, D'Avino R, Perugino G, Bertoli E, Scirè A, Rossi M, Tanfani F, Moracci M. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures. Proteins 2007; 67:991-1001. [PMID: 17357157 DOI: 10.1002/prot.21368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The identification of the determinants of protein thermal stabilization is often pursued by comparing enzymes from hyperthermophiles with their mesophilic counterparts while direct structural comparisons among proteins and enzymes from hyperthermophiles are rather uncommon. Here, oligomeric beta-glycosidases from the hyperthermophilic archaea Sulfolobus solfataricus (Ss beta-gly), Thermosphaera aggregans (Ta beta-gly), and Pyrococcus furiosus (Pf beta-gly), have been compared. Studies of FTIR spectroscopy and kinetics of thermal inactivation showed that the three enzymes had similar secondary structure composition, but Ss beta-gly and Ta beta-gly (temperatures of melting 98.1 and 98.4 degrees C, respectively) were less stable than Pf beta-gly, which maintained its secondary structure even at 99.5 degrees C. The thermal denaturation of Pf beta-gly, followed in the presence of SDS, suggested that this enzyme is stabilized by hydrophobic interactions. A detailed inspection of the 3D-structures of these enzymes supported the experimental results: Ss beta-gly and Ta beta-gly are stabilized by a combination of ion-pairs networks and intrasubunit S-S bridges while the increased stability of Pf beta-gly resides in a more compact protein core. The different strategies of protein stabilization give experimental support to recent theories on thermophilic adaptation and suggest that different stabilization strategies could have been adopted among archaea.
Collapse
Affiliation(s)
- Alessio Ausili
- Institute of Biochemistry, Università Politecnica delle Marche, Via Ranieri, 60131 Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ausili A, Cobucci-Ponzano B, Di Lauro B, D'Avino R, Scirè A, Rossi M, Tanfani F, Moracci M. Structural basis of the destabilization produced by an amino-terminal tag in the β-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus. Biochimie 2006; 88:807-17. [PMID: 16494988 DOI: 10.1016/j.biochi.2006.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
We have previously shown that the major ion-pairs network of the tetrameric beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus involves more than 16 ion-pairs and hydrogen bonds between several residues from the four subunits and protects the protein from thermal unfolding by sewing the carboxy-termini of the enzyme. We show here that the amino-terminal of the enzyme also plays a relevant role in the thermostabilization of the protein. In fact, the addition of four extra amino acids at the amino-terminal of the beta-glycosidase, though not affecting the catalytic machinery of the enzyme and its thermophilicity, produced a faster enzyme inactivation in the temperature range 85-95 degrees C and decreased the Tm of the protein of 6 degrees C, measured by infrared spectroscopy. In addition, detailed two-dimensional IR correlation analysis revealed that the quaternary structure of the tagged enzyme is destabilized at 85 degrees C whilst that of the wild type enzyme is stable up to 98 degrees C. Molecular models allowed the rationalization of the experimental data indicating that the longer amino-terminal tail may destabilize the beta-glycosidase by enhancing the molecular fraying of the polypeptide and loosening the dimeric interfaces. The data support the hypothesis that fraying of the polypeptide chain termini is a relevant event in protein unfolding.
Collapse
Affiliation(s)
- A Ausili
- Institute of Biochemistry, Università Politecnica delle Marche, Via Ranieri, 60131 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Herman P, Staiano M, Marabotti A, Varriale A, Scirè A, Tanfani F, Vecer J, Rossi M, D'Auria S. D-Trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: The binding of trehalose and maltose results in different protein conformational states. Proteins 2006; 63:754-67. [PMID: 16532450 DOI: 10.1002/prot.20952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this work, we used fluorescence spectroscopy, molecular dynamics simulation, and Fourier transform infrared spectroscopy for investigating the effect of trehalose binding and maltose binding on the structural properties and the physical parameters of the recombinant D-trehalose/D-maltose binding protein (TMBP) from the hyperthermophilic archaeon Thermococcus litoralis. The binding of the two sugars to TMBP was studied in the temperature range 20 degrees-100 degrees C. The results show that TMBP possesses remarkable temperature stability and its secondary structure does not melt up to 90 degrees C. Although both the secondary structure itself and the sequence of melting events were not significantly affected by the sugar binding, the protein assumes different conformations with different physical properties depending whether maltose or trehalose is bound to the protein. At low and moderate temperatures, TMBP possesses a structure that is highly compact both in the absence and in the presence of two sugars. At about 90 degrees C, the structure of the unliganded TMBP partially relaxes whereas both the TMBP/maltose and the TMBP/trehalose complexes remain in the compact state. In addition, Fourier transform infrared results show that the population of alpha-helices exposed to the solvent was smaller in the absence than in the presence of the two sugars. The spectroscopic results are supported by molecular dynamics simulations. Our data on dynamics and stability of TMBP can contribute to a better understanding of transport-related functions of TMBP and constitute ground for targeted modifications of this protein for potential biotechnological applications.
Collapse
Affiliation(s)
- Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dluhy R, Shanmukh S, Morita SI. The application of two-dimensional correlation spectroscopy to surface and interfacial analysis. SURF INTERFACE ANAL 2006. [DOI: 10.1002/sia.2358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|