1
|
Pimviriyakul P, Sucharitakul J, Maenpuen S. Mechanistic insights into iron-sulfur clusters and flavin oxidation of a novel xanthine oxidoreductase from Sulfobacillus acidophilus TPY. FEBS J 2024; 291:527-546. [PMID: 37899720 DOI: 10.1111/febs.16987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| |
Collapse
|
2
|
Vignali E, Pollegioni L, Di Nardo G, Valetti F, Gazzola S, Gilardi G, Rosini E. Multi‐Enzymatic Cascade Reactions for the Synthesis of
cis,cis
‐Muconic Acid. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Elisa Vignali
- Department of Biotechnology and Life Sciences University of Insubria Via J. H. Dunant 3 21100 Varese Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences University of Insubria Via J. H. Dunant 3 21100 Varese Italy
| | - Giovanna Di Nardo
- Department of Life Sciences and Systems Biology University of Turin Via Accademia Albertina 13 10123 Torino Italy
| | - Francesca Valetti
- Department of Life Sciences and Systems Biology University of Turin Via Accademia Albertina 13 10123 Torino Italy
| | - Silvia Gazzola
- Department of Science and High Technology University of Insubria Via Valleggio 9 22100 Como Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology University of Turin Via Accademia Albertina 13 10123 Torino Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences University of Insubria Via J. H. Dunant 3 21100 Varese Italy
| |
Collapse
|
3
|
Zou Z, Bouchereau-De Pury C, Hewavitharana AK, Al-Shehri SS, Duley JA, Cowley DM, Koorts P, Shaw PN, Bansal N. A sensitive and high-throughput fluorescent method for determination of oxidase activities in human, bovine, goat and camel milk. Food Chem 2020; 336:127689. [PMID: 32763736 DOI: 10.1016/j.foodchem.2020.127689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/16/2023]
Abstract
Milk oxidases are an integral part of milk immune system, and good indicators for milk thermal history. Current assay methods for milk oxidases are either insensitive, tedious or not cost-effective. In this study, a high-throughput fluorescence assay method for determination of xanthine oxidase (XO) and polyamine oxidase (PAO) activities in milk samples was developed. The hydrogen peroxide generated by XO catalysed oxidation of hypoxanthine, and PAO catalysed oxidation of spermine, was coupled to horseradish peroxidase conversion of Amplex® Red (1-(3,7-dihydroxyphenoxazin-10-yl)ethanone) to the fluorescent product resorufin. The assay was highly sensitive, with limits of detection of activity in milk being 3 × 10-7 and 7 × 10-7 U/mL for XO and PAO, respectively. Intra-run and inter-run results showed good assay repeatability and reproducibility. The assay was successfully applied to survey the XO and PAO activities in human, bovine, goat and camel milk samples, and it can be readily adapted for measurements of other oxidase activities.
Collapse
Affiliation(s)
- Zhengzheng Zou
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Claire Bouchereau-De Pury
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia; Laïta, Brest Cedex, France
| | | | - Saad S Al-Shehri
- College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - John A Duley
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M Cowley
- Mater Research Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Pieter Koorts
- Department of Neonatology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Paul N Shaw
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
4
|
Kelley EE. Dispelling dogma and misconceptions regarding the most pharmacologically targetable source of reactive species in inflammatory disease, xanthine oxidoreductase. Arch Toxicol 2015; 89:1193-207. [PMID: 25995007 DOI: 10.1007/s00204-015-1523-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 01/04/2023]
Abstract
Xanthine oxidoreductase (XOR), the molybdoflavin enzyme responsible for the terminal steps of purine degradation in humans, is also recognized as a significant source of reactive species contributory to inflammatory disease. In animal models and clinical studies, inhibition of XOR has resulted in diminution of symptoms and enhancement of function in a number of pathologies including heart failure, diabetes, sickle cell anemia, hypertension and ischemia-reperfusion injury. For decades, XOR involvement in pathologic processes has been established by salutary outcomes attained from treatment with the XOR inhibitor allopurinol. This has served to frame a working dogma that elevation of XOR-specific activity is associated with enhanced rates of reactive species generation that mediate negative outcomes. While adherence to this narrowly focused practice of designating elevated XOR activity to be "bad" has produced some benefit, it has also led to significant underdevelopment of the processes mediating XOR regulation, identification of alternative reactants and products as well as micro-environmental factors that alter enzymatic activity. This is exemplified by recent reports: (1) identifying XOR as a nitrite reductase and thus a source of beneficial nitric oxide ((•)NO) under in vivo conditions similar to those where XOR inhibition has been assumed an optimal treatment choice, (2) describing XOR-derived uric acid (UA) as a critical pro-inflammatory mediator in vascular and metabolic disease and (3) ascribing an antioxidant/protective role for XOR-derived UA. When taken together, these proposed and countervailing functions of XOR affirm the need for a more comprehensive evaluation of product formation as well as the factors that govern product identity. As such, this review will critically evaluate XOR-catalyzed oxidant, (•)NO and UA formation as well as identify factors that mediate their production, inhibition and the resultant impact on inflammatory disease.
Collapse
Affiliation(s)
- Eric E Kelley
- Department of Anesthesiology and Vascular Medicine Institute, School of Medicine, University of Pittsburgh, W1357 BST, 200 Lothrop Street, Pittsburgh, PA, 15213, USA,
| |
Collapse
|
5
|
Nishino T, Okamoto K. Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 2015; 20:195-207. [PMID: 25501928 PMCID: PMC4334109 DOI: 10.1007/s00775-014-1210-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Abstract
Xanthine oxidoreductase (XOR), which is widely distributed from humans to bacteria, has a key role in purine catabolism, catalyzing two steps of sequential hydroxylation from hypoxanthine to xanthine and from xanthine to urate at its molybdenum cofactor (Moco). Human XOR is considered to be a target of drugs not only for therapy of hyperuricemia and gout, but also potentially for a wide variety of other diseases. In this review, we focus on studies of XOR inhibitors and their implications for understanding the chemical nature and reaction mechanism of the Moco active site of XOR. We also discuss further experimental or clinical studies that would be helpful to clarify remaining issues.
Collapse
Affiliation(s)
- Takeshi Nishino
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyou-ku, Tokyo, 113-8602, Japan,
| | | |
Collapse
|
6
|
Structural and functional insights into the catalytic inactivity of the major fraction of buffalo milk xanthine oxidoreductase. PLoS One 2014; 9:e87618. [PMID: 24498153 PMCID: PMC3909206 DOI: 10.1371/journal.pone.0087618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/26/2013] [Indexed: 12/13/2022] Open
Abstract
Background Xanthine oxidoreductase (XOR) existing in two interconvertible forms, xanthine dehydrogenase (XDH) and xanthine oxidase (XO), catabolises xanthine to uric acid that is further broken down to antioxidative agent allantoin. XOR also produces free radicals serving as second messenger and microbicidal agent. Large variation in the XO activity has been observed among various species. Both hypo and hyper activity of XOR leads to pathophysiological conditions. Given the important nutritional role of buffalo milk in human health especially in south Asia, it is crucial to understand the functional properties of buffalo XOR and the underlying structural basis of variations in comparison to other species. Methods and Findings Buffalo XO activity of 0.75 U/mg was almost half of cattle XO activity. Enzymatic efficiency (kcat/Km) of 0.11 sec−1 µM−1 of buffalo XO was 8–10 times smaller than that of cattle XO. Buffalo XOR also showed lower antibacterial activity than cattle XOR. A CD value (Δε430 nm) of 46,000 M−1 cm−1 suggested occupancy of 77.4% at Fe/S I centre. Buffalo XOR contained 0.31 molybdenum atom/subunit of which 48% existed in active sulfo form. The active form of XO in buffalo was only 16% in comparison to ∼30% in cattle. Sequencing revealed 97.4% similarity between buffalo and cattle XOR. FAD domain was least conserved, while metal binding domains (Fe/S and Molybdenum) were highly conserved. Homology modelling of buffalo XOR showed several variations occurring in clusters, especially close to FAD binding pocket which could affect NAD+ entry in the FAD centre. The difference in XO activity seems to be originating from cofactor deficiency, especially molybdenum. Conclusion A major fraction of buffalo milk XOR exists in a catalytically inactive form due to high content of demolybdo and desulfo forms. Lower Fe/S content and structural factors might be contributing to lower enzymatic efficiency of buffalo XOR in a minor way.
Collapse
|
7
|
Plank MS, Calderon TC, Asmerom Y, Boskovic DS, Angeles DM. Biochemical measurement of neonatal hypoxia. J Vis Exp 2011:2948. [PMID: 21897351 DOI: 10.3791/2948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Neonatal hypoxia ischemia is characterized by inadequate blood perfusion of a tissue or a systemic lack of oxygen. This condition is thought to cause/exacerbate well documented neonatal disorders including neurological impairment. Decreased adenosine triphosphate production occurs due to a lack of oxidative phosphorylation. To compensate for this energy deprived state molecules containing high energy phosphate bonds are degraded. This leads to increased levels of adenosine which is subsequently degraded to inosine, hypoxanthine, xanthine, and finally to uric acid. The final two steps in this degradation process are performed by xanthine oxidoreductase. This enzyme exists in the form of xanthine dehydrogenase under normoxic conditions but is converted to xanthine oxidase (XO) under hypoxia-reperfusion circumstances. Unlike xanthine dehydrogenase, XO generates hydrogen peroxide as a byproduct of purine degradation. This hydrogen peroxide in combination with other reactive oxygen species (ROS) produced during hypoxia, oxidizes uric acid to form allantoin and reacts with lipid membranes to generate malondialdehyde (MDA). Most mammals, humans exempted, possess the enzyme uricase, which converts uric acid to allantoin. In humans, however, allantoin can only be formed by ROS-mediated oxidation of uric acid. Because of this, allantoin is considered to be a marker of oxidative stress in humans, but not in the mammals that have uricase. We describe methods employing high pressure liquid chromatography (HPLC) and gas chromatography mass spectrometry (GCMS) to measure biochemical markers of neonatal hypoxia ischemia. Human blood is used for most tests. Animal blood may also be used while recognizing the potential for uricase-generated allantoin. Purine metabolites were linked to hypoxia as early as 1963 and the reliability of hypoxanthine, xanthine, and uric acid as biochemical indicators of neonatal hypoxia was validated by several investigators. The HPLC method used for the quantification of purine compounds is fast, reliable, and reproducible. The GC/MS method used for the quantification of allantoin, a relatively new marker of oxidative stress, was adapted from Gruber et al. This method avoids certain artifacts and requires low volumes of sample. Methods used for synthesis of MMDA were described elsewhere. GC/MS based quantification of MDA was adapted from Paroni et al. and Cighetti et al. Xanthine oxidase activity was measured by HPLC by quantifying the conversion of pterin to isoxanthopterin. This approach proved to be sufficiently sensitive and reproducible.
Collapse
Affiliation(s)
- Megan S Plank
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, USA
| | | | | | | | | |
Collapse
|
8
|
Agarwal A, Banerjee A, Banerjee UC. Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol 2011; 31:264-80. [PMID: 21774633 DOI: 10.3109/07388551.2010.527823] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Xanthine oxidoreductase (XOR) is a ubiquitous complex cytosolic molybdoflavoprotein which controls the rate limiting step of purine catabolism by converting xanthine to uric acid. It is known that optimum concentrations of uric acid (UA) and reactive oxygen species (ROS) are necessary for normal functioning of the body. The ability of XOR to perform detoxification reactions, and to synthesize UA and reactive oxygen species (ROS) makes it a versatile intra- and extra-cellular protective "housekeeping enzyme". It is also an important component of the innate immune system. The enzyme is a target of drugs against gout and hyperuricemia and the protein is of major interest as it is associated with ischemia reperfusion (I/R) injury, vascular disorders in diabetes, cardiovascular disorders, adipogenesis, metabolic syndrome, cancer, and many other disease conditions. Xanthine oxidoreductase in conjugation with antibodies has been shown to have an anti-tumor effect due to its ability to produce ROS, which in turn reduces the growth of cancer tissues. Apart from this, XOR in association with nitric oxide synthase also participates in myocardial excitation-contraction coupling. Although XOR was discovered over 100 years ago, its physiological and pathophysiological roles are still not clearly elucidated. In this review, various physiological and pathophysiological functional aspects of XOR and its association with various forms of cancer are discussed in detail.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | | |
Collapse
|
9
|
Nasr G, Maurice C. Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 2011; 1:191-5. [PMID: 21264183 PMCID: PMC3023896 DOI: 10.4103/0975-3583.74262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background and Aim: Increased xanthine oxidase (XO) activity may contribute to heart failure pathophysiology. This study evaluated whether a XO inhibitor, allopurinol produces clinical and functional benefits in patients with New York Heart Association functional class III to IV heart failure due to systolic dysfunction receiving optimal medical therapy as estimated by global left myocardial function. Patients and Methods: Fifty-nine patients with a diagnosis of chronic heart failure due to coronary heart disease or idiopathic dilated cardiomyopathy and 20 healthy controls who attended the outpatient clinic of cardiology were subjected to full echocardiographic study including left ventricular diastolic and systolic function, and the combined index of myocardial performance [Tei index: isovolumetric relaxation time (IRT) + isovolumetric contraction time (ICT)/ejection time (ET)]. Patients were randomized to allopurinol (300 mg/day) or placebo. Improvement at 36 weeks was assessed using a composite end point comprising global left cardiac function as well as heart failure morbidity and mortality. Results: The percentage of patients characterized as improved, unchanged, or worsened did not differ between those receiving allopurinol or placebo. Allopurinol reduced serum uric acid (SUA) by 1.5 mg/dL (P = 0.001). In a subgroup analysis, patients with elevated SUA (more than 7mg/ dL) responded favorably to allopurinol whereas those with SUA less than 7mg/dL exhibited a trend toward no change. In addition, SUA reduction to allopurinol correlated with favorable clinical and functional response. Within the entire allopurinol patient cohort, those characterized as either improved or unchanged had significantly greater reductions in SUA compared with patients who did not change (P = 0.0007). In placebo patients, lower baseline SUA, but not change in SUA, correlated with improved clinical outcome. Conclusions: Allopurinol did not produce significant clinical and functional improvement in unselected patients with moderate-to-severe heart failure. However, it is suggested that it is useful in patients with elevated SUA in a manner according to degree of SUA reduction. SUA may serve as a valuable biomarker to target heart failure therapy.
Collapse
Affiliation(s)
- Gamela Nasr
- Department of Cardiology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
10
|
The role of human xanthine oxidoreductase (HXOR), anti-HXOR antibodies, and microorganisms in synovial fluid of patients with joint inflammation. Rheumatol Int 2011; 32:2355-62. [PMID: 21644044 DOI: 10.1007/s00296-011-1965-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 05/22/2011] [Indexed: 02/07/2023]
Abstract
This work is to investigate the levels of human xanthine oxidoreductase (HXOR), its antibodies, and microorganisms in synovial fluid of patients with untreated rheumatoid joint diseases. Synovial fluids were collected from sixty-four patients with rheumatoid joint diseases. Sixty-four age-matched individuals were included as control. Xanthine oxidoreductase (XOR) proteins level and anti-XOR antibodies were determined in the blood and synovial fluid, using human XOR as antigen, by enzyme-linked immunosorbent (ELISA) assay. Synovial fluids were cultured for bacteria and fungi. The titers of XOR protein in the synovial fluid of patients with rheumatoid arthritis were 90.43 ± 23.37 μg/ml (mean ± SD, n = 29) and up to 62.42 ± 8.74 μg/ml (mean ± SD, n = 35) in other joint inflammation. Anti-HXOR antibodies titers in patients were 167.72 ± 23.64 μg/ml, n = 64, which was significantly higher in rheumatoid arthritis patients. The results indicated that anti-HXOR antibodies in synovial fluids have a protective role as high concentrations against XOR were detected in inflammatory arthritis. These antibodies play a role in eliminating XOR from synovial fluids. However, immune complex formation could activate complement and participate in propagating the inflammatory cycle. Synovial aspirate ordinary microbial cultures were negative for any bacteria or fungi, but that does not exclude organisms of special culture requirements.
Collapse
|
11
|
Hadizadeh M, Keyhani E, Keyhani J, Khodadadi C. Functional and structural alterations induced by copper in xanthine oxidase. Acta Biochim Biophys Sin (Shanghai) 2009; 41:603-17. [PMID: 19578725 DOI: 10.1093/abbs/gmp048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Xanthine oxidase (XO), a key enzyme in purine metabolism, produces reactive oxygen species causing vascular injuries and chronic heart failure. Here, copper's ability to alter XO activity and structure was investigated in vitro after pre-incubation of the enzyme with increasing Cu(2+) concentrations for various periods of time. The enzymatic activity was measured by following XO-catalyzed xanthine oxidation to uric acid under steady-state kinetics conditions. Structural alterations were assessed by electronic absorption, fluorescence, and circular dichroism spectroscopy. Results showed that Cu(2+) either stimulated or inhibited XO activity, depending on metal concentration and pre-incubation length, the latter also determining the inhibition type. Cu(2+)-XO complex formation was characterized by modifications in XO electronic absorption bands, intrinsic fluorescence, and alpha-helical and beta-sheet content. Apparent dissociation constant values implied high- and low-affinity Cu(2+) binding sites in the vicinity of the enzyme's reactive centers. Data indicated that Cu(2+) binding to high-affinity sites caused alterations around XO molybdenum and flavin adenine dinucleotide centers, changes in secondary structure, and moderate activity inhibition; binding to low affinity sites caused alterations around all XO reactive centers including FeS, changes in tertiary structure as reflected by alterations in spectral properties, and drastic activity inhibition. Stimulation was attributed to transient stabilization of XO optimal conformation. Results also emphasized the potential role of copper in the regulation of XO activity stemming from its binding properties.
Collapse
Affiliation(s)
- Mahnaz Hadizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, 13145 Tehran, Iran
| | | | | | | |
Collapse
|
12
|
Schumann S, Terao M, Garattini E, Saggu M, Lendzian F, Hildebrandt P, Leimkühler S. Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS One 2009; 4:e5348. [PMID: 19401776 PMCID: PMC2671166 DOI: 10.1371/journal.pone.0005348] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/30/2009] [Indexed: 12/04/2022] Open
Abstract
Mouse aldehyde oxidase (mAOX1) forms a homodimer and belongs to the xanthine oxidase family of molybdoenzymes which are characterized by an essential equatorial sulfur ligand coordinated to the molybdenum atom. In general, mammalian AOs are characterized by broad substrate specificity and an yet obscure physiological function. To define the physiological substrates and the enzymatic characteristics of mAOX1, we established a system for the heterologous expression of the enzyme in Eschericia coli. The recombinant protein showed spectral features and a range of substrate specificity similar to the native protein purified from mouse liver. The EPR data of recombinant mAOX1 were similar to those of AO from rabbit liver, but differed from the homologous xanthine oxidoreductase enzymes. Site-directed mutagenesis of amino acids Val806, Met884 and Glu1265 at the active site resulted in a drastic decrease in the oxidation of aldehydes with no increase in the oxidation of purine substrates. The double mutant V806E/M884R and the single mutant E1265Q were catalytically inactive enzymes regardless of the aldehyde or purine substrates tested. Our results show that only Glu1265 is essential for the catalytic activity by initiating the base-catalyzed mechanism of substrate oxidation. In addition, it is concluded that the substrate specificity of molybdo-flavoenzymes is more complex and not only defined by the three characterized amino acids in the active site.
Collapse
Affiliation(s)
- Silvia Schumann
- Universität Potsdam, Institut für Biochemie and Biologie, Potsdam, Germany
| | - Mineko Terao
- Department of Biochemistry and Molecular Pharmacology, Istituto de Ricerche Farmacologiche, “Mario Negri”, Milano, Italy
| | - Enrico Garattini
- Department of Biochemistry and Molecular Pharmacology, Istituto de Ricerche Farmacologiche, “Mario Negri”, Milano, Italy
| | - Miguel Saggu
- Technische Universität Berlin, Institut für Chemie, Berlin, Germany
| | | | | | - Silke Leimkühler
- Universität Potsdam, Institut für Biochemie and Biologie, Potsdam, Germany
- * E-mail:
| |
Collapse
|
13
|
Khobragade CN, Bodade RG, Shinde MS, Jaju DR, Bhosle RB, Dawane BS. Microbial and xanthine dehydrogenase inhibitory activity of some flavones. J Enzyme Inhib Med Chem 2008; 23:341-6. [DOI: 10.1080/14756360701608585] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- C. N. Khobragade
- School of Life Sciences, Biochemistry Research Laboratory, Swami Ramanand Teerth Marathawada University, Nanded, 431606, India
| | - Ragini G. Bodade
- School of Life Sciences, Biochemistry Research Laboratory, Swami Ramanand Teerth Marathawada University, Nanded, 431606, India
| | - M. S. Shinde
- School of Life Sciences, Biochemistry Research Laboratory, Swami Ramanand Teerth Marathawada University, Nanded, 431606, India
| | - Deepa R. Jaju
- School of Life Sciences, Biochemistry Research Laboratory, Swami Ramanand Teerth Marathawada University, Nanded, 431606, India
| | - R. B. Bhosle
- Department of Chemistry, Organic Chemistry Research Laboratory, Yeshwant Mahavidyalaya, Nanded, 431 606, India
| | - B. S. Dawane
- Department of Chemistry, Organic Chemistry Research Laboratory, Yeshwant Mahavidyalaya, Nanded, 431 606, India
| |
Collapse
|
14
|
Terao M, Kurosaki M, Barzago MM, Varasano E, Boldetti A, Bastone A, Fratelli M, Garattini E. Avian and Canine Aldehyde Oxidases. J Biol Chem 2006; 281:19748-61. [PMID: 16672219 DOI: 10.1074/jbc.m600850200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases are molybdo-flavoenzymes structurally related to xanthine oxidoreductase. They catalyze the oxidation of aldehydes or N-heterocycles of physiological, pharmacological, and toxicological relevance. Rodents are characterized by four aldehyde oxidases as follows: AOX1 and aldehyde oxidase homologs 1-3 (AOH1, AOH2, and AOH3). Humans synthesize a single functional aldehyde oxidase, AOX1. Here we define the structure and the characteristics of the aldehyde oxidase genes and proteins in chicken and dog. The avian genome contains two aldehyde oxidase genes, AOX1 and AOH, mapping to chromosome 7. AOX1 and AOH are structurally very similar and code for proteins whose sequence was deduced from the corresponding cDNAs. AOX1 is the ortholog of the same gene in mammals, whereas AOH represents the likely ancestor of rodent AOH1, AOH2, and AOH3. The dog genome is endowed with two structurally conserved and active aldehyde oxidases clustering on chromosome 37. Cloning of the corresponding cDNAs and tissue distribution studies demonstrate that they are the orthologs of rodent AOH2 and AOH3. The vestiges of dog AOX1 and AOH1 are recognizable upstream of AOH2 and AOH3 on the same chromosome. Comparison of the complement and the structure of the aldehyde oxidase and xanthine oxidoreductase genes in vertebrates and other animal species indicates that they evolved through a series of duplication and inactivation events. Purification of the chicken AOX1 protein to homogeneity from kidney demonstrates that the enzyme possesses retinaldehyde oxidase activity. Unlike humans and most other mammals, dog and chicken are devoid of liver aldehyde oxidase activity.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006; 58:87-114. [PMID: 16507884 PMCID: PMC2233605 DOI: 10.1124/pr.58.1.6] [Citation(s) in RCA: 812] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The prototypical xanthine oxidase (XO) inhibitor allopurinol, has been the cornerstone of the clinical management of gout and conditions associated with hyperuricemia for several decades. More recent data indicate that XO also plays an important role in various forms of ischemic and other types of tissue and vascular injuries, inflammatory diseases, and chronic heart failure. Allopurinol and its active metabolite oxypurinol showed considerable promise in the treatment of these conditions both in experimental animals and in small-scale human clinical trials. Although some of the beneficial effects of these compounds may be unrelated to the inhibition of the XO, the encouraging findings rekindled significant interest in the development of additional, novel series of XO inhibitors for various therapeutic indications. Here we present a critical overview of the effects of XO inhibitors in various pathophysiological conditions and also review the various emerging therapeutic strategies offered by this approach.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute on Alcohol Aabuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane MSC 9413, Room 2N-17, Bethesda, Maryland 20892-9413, USA.
| | | | | |
Collapse
|