1
|
Tseytin I, Lezerovich S, David N, Sal-Man N. Interactions and substrate selectivity within the SctRST complex of the type III secretion system of enteropathogenic Escherichia coli. Gut Microbes 2022; 14:2013763. [PMID: 34965187 PMCID: PMC8726614 DOI: 10.1080/19490976.2021.2013763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Many bacterial pathogens employ a protein complex, termed the type III secretion system (T3SS), to inject bacterial effectors into host cells. These effectors manipulate various cellular processes to promote bacterial growth and survival. The T3SS complex adopts a nano-syringe shape that is assembled across the bacterial membranes, with an extracellular needle extending toward the host cell membrane. The assembly of the T3SS is initiated by the association of three proteins, known as SctR, SctS, and SctT, which create an entry portal to the translocation channel within the bacterial inner membrane. Using the T3SS of enteropathogenic Escherichia coli, we investigated, by mutational and functional analyses, the role of two structural construction sites formed within the SctRST complex and revealed that they are mutation-resistant components that are likely to act as seals preventing leakage of ions and metabolites rather than as substrate gates. In addition, we identified two residues in the SctS protein, Pro23, and Lys54, that are critical for the proper activity of the T3SS. We propose that Pro23 is critical for the physical orientation of the SctS transmembrane domains that create the tip of the SctRST complex and for their positioning with regard to other T3SS substructures. Surprisingly, we found that SctS Lys54, which was previously suggested to mediate the SctS self-oligomerization, is critical for T3SS activity due to its essential role in SctS-SctT hetero-interactions.
Collapse
Affiliation(s)
- Irit Tseytin
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shir Lezerovich
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nofar David
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
2
|
Behbahani M, Rabiei P, Mohabatkar H. Analysis and comparison of physiochemical properties, mutations and glycosylation patterns between RNA polymerase and membrane protein of SARS-CoV and SARS-CoV-2. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:171-178. [PMID: 35097139 PMCID: PMC8798276 DOI: 10.22099/mbrc.2021.42187.1692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SARS-CoV-2 is a member of β-genus of the coronavirus subfamily, alongside the virus that causes SARS (Severe Acute Respiratory Syndrome). As implied by their names, SARS-CoV-2 and SARS-CoV genome sequences have close kinship (about 79% genomic sequence similarity). In the current research, sequence-based physiochemical properties of RNA polymerase and membrane glycoprotein of SARS-CoV-2 and SARS-CoV were compared. In addition, impacts of substitution mutations on stability and glycosylation patterns of these proteins were studied. In comparison of physiochemical features of membrane and RNA polymerase proteins, only instability index of membrane protein was difference between SARS-CoV and SARS-CoV-2. Mutation analysis showed increase in stability of RNA polymerase and decrease in stability of membrane protein in SARS-CoV-2. Glycosylation pattern analysis showed glycosylation enhancement in both membrane and RNA polymerase proteins of SARS-CoV-2 in comparison to SARS-CoV. In conclusion, more glycosylation and stability of SARS-CoV-2 RNA polymerase could be one of the reasons of high pathogenicity property and host immune system evasion of SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
3
|
Yu F, Agrebi N, Mackeh R, Abouhazima K, KhudaBakhsh K, Adeli M, Lo B, Hassan A, Machaca K. Novel ORAI1 Mutation Disrupts Channel Trafficking Resulting in Combined Immunodeficiency. J Clin Immunol 2021; 41:1004-1015. [PMID: 33650027 PMCID: PMC8249264 DOI: 10.1007/s10875-021-01004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) represents a predominant Ca2+ influx pathway in non-excitable cells. SOCE is required for immune cell activation and is mediated by the plasma membrane (PM) channel ORAI1 and the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Mutations in the Orai1 or STIM1 genes abolish SOCE leading to combined immunodeficiency (CID), muscular hypotonia, and anhidrotic ectodermal dysplasia. Here, we identify a novel autosomal recessive mutation in ORAI1 in a child with CID. The patient is homozygous for p.C126R mutation in the second transmembrane domain (TM2) of ORAI1, a region with no previous loss-of-function mutations. SOCE is suppressed in the patient’s lymphocytes, which is associated with impaired T cell proliferation and cytokine production. Functional analyses demonstrate that the p.C126R mutation does not alter protein expression but disrupts ORAI1 trafficking. Orai1-C126R does not insert properly into the bilayer resulting in ER retention. Insertion of an Arg on the opposite face of TM2 (L135R) also results in defective folding and trafficking. We conclude that positive side chains within ORAI1 TM2 are not tolerated and result in misfolding, defective bilayer insertion, and channel trafficking thus abolishing SOCE and resulting in CID.
Collapse
Affiliation(s)
- Fang Yu
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Calcium Signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nourhen Agrebi
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Translational Medicine Department, Sidra Medicine, Doha, Qatar
| | - Khaled Abouhazima
- Pediatric Gastroenterology, Sidra Medicine, Education City, Doha, Qatar
| | | | - Mehdi Adeli
- Pediatric Allergy and Immunology Department, Sidra Medicine, Education City, Doha, Qatar
| | - Bernice Lo
- Translational Medicine Department, Sidra Medicine, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Amel Hassan
- Pediatric Allergy and Immunology Department, Sidra Medicine, Education City, Doha, Qatar.
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Calcium Signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
4
|
The Third Transmembrane Domain of EscR Is Critical for Function of the Enteropathogenic Escherichia coli Type III Secretion System. mSphere 2018; 3:3/4/e00162-18. [PMID: 30045964 PMCID: PMC6060343 DOI: 10.1128/msphere.00162-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs. Many Gram-negative bacterial pathogens utilize a specialized protein delivery system, called the type III secretion system (T3SS), to translocate effector proteins into the host cells. The translocated effectors are crucial for bacterial infection and survival. The base of the T3SS transverses both bacterial membranes and contains an export apparatus that comprises five membrane proteins. Here, we study the export apparatus of enteropathogenic Escherichia coli (EPEC) and characterize its central component, called the EscR protein. We found that the third transmembrane domain (TMD) of EscR mediates strong self-oligomerization in an isolated genetic reporter system. Replacing this TMD sequence with an alternative hydrophobic sequence within the full-length protein resulted in a complete loss of function of the T3SS, further suggesting that the EscR TMD3 sequence has another functional role in addition to its role as a membrane anchor. Moreover, we found that an aspartic acid residue, located at the core of EscR TMD3, is important for the oligomerization propensity of TMD3 and that a point mutation of this residue within the full-length protein abolishes the T3SS activity and the ability of the bacteria to translocate effectors into host cells. IMPORTANCE Many Gram-negative bacterial pathogens that cause life-threatening diseases employ a type III secretion system (T3SS) for their virulence. The T3SS comprises several proteins that assemble into a syringe-like structure dedicated to the injection of bacterial virulence factors into the host cells. Although many T3SS proteins are transmembrane proteins, our knowledge of these proteins is limited mostly to their soluble domains. In this study, we found that the third transmembrane domain (TMD) of EscR, a central protein of the T3SS in enteropathogenic E. coli, contributes to protein self-oligomerization. Moreover, we demonstrated that a single aspartic acid residue, located at the core of this TMD, is critical for the activity of the full-length protein and the function of the entire T3SS, possibly due to its involvement in mediating TMD-TMD interactions. Our findings should encourage the mapping of the entire interactome of the T3SS components, including interactions mediated through their TMDs.
Collapse
|
5
|
The role of EscD in supporting EscC polymerization in the type III secretion system of enteropathogenic Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:384-395. [PMID: 28988128 DOI: 10.1016/j.bbamem.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 11/23/2022]
Abstract
The type III secretion system (T3SS) is a multi-protein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. In enteropathogenic Escherichia coli, a prevalent cause of diarrheal diseases, the needle complex base of the T3SS is formed by multi-rings: two concentric inner-membrane rings made by the two oligomerizing proteins (EscD and EscJ), and an outer ring made of a single oligomerizing protein (EscC). Although the oligomerization activity of these proteins is critical for their function and can, therefore, affect the virulence of the pathogen, the mechanisms underlying the oligomerization of these proteins have yet to be identified. In this study, we report that the proteins forming the inner-membrane T3SS rings, EscJ and EscD proteins, are crucial for the oligomerization of EscC. Moreover, we elucidate the oligomerization process of EscD and determine the contribution of individual regions of the protein to its self-oligomerization activity. We show that the oligomerization motif of EscD is located at its N-terminal portion and that its transmembrane domain can self-oligomerize, thus contributing to the self-oligomerization of the full-length EscD.
Collapse
|
6
|
Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One 2012; 7:e48875. [PMID: 23155421 PMCID: PMC3498381 DOI: 10.1371/journal.pone.0048875] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.
Collapse
Affiliation(s)
- James I. Godfroy
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Mohammad Roostan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yurii S. Moroz
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
7
|
Reuven EM, Dadon Y, Viard M, Manukovsky N, Blumenthal R, Shai Y. HIV-1 gp41 transmembrane domain interacts with the fusion peptide: implication in lipid mixing and inhibition of virus-cell fusion. Biochemistry 2012; 51:2867-78. [PMID: 22413880 PMCID: PMC3335273 DOI: 10.1021/bi201721r] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fusion of the human immunodeficiency virus (HIV) with target cells is mediated by the gp41 subunit of the envelope protein. Mutation and deletion studies within the transmembrane domain (TMD) of intact gp41 influenced its fusion activity. In addition, current models suggest that the TMD is in proximity with the fusion peptide (FP) at the late fusion stages, but there are no direct experimental data to support this hypothesis. Here, we investigated the TMD focusing on two regions: the N-terminal containing the GxxxG motif and the C-terminal containing the GLRI motif, which is conserved among the TMDs of HIV and the T-cell receptor. Studies utilizing the ToxR expression system combined with synthetic peptides and their fluorescent analogues derived from TMD revealed that the GxxxG motif is important for TMD self-association, whereas the C-terminal region is for its heteroassociation with FP. Functionally, all three TMD peptides induced lipid mixing that was enhanced significantly upon mixing with FP. Furthermore, the TMD peptides inhibited virus-cell fusion apparently through their interaction with their endogenous counterparts. Notably, the R2E mutant (in the GLRI) was significantly less potent than the two others. Overall, our findings provide experimental evidence that HIV-1 TMD contributes to membrane assembly and function of the HIV-1 envelope. Owing to similarities between functional domains within viruses, these findings suggest that the TMDs and FPs may contribute similarly in other viruses as well.
Collapse
Affiliation(s)
- Eliran Moshe Reuven
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Yakir Dadon
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Mathias Viard
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
- Nanobiology Program, Center of Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nurit Manukovsky
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Robert Blumenthal
- Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
8
|
Fink A, Sal-Man N, Gerber D, Shai Y. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:974-83. [PMID: 22155642 DOI: 10.1016/j.bbamem.2011.11.029] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
Abstract
Protein-protein interactions within the membrane are involved in many vital cellular processes. Consequently, deficient oligomerization is associated with known diseases. The interactions can be partially or fully mediated by transmembrane domains (TMD). However, in contrast to soluble regions, our knowledge of the factors that control oligomerization and recognition between the membrane-embedded domains is very limited. Due to the unique chemical and physical properties of the membrane environment, rules that apply to interactions between soluble segments are not necessarily valid within the membrane. This review summarizes our knowledge on the sequences mediating TMD-TMD interactions which include conserved motifs such as the GxxxG, QxxS, glycine and leucine zippers, and others. The review discusses the specific role of polar, charged and aromatic amino acids in the interface of the interacting TMD helices. Strategies to determine the strength, dynamics and specificities of these interactions by experimental (ToxR, TOXCAT, GALLEX and FRET) or various computational approaches (molecular dynamic simulation and bioinformatics) are summarized. Importantly, the contribution of the membrane environment to the TMD-TMD interaction is also presented. Studies utilizing exogenously added TMD peptides have been shown to influence in vivo the dimerization of intact membrane proteins involved in various diseases. The chirality independent TMD-TMD interactions allows for the design of novel short d- and l-amino acids containing TMD peptides with advanced properties. Overall these studies shed light on the role of specific amino acids in mediating the assembly of the TMDs within the membrane environment and their contribution to protein function. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Avner Fink
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | |
Collapse
|
9
|
Wong WC, Maurer-Stroh S, Eisenhaber F. Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins. Biol Direct 2011; 6:57. [PMID: 22024092 PMCID: PMC3217874 DOI: 10.1186/1745-6150-6-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/25/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sequence homology considerations widely used to transfer functional annotation to uncharacterized protein sequences require special precautions in the case of non-globular sequence segments including membrane-spanning stretches composed of non-polar residues. Simple, quantitative criteria are desirable for identifying transmembrane helices (TMs) that must be included into or should be excluded from start sequence segments in similarity searches aimed at finding distant homologues. RESULTS We found that there are two types of TMs in membrane-associated proteins. On the one hand, there are so-called simple TMs with elevated hydrophobicity, low sequence complexity and extraordinary enrichment in long aliphatic residues. They merely serve as membrane-anchoring device. In contrast, so-called complex TMs have lower hydrophobicity, higher sequence complexity and some functional residues. These TMs have additional roles besides membrane anchoring such as intra-membrane complex formation, ligand binding or a catalytic role. Simple and complex TMs can occur both in single- and multi-membrane-spanning proteins essentially in any type of topology. Whereas simple TMs have the potential to confuse searches for sequence homologues and to generate unrelated hits with seemingly convincing statistical significance, complex TMs contain essential evolutionary information. CONCLUSION For extending the homology concept onto membrane proteins, we provide a necessary quantitative criterion to distinguish simple TMs (and a sufficient criterion for complex TMs) in query sequences prior to their usage in homology searches based on assessment of hydrophobicity and sequence complexity of the TM sequence segments.
Collapse
Affiliation(s)
- Wing-Cheong Wong
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | | | | |
Collapse
|
10
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
11
|
Lindner E, Unterreitmeier S, Ridder ANJA, Langosch D. An extended ToxR POSSYCCAT system for positive and negative selection of self-interacting transmembrane domains. J Microbiol Methods 2007; 69:298-305. [PMID: 17346832 DOI: 10.1016/j.mimet.2007.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/18/2007] [Accepted: 01/30/2007] [Indexed: 11/28/2022]
Abstract
Assay systems based on the ToxR protein are widely used to investigate interaction of transmembrane domains that come from natural proteins or are isolated from combinatorial libraries. The principle of this method is that self-interaction of any given transmembrane domain, which is expressed within a ToxR chimeric protein, drives ToxR-ToxR assembly in a bacterial inner membrane. In current versions of the system, ToxR-ToxR interaction drives transcription activation of the cholera toxin (ctx) promoter and thereby induces expression of downstream reporter genes in appropriately constructed bacterial strains. Here, we describe the application of other known ToxR-regulated promoters. We show that interacting transmembrane domains also promote ToxR-driven activation of the ompU promoter. Conversely, these interactions efficiently repress transcription from the constitutively active ompT promoter. We present novel Escherichia coli strains whose chromosomes harbor fusions of ompU or ompT promoters with different reporter genes. Depending on the used promoter, self-interaction of transmembrane domains induces or represses reporter enzyme expression in these cells. These strains extend current applications of the ToxR protein and may find use in mapping transmembrane helix-helix interfaces and selection of transmembrane domains with medium affinities.
Collapse
Affiliation(s)
- Eric Lindner
- Technische Universität München, Lehrstuhl für Chemie der Biopolymere, TU München, Weihenstephaner Berg 3, D-85354 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
12
|
Lindner E, Langosch D. A ToxR-based dominant-negative system to investigate heterotypic transmembrane domain interactions. Proteins 2007; 65:803-7. [PMID: 17066379 DOI: 10.1002/prot.21226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ToxR transcription activator system is a genetic tool widely used to examine homotypic interactions of alpha-helical transmembrane domains that drive or support oligomerization of integral membrane proteins. Here, we present a variant of this system that was developed to investigate heterotypic interactions. In this system, a homotypically interacting transmembrane domain within the ToxR protein is coexpressed with a potential competitor that is embedded within an inactivated ToxR mutant. Successful heterotypic interaction competes with homotypic interaction in a dominant-negative fashion as revealed by reduced reporter gene transcription. We expect that this system will be useful for the characterization of transmembrane domains whose homotypic and heterotypic interactions compete with each other.
Collapse
Affiliation(s)
- Eric Lindner
- Technische Universität München, Lehrstuhl für Chemie der Biopolymere, Weihenstephaner Berg 3,D-85354 Freising-Weihenstephan, Germany
| | | |
Collapse
|
13
|
Ames P, Parkinson JS. Phenotypic Suppression Methods for Analyzing Intra‐ and Inter‐Molecular Signaling Interactions of Chemoreceptors. Methods Enzymol 2007; 423:436-57. [PMID: 17609145 DOI: 10.1016/s0076-6879(07)23021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The receptors that mediate chemotactic behaviors in E. coli and other motile bacteria and archaea are exquisite molecular machines. They detect minute concentration changes in the organism's chemical environment, integrate multiple stimulus inputs, and generate a highly amplified output signal that modulates the cell's locomotor pattern. Genetic dissection and suppression analyses have played an important role in elucidating the molecular mechanisms that underlie chemoreceptor signaling. This chapter discusses three examples of phenotypic suppression analyses of receptor signaling defects. (i) Balancing suppression can occur in mutant receptors that have biased output signals and involves second-site mutations that create an offsetting bias change. Such suppressors can arise in many parts of the receptor and need not involve directly interacting parts of the molecule. (ii) Conformational suppression within a mutant receptor molecule occurs through a mutation that directly compensates for the initial structural defect. This form of suppression should be highly dependent on the nature of the structural alterations caused by the original mutation and its suppressor, but in practice may be difficult to distinguish from balancing suppression without high-resolution structural information about the mutant and pseudorevertant proteins. (iii) Conformational suppression between receptor molecules involves correction of a functional defect in one receptor by a mutational change in a heterologous receptor with which it normally interacts. The suppression patterns exhibit allele-specificity with respect to the compensatory residue positions and amino acid side chains, a hallmark of stereospecific protein-protein interactions.
Collapse
Affiliation(s)
- Peter Ames
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
14
|
Li E, Hristova K. Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry 2006; 45:6241-51. [PMID: 16700535 PMCID: PMC4301406 DOI: 10.1021/bi060609y] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and their transmembrane (TM) domains play an important role in the dimerization process. Here we present two models of RTK-mediated signaling, and we discuss the role of the TM domains within the framework of these two models. We summarize findings of single-amino acid mutations in RTK TM domains that induce unregulated signaling and, as a consequence, pathological phenotypes. We review the current knowledge of pathology induction mechanisms due to these mutations, focusing on the structural and thermodynamic basis of pathogenic dimer stabilization.
Collapse
Affiliation(s)
- Edwin Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
15
|
Sal-Man N, Gerber D, Shai Y. The Identification of a Minimal Dimerization Motif QXXS That Enables Homo- and Hetero-association of Transmembrane Helices in Vivo. J Biol Chem 2005; 280:27449-57. [PMID: 15911619 DOI: 10.1074/jbc.m503095200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of transmembrane (TM) domains is a critical step in the function of membrane proteins, and therefore, determining the amino acid motifs that mediate this process is important. Studies along this line have shown that the GXXXG motif is involved in TM assembly. In this study we characterized the minimal dimerization motif in the bacterial Tar-1 homodimer TM domain, which does not contain a GXXXG sequence. We found that a short polar motif QXXS is sufficient to induce stable TM-TM interactions. Statistical analysis revealed that this motif appears to be significantly over-represented in a bacterial TM data base compared with its theoretical expectancy, suggesting a general role for this motif in TM assembly. A truncated short TM peptide (9 residues) that contains the QXXS motif interacted slightly with the wild-type Tar-1. However, the same short TM peptide regained wild-type-like activity when conjugated to an octanoyl aliphatic moiety. Biophysical studies indicated that this modification compensated for the missing hydrophobicity, stabilized alpha-helical structure, and enabled insertion of the peptide into the membrane core. These findings serve as direct evidence that even a short peptide containing a minimal recognition motif is sufficient to inhibit the proper assembly of TM domains. Interestingly, electron microscopy revealed that above the critical micellar concentration, the TM lipopeptide forms a network of nanofibers, which can serve for the slow release of the active lipopeptide.
Collapse
Affiliation(s)
- Neta Sal-Man
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|