1
|
Wu R, Song Y, Wu S, Chen Y. Promising therapeutic approaches of utrophin replacing dystrophin in the treatment of Duchenne muscular dystrophy. FUNDAMENTAL RESEARCH 2022; 2:885-893. [PMID: 38933385 PMCID: PMC11197810 DOI: 10.1016/j.fmre.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a serious genetic neuromuscular rare disease that is prevalent and caused by the mutation/deletion of the X-linked DMD gene that encodes dystrophin. Utrophin is a dystrophin homologous protein on human chromosome 6. Dystrophin and utrophin are highly homologous. They can recruit many dystrophin-glycoprotein complex (DGC)-related proteins and co-localize at the sarcolemma in the early stage of human embryonic development. Moreover, utrophin is overexpressed naturally at the mature myofiber sarcolemma in DMD patients. Therefore, utrophin is considered the most promising homologous protein to replace dystrophin. This review summarizes various modulating drugs and gene therapy approaches for utrophin replacement. As a universal method to treat DMD disease, utrophin has a promising therapeutic prospect and deserves further investigation.
Collapse
Affiliation(s)
- Ruo Wu
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yafeng Song
- Institute of Sport and Health Science, Beijing Sport University, No.48 Xinxi Road, Haidian District, Beijing 100084, China
| | - Shiwen Wu
- Department of Neurology, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yongchang Chen
- State Key Laboratory of Primate Biomedical Research & Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
2
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Bernadzki KM, Daszczuk P, Rojek KO, Pęziński M, Gawor M, Pradhan BS, de Cicco T, Bijata M, Bijata K, Włodarczyk J, Prószyński TJ, Niewiadomski P. Arhgef5 Binds α-Dystrobrevin 1 and Regulates Neuromuscular Junction Integrity. Front Mol Neurosci 2020; 13:104. [PMID: 32587503 PMCID: PMC7299196 DOI: 10.3389/fnmol.2020.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/13/2020] [Indexed: 01/09/2023] Open
Abstract
The neuromuscular junctions (NMJs) connect muscle fibers with motor neurons and enable the coordinated contraction of skeletal muscles. The dystrophin-associated glycoprotein complex (DGC) is an essential component of the postsynaptic machinery of the NMJ and is important for the maintenance of NMJ structural integrity. To identify novel proteins that are important for NMJ organization, we performed a mass spectrometry-based screen for interactors of α-dystrobrevin 1 (aDB1), one of the components of the DGC. The guanidine nucleotide exchange factor (GEF) Arhgef5 was found to be one of the aDB1 binding partners that is recruited to Tyr-713 in a phospho-dependent manner. We show here that Arhgef5 localizes to the NMJ and that its genetic depletion in the muscle causes the fragmentation of the synapses in conditional knockout mice. Arhgef5 loss in vivo is associated with a reduction in the levels of active GTP-bound RhoA and Cdc42 GTPases, highlighting the importance of actin dynamics regulation for the maintenance of NMJ integrity.
Collapse
Affiliation(s)
- Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Patrycja Daszczuk
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Katarzyna O Rojek
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Pęziński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta Gawor
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Bhola S Pradhan
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Teresa de Cicco
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Tomasz J Prószyński
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Łukasiewicz Research Network - PORT Polish Center for Technology Development, Wrocław, Poland
| | - Paweł Niewiadomski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Warsaw, Poland.,Laboratory of Molecular and Cellular Signaling, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Péladeau C, Adam N, Bronicki LM, Coriati A, Thabet M, Al-Rewashdy H, Vanstone J, Mears A, Renaud JM, Holcik M, Jasmin BJ. Identification of therapeutics that target eEF1A2 and upregulate utrophin A translation in dystrophic muscles. Nat Commun 2020; 11:1990. [PMID: 32332749 PMCID: PMC7181625 DOI: 10.1038/s41467-020-15971-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
Up-regulation of utrophin in muscles represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy. We previously demonstrated that eEF1A2 associates with the 5’UTR of utrophin A to promote IRES-dependent translation. Here, we examine whether eEF1A2 directly regulates utrophin A expression and identify via an ELISA-based high-throughput screen, FDA-approved drugs that upregulate both eEF1A2 and utrophin A. Our results show that transient overexpression of eEF1A2 in mouse muscles causes an increase in IRES-mediated translation of utrophin A. Through the assessment of our screen, we reveal 7 classes of FDA-approved drugs that increase eEF1A2 and utrophin A protein levels. Treatment of mdx mice with the 2 top leads results in multiple improvements of the dystrophic phenotype. Here, we report that IRES-mediated translation of utrophin A via eEF1A2 is a critical mechanism of regulating utrophin A expression and reveal the potential of repurposed drugs for treating DMD via this pathway. One potential approach for the treatment of Duchenne muscular dysrophy is to increase expression of the dystrophin homolog utrophin. Here, the authors show that eEF1A2 regulates utrophin expression, and show that 2 FDA-approved drugs upregulate eEIF1A2 and utrophin level in mice, leading to improvement of the dystrophic phenotype.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Nadine Adam
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Adèle Coriati
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Mohamed Thabet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Hasanen Al-Rewashdy
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jason Vanstone
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Alan Mears
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, K1H 5B2, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Centre for Neuromuscular Disease, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc 2016; 5:JAHA.116.003911. [PMID: 27506543 PMCID: PMC5015305 DOI: 10.1161/jaha.116.003911] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Cardiomyopathy is a leading cause of mortality among Duchenne muscular dystrophy patients and lacks effective therapies. Phosphodiesterase type 5 is implicated in dystrophic pathology, and the phosphodiesterase type 5 inhibitor tadalafil has recently been studied in a clinical trial for Duchenne muscular dystrophy. Methods and Results Tadalafil was evaluated for the prevention of cardiomyopathy in the mdx mouse and golden retriever muscular dystrophy dog models of Duchenne muscular dystrophy. Tadalafil blunted the adrenergic response in mdx hearts during a 30‐minute dobutamine challenge, which coincided with cardioprotective signaling, reduced induction of μ‐calpain levels, and decreased sarcomeric protein proteolysis. Dogs with golden retriever muscular dystrophy began daily tadalafil treatment prior to detectable cardiomyopathy and demonstrated preserved cardiac function, as assessed by echocardiography and magnetic resonance imaging at ages 18, 21, and 25 months. Tadalafil treatment improved golden retriever muscular dystrophy histopathological features, decreased levels of the cation channel TRPC6, increased total threonine phosphorylation status of TRPC6, decreased m‐calpain levels and indicators of calpain target proteolysis, and elevated levels of utrophin. In addition, we showed that Duchenne muscular dystrophy patient myocardium exhibited increased TRPC6, m‐calpain, and calpain cleavage products compared with control human myocardium. Conclusions Prophylactic use of tadalafil delays the onset of dystrophic cardiomyopathy, which is likely attributed to modulation of TRPC6 levels and permeability and inhibition of protease content and activity. Consequently, phosphodiesterase type 5 inhibition is a candidate therapy for slowing the development of cardiomyopathy in Duchenne muscular dystrophy patients.
Collapse
Affiliation(s)
- David W Hammers
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL Myology Institute, University of Florida College of Medicine, Gainesville, FL
| | - Margaret M Sleeper
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - Sean C Forbes
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Physical Therapy, University of Florida, Gainesville, FL
| | - Ai Shima
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Glenn A Walter
- Myology Institute, University of Florida College of Medicine, Gainesville, FL Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL Myology Institute, University of Florida College of Medicine, Gainesville, FL
| |
Collapse
|
6
|
Moorwood C, Khurana TS. Duchenne muscular dystrophy drug discovery - the application of utrophin promoter activation screening. Expert Opin Drug Discov 2013; 8:569-81. [PMID: 23473647 DOI: 10.1517/17460441.2013.777040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastating genetic muscle wasting disease caused by mutations in the DMD gene that in turn lead to an absence of dystrophin. Currently, there is no definitive therapy for DMD. Gene- and cell-based therapies designed to replace dystrophin have met some degree of success, as have strategies that seek to improve the dystrophic pathology independent of dystrophin. AREAS COVERED In this review the authors focus on utrophin promoter activation-based strategies and their implications on potential therapeutics for DMD. These strategies in common are designed to identify drugs/small molecules that can activate the utrophin promoter and would allow the functional substitution of dystrophin by upregulating utrophin expression in dystrophic muscle. The authors provide an overview of utrophin biology with a focus on regulation of the utrophin promoter and discuss current attempts in identifying utrophin promoter-activating molecules using high-throughput screening (HTS). EXPERT OPINION The characterisation of utrophin promoter regulatory mechanisms coupled with advances in HTS have allowed researchers to undertake screens and identify a number of promising lead compounds that may prove useful for DMD. In principle, these pharmacological compounds offer significant advantages from a translational viewpoint for developing DMD therapeutics.
Collapse
Affiliation(s)
- Catherine Moorwood
- University of Pennsylvania School of Dental Medicine, Department of Anatomy & Cell Biology, 438 Levy Research Building, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
7
|
Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS. Translational regulation of utrophin by miRNAs. PLoS One 2011; 6:e29376. [PMID: 22216264 PMCID: PMC3246502 DOI: 10.1371/journal.pone.0029376] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/28/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD) locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin's absence in animal models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and more recently translational control mechanisms that may underlie its complex expression patterns have begun to be identified. METHODOLOGY/PRINCIPAL FINDINGS Using a variety of bioinformatic, molecular and cell biology techniques, we show that the muscle isoform utrophin-A is predominantly suppressed at the translational level in C2C12 myoblasts. The extent of translational inhibition is estimated to be ~99% in C2C12 cells and is mediated by both the 5'- and 3'-UTRs of the utrophin-A mRNA. In this study we identify five miRNAs (let-7c, miR-150, miR-196b, miR-296-5p, miR-133b) that mediate the repression, and confirm repression by the previously identified miR-206. We demonstrate that this translational repression can be overcome by blocking the actions of miRNAs, resulting in an increased level of utrophin protein in C2C12 cells. CONCLUSIONS/SIGNIFICANCE The present study has identified key inhibitory mechanisms featuring miRNAs that regulate utrophin expression, and demonstrated that these mechanisms can be targeted to increase endogenous utrophin expression in cultured muscle cells. We suggest that miRNA-mediated inhibitory mechanisms could be targeted by methods similar to those described here as a novel strategy to increase utrophin expression as a therapy for DMD.
Collapse
Affiliation(s)
- Utpal Basu
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olga Lozynska
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Catherine Moorwood
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gopal Patel
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Steve D. Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | - Tejvir S. Khurana
- Department of Physiology, Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Fernández-Calotti P, Pastor-Anglada M. All-trans-retinoic acid promotes trafficking of human concentrative nucleoside transporter-3 (hCNT3) to the plasma membrane by a TGF-beta1-mediated mechanism. J Biol Chem 2010; 285:13589-98. [PMID: 20172853 DOI: 10.1074/jbc.m109.055673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human concentrative nucleoside transporter-3 (hCNT3) is a sodium-coupled nucleoside transporter that exhibits high affinity and broad substrate selectivity, making it the most suitable candidate for mediating the uptake and cytotoxic action of most nucleoside-derived drugs. The drug of this class most commonly used in the treatment of chronic lymphocytic leukemia (CLL) is the pro-apoptotic nucleoside analog fludarabine (Flu), which enters CLL cells primarily through human equilibrative nucleoside transporters (hENTs). Although CLL cells lack hCNT3 activity, they do express this transporter protein, which is located mostly in the cytosol. The aim of our study was to identify agents and mechanisms capable of promoting hCNT3 trafficking to the plasma membrane. Here, we report that all-trans-retinoic acid (ATRA), currently used in the treatment of acute promyelocytic leukemia (APL), increases hCNT3-related activity through a mechanism that involves trafficking of pre-existing hCNT3 proteins to the plasma membrane. This effect is mediated by the autocrine action of transforming growth factor (TGF)-beta1, which is transcriptionally activated by ATRA in a p38-dependent manner. TGF-beta1 acts through activation of ERK1/2 and the small GTPase RhoA to promote plasma membrane trafficking of the hCNT3 protein.
Collapse
Affiliation(s)
- Paula Fernández-Calotti
- Departament de Bioquímica i Biologia Molecular, the Institut de Biomedicina de la Universitat de Barcelona, and CIBER EHD, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
9
|
RhoA leads to up-regulation and relocalization of utrophin in muscle fibers. Biochem Biophys Res Commun 2009; 384:322-8. [DOI: 10.1016/j.bbrc.2009.04.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 11/24/2022]
|
10
|
Miura P, Andrews M, Holcik M, Jasmin BJ. IRES-mediated translation of utrophin A is enhanced by glucocorticoid treatment in skeletal muscle cells. PLoS One 2008; 3:e2309. [PMID: 18545658 PMCID: PMC2396518 DOI: 10.1371/journal.pone.0002309] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/25/2008] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids are currently the only drug treatment recognized to benefit Duchenne muscular dystrophy (DMD) patients. The nature of the mechanisms underlying the beneficial effects remains incompletely understood but may involve an increase in the expression of utrophin. Here, we show that treatment of myotubes with 6α−methylprednisolone-21 sodium succinate (PDN) results in enhanced expression of utrophin A without concomitant increases in mRNA levels thereby suggesting that translational regulation contributes to the increase. In agreement with this, we show that PDN treatment of cells transfected with monocistronic reporter constructs harbouring the utrophin A 5′UTR, causes an increase in reporter protein expression while leaving levels of reporter mRNAs unchanged. Using bicistronic reporter assays, we further demonstrate that PDN enhances activity of an Internal Ribosome Entry Site (IRES) located within the utrophin A 5′UTR. Analysis of polysomes demonstrate that PDN causes an overall reduction in polysome-associated mRNAs indicating that global translation rates are depressed under these conditions. Importantly, PDN causes an increase in the polysome association of endogenous utrophin A mRNAs and reporter mRNAs harbouring the utrophin A 5′UTR. Additional experiments identified a distinct region within the utrophin A 5′UTR that contains the inducible IRES activity. Together, these studies demonstrate that a translational regulatory mechanism involving increased IRES activation mediates, at least partially, the enhanced expression of utrophin A in muscle cells treated with glucocorticoids. Targeting the utrophin A IRES may thus offer an important and novel therapeutic avenue for developing drugs appropriate for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Meghan Andrews
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Bernard J. Jasmin
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa Hospital, Ottawa, Onatario, Canada
- * E-mail:
| |
Collapse
|
11
|
Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: successes, limitations and recent advances. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:243-62. [PMID: 17064882 PMCID: PMC1894910 DOI: 10.1016/j.bbadis.2006.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 09/16/2006] [Accepted: 09/20/2006] [Indexed: 02/07/2023]
Abstract
Much progress has been made over the past decade elucidating the molecular basis for a variety of muscular dystrophies (MDs). Accordingly, there are examples of mouse models of MD whose disease progression has been halted in large part with the use of viral vector technology. Even so, we must acknowledge significant limitations of present vector systems that must be overcome prior to successful treatment of humans with such approaches. This review will present a variety of viral-mediated therapeutic strategies aimed at counteracting the muscle-wasting symptoms associated with muscular dystrophy. We include viral vector systems used for muscle gene transfer, with a particular emphasis on adeno-associated virus. Findings of several encouraging studies focusing on repair of the mutant dystrophin gene are also included. Lastly, we present a discussion of muscle compensatory therapeutics being considered that include pathways involved in the up-regulation of utrophin, promotion of cellular adhesion, enhancement of muscle mass, and antagonism of the inflammatory response. Considering the complexity of the muscular dystrophies, it appears likely that a multilayered approach tailored to a patient sub-group may be warranted in order to effectively contest the progression of this devastating disease.
Collapse
Affiliation(s)
- Guy L. Odom
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Paul Gregorevic
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7720, USA
| |
Collapse
|
12
|
Hnia K, Tuffery-Giraud S, Vermaelen M, Hugon G, Chazalette D, Masmoudi A, Rivier F, Mornet D. Pathological pattern of Mdx mice diaphragm correlates with gradual expression of the short utrophin isoform Up71. Biochim Biophys Acta Mol Basis Dis 2006; 1762:362-72. [PMID: 16457992 PMCID: PMC1974843 DOI: 10.1016/j.bbadis.2005.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
Utrophin gene is transcribed in a large mRNA of 13 kb that codes for a protein of 395 kDa. It shows amino acid identity with dystrophin of up to 73% and is widely expressed in muscle and non-muscle tissues. Up71 is a short utrophin product of the utrophin gene with the same cysteine-rich and C-terminal domains as full-length utrophin (Up395). Using RT-PCR, Western blots analysis, we demonstrated that Up71 is overexpressed in the mdx diaphragm, the most pathological muscle in dystrophin-deficient mdx mice, compared to wild-type C57BL/10 or other mdx skeletal muscles. Subsequently, we demonstrated that this isoform displayed an increased expression level up to 12 months, whereas full-length utrophin (Up395) decreased. In addition, beta-dystroglycan, the transmembrane glycoprotein that anchors the cytoplasmic C-terminal domain of utrophin, showed similar increase expression in mdx diaphragm, as opposed to other components of the dystrophin-associated protein complex (DAPC) such as alpha-dystrobrevin1 and alpha-sarcoglycan. We demonstrated that Up71 and beta-dystroglycan were progressively accumulated along the extrasynaptic region of regenerating clusters in mdx diaphragm. Our data provide novel functional insights into the pathological role of the Up71 isoform in dystrophinopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - Sylvie Tuffery-Giraud
- Laboratoire de génétique des maladies rares. Pathologie moléculaire, études fonctionnelles et banque de données génétiques
INSERM : U827 IFR3Université Montpellier IIURC
CHU de Montpellier
34093 MONTPELLIER ,FR
| | - Marianne Vermaelen
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Gerald Hugon
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Delphine Chazalette
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Ahmed Masmoudi
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - François Rivier
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Dominique Mornet
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- * Correspondence should be adressed to: Dominique Mornet
| |
Collapse
|
13
|
Miura P, Jasmin BJ. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol Med 2006; 12:122-9. [PMID: 16443393 DOI: 10.1016/j.molmed.2006.01.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/16/2005] [Accepted: 01/13/2006] [Indexed: 12/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder for which there is currently no effective treatment. This disorder is caused by mutations or deletions in the gene encoding dystrophin that prevent expression of dystrophin at the sarcolemma. A promising pharmacological treatment for DMD aims to increase levels of utrophin, a homolog of dystrophin, in muscle fibers of affected patients to compensate for the absence of dystrophin. Here, we review recent developments in our understanding of the regulatory pathways that govern utrophin expression, and highlight studies that have used activators of these pathways to alleviate the dystrophic symptoms in DMD animal models. The results of these preclinical studies are promising and bring us closer to implementing appropriate utrophin-based drug therapies for DMD patients.
Collapse
Affiliation(s)
- Pedro Miura
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|