1
|
Dalal S, Pathak R, Moh EXS, Packer NH. Inhibition of chondroitin sulphate-degrading enzyme Chondroitinase ABC by dextran sulphate. Glycoconj J 2025; 42:53-59. [PMID: 39821876 PMCID: PMC11839815 DOI: 10.1007/s10719-024-10175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Chondroitin sulphate (CS) is a sulphated glycosaminoglycan (GAG) polysaccharide found on proteoglycans (CSPGs) in extracellular and pericellular matrices. Chondroitinase ABC (CSase ABC) derived from Proteus vulgaris is an enzyme that has gained attention for the capacity to cleave chondroitin sulphate (CS) glycosaminoglycans (GAG) from various proteoglycans such as Aggrecan, Neurocan, Decorin etc. The substrate specificity of CSase ABC is well-known for targeting various structural motifs of CS chains and has gained popularity in the field of neuro-regeneration by selective degradation of CS GAG chains. Within this context, our investigation into the biochemistry of CSase ABC led us to a previously unreported inhibition of CSase ABC activity by Dextran Sulphate (DexS). To understand the inhibitory effects of DexS, we compared its inhibition of CSase ABC to that of other polysaccharides such as Heparan Sulphate, Heparin, Colominic Acid, Fucoidan, and Dextran. This analysis identified key structural factors such as monosaccharide composition and linkage, sulphation degree and overall charge as influencing CSase ABC inhibition. Remarkably, DexS emerged as a unique inhibitor of CSase ABC, with distinctive inhibitory effects that correlate with its chain length. DexS has been used to reliably induce ulcerative colitis in mice, effectively mimicking inflammatory bowel diseases in humans, and has been previously shown to inhibit both RNA polymerase and reverse transcriptase. Our investigation emphasizes the interplay between the properties of DexS and CSase ABC, providing significant insights into the utilization of polysaccharide-based inhibitors for modulating enzyme activity.
Collapse
Affiliation(s)
- Sagar Dalal
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Rachana Pathak
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW, 2109, Australia
| | - Edward X S Moh
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
- ARC Industrial Transformation Training Centre for Facilitated Advancement of Australia's Bioactives (FAAB), Sydney, NSW, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
2
|
Sánchez-Ventura J, Lago N, Penas C, Navarro X, Udina E. Link Protein 1 Is Involved in the Activity-Dependent Modulation of Perineuronal Nets in the Spinal Cord. Int J Mol Sci 2024; 25:4267. [PMID: 38673852 PMCID: PMC11050079 DOI: 10.3390/ijms25084267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.
Collapse
Affiliation(s)
| | | | | | - Xavier Navarro
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| | - Esther Udina
- Department Cell Biology, Physiology and Immunology, Institute of Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain (N.L.); (C.P.)
| |
Collapse
|
3
|
Wu T, Li Y, Wu Z, Wang Z, Li Y, Jian K, He C, Zhang C, Shi L, Dai J. Enzyme-immobilized nanoclay hydrogel simultaneously reduces inflammation and scar deposition to treat spinal cord injury. CHEMICAL ENGINEERING JOURNAL 2024; 484:149642. [DOI: 10.1016/j.cej.2024.149642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ferreira AC, Hemmer BM, Philippi SM, Grau-Perales AB, Rosenstadt JL, Liu H, Zhu JD, Kareva T, Ahfeldt T, Varghese M, Hof PR, Castellano JM. Neuronal TIMP2 regulates hippocampus-dependent plasticity and extracellular matrix complexity. Mol Psychiatry 2023; 28:3943-3954. [PMID: 37914840 PMCID: PMC10730400 DOI: 10.1038/s41380-023-02296-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Functional output of the hippocampus, a brain region subserving memory function, depends on highly orchestrated cellular and molecular processes that regulate synaptic plasticity throughout life. The structural requirements of such plasticity and molecular events involved in this regulation are poorly understood. Specific molecules, including tissue inhibitor of metalloproteinases-2 (TIMP2) have been implicated in plasticity processes in the hippocampus, a role that decreases with brain aging as expression is lost. Here, we report that TIMP2 is highly expressed by neurons within the hippocampus and its loss drives changes in cellular programs related to adult neurogenesis and dendritic spine turnover with corresponding impairments in hippocampus-dependent memory. Consistent with the accumulation of extracellular matrix (ECM) in the hippocampus we observe with aging, we find that TIMP2 acts to reduce accumulation of ECM around synapses in the hippocampus. Moreover, its deletion results in hindrance of newborn neuron migration through a denser ECM network. A novel conditional TIMP2 knockout (KO) model reveals that neuronal TIMP2 regulates adult neurogenesis, accumulation of ECM, and ultimately hippocampus-dependent memory. Our results define a mechanism whereby hippocampus-dependent function is regulated by TIMP2 and its interactions with the ECM to regulate diverse processes associated with synaptic plasticity.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Philippi
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro B Grau-Perales
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacob L Rosenstadt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanxiao Liu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tatyana Kareva
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Watanabe I, Shirogane T, Matsuyama Y, Chiba K. Effect of contrast media on the enzyme activity of condoliase: In vitro assessment. JOR Spine 2022; 5:e1221. [PMID: 36203868 PMCID: PMC9520762 DOI: 10.1002/jsp2.1221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/24/2022] [Indexed: 11/09/2022] Open
Abstract
Background Condoliase has been used in Japan to treat patients with lumbar disc herniation by its injection into the nucleus pulposus. The injection of condoliase together with contrast media is prohibited; because there are no data whether contrast media have any effect on condoliase activity. This study aimed to elucidate the effects of contrast media on condoliase activity. Methods Condoliase with chondroitin sulfate (CS) and without CS were mixed with various contrast media (nonionic [iohexol or iotrolan]; ionic [amidotrizoic acid]). (i) The mixtures with CS were incubated at 37°C; (ii) the mixtures without CS were stored at 24°C for 60 min, followed by addition of CS to assess condoliase activity by measuring the amount of N-acetylhexosamines enzymatically cleaved from CS using Morgan-Elson method. Results (i) In the presence of CS, the ionic contrast media reduced condoliase activity within 10 min in a dose-dependent manner, and the nonionic contrast media had no effect on condoliase activity for at least 120 min. (ii) In the absence of CS, the ionic contrast media almost completely inactivated condoliase within 15 min, and the nonionic contrast media also reduced condoliase activity; the residual activity was 65% with iotrolan and 35% with iohexol at 60 min. Conclusions The ionic contrast media significantly reduced condoliase activity regardless of presence or absence of CS. Although the nonionic contrast media did not affect condoliase activity in the presence of CS, it reduced activity in the absence of CS. Mixing condoliase with contrast media, especially ionic type contrast media, should be avoided.
Collapse
Affiliation(s)
| | | | - Yukihiro Matsuyama
- Department of Orthopaedic SurgeryHamamatsu University School of MedicineShizuokaJapan
| | - Kazuhiro Chiba
- Department of Orthopaedic SurgeryNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
7
|
Guarque-Chabrera J, Sanchez-Hernandez A, Ibáñez-Marín P, Melchor-Eixea I, Miquel M. Role of Perineuronal nets in the cerebellar cortex in cocaine-induced conditioned preference, extinction, and reinstatement. Neuropharmacology 2022; 218:109210. [PMID: 35985392 DOI: 10.1016/j.neuropharm.2022.109210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 10/31/2022]
Abstract
Perineuronal nets (PNNs) are cartilage-like structures of extracellular matrix molecules that enwrap in a net-like manner the cell-body and proximal dendrites of special subsets of neurons. PNNs stabilize their incoming connections and restrict plasticity. Consequently, they have been proposed as a candidate mechanism for drug-induced learning and memory. In the cerebellum, PNNs surround Golgi inhibitory interneurons and both inhibitory and excitatory neurons in the deep cerebellar nuclei (DCN). Previous studies from the lab showed that cocaine-induced conditioned memory increased PNN expression in the granule cell layer of the posterior vermis. The present research aimed to investigate the role of cerebellar PNNs in cocaine-induced conditioned preference. For this purpose, we use the enzyme chondroitinase ABC (ChABC) to digest PNNs at different time points of the learning process to ascertain whether their removal can affect drug-induced memory. Our results show that PNN digestion using ChABC in the posterior vermis (Lobule VIII) did not affect the acquisition of cocaine-induced conditioned preference. However, the removal of PNNs in Lobule VIII -but not in the DCN- disrupted short-term memory of conditioned preference. Moreover, although PNN digestion facilitated the formation of extinction, reinstatement of cocaine-induced conditioned preference was encouraged under PNN digestion. The present findings suggests that PNNs around Golgi interneurons are needed to maintain cocaine-induced Pavlovian memory but also to stabilize extinction memory. Conversely, PNN degradation within the DCN did not affect stability of cocaine-induced memories. Therefore, degradation of PNNs in the vermis might be used as a promising tool to manipulate drug-induced memory.
Collapse
Affiliation(s)
- Julian Guarque-Chabrera
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Aitor Sanchez-Hernandez
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Patricia Ibáñez-Marín
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Ignasi Melchor-Eixea
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain
| | - Marta Miquel
- Área de Psicobiología, Universitat Jaume I, Facultat de Ciencies de la Salut, Avenida Vicente Sos Baynat sn, 12071, Castellón de la Plana, Spain.
| |
Collapse
|
8
|
Pourahmadi M, Shirdel A, Jamshidi N, Jafarian V, Khalifeh K. Comparing similar versions of a connecting helix on the structure of Chondroitinase ABC I. Enzyme Microb Technol 2022; 160:110073. [DOI: 10.1016/j.enzmictec.2022.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
|
9
|
Takashima M, Watanabe I, Miyanaga A, Eguchi T. Substrate specificity of Chondroitinase ABC I based on analyses of biochemical reactions and crystal structures in complex with disaccharides. Glycobiology 2021; 31:1571-1581. [PMID: 34392362 PMCID: PMC8684500 DOI: 10.1093/glycob/cwab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/28/2022] Open
Abstract
Chondroitinase ABC I (cABC-I) is the enzyme which cleaves the β-1,4 glycosidic linkage of chondroitin sulfate (CS) by β-elimination. To elucidate more accurately the substrate specificity of cABC-I, we evaluated the kinetic parameters of cABC-I and its reactivity with CS isomers displaying less structural heterogeneity as substrates, e.g., approximately 90 percent of disaccharide units in Chondroitin sulfate A (CSA) or Chondroitin sulfate C (CSC) is D-glucuronic acid and 4-O-sulfated N-acetyl galactosamine (GalNAc) (A-unit) or D-glucuronic acid and 6-O-sulfated GalNAc (C-unit), respectively. cABC-I showed the highest reactivity to CSA and CSC among all CS isomers, and the kcat/Km of cABC-I was higher for CSA than for CSC. Next, we determined the crystal structures of cABC-I in complex with CS disaccharides, and analyzed the crystallographic data in combination with molecular docking data. Arg500 interacts with 4-O-sulfated and 6-O-sulfated GalNAc residues. The distance between Arg500 and the 4-O-sulfate group was 0.8 Å shorter than that between Arg500 and the 6-O-sulfated group. Moreover, it is likely that the 6-O-sulfated group is electrostatically repulsed by the nearby Asp490. Thus, we demonstrated that cABC-I has the highest affinity for the CSA richest in 4-O-sulfated GalNAc residues among all CS isomers. Recently, cABC-I was used to treat lumbar disc herniation. The results provide useful information to understand the mechanism of the pharmacological action of cABC-I.
Collapse
Affiliation(s)
- Makoto Takashima
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Ippei Watanabe
- Medical Affairs, Seikagaku Corporation, 1-6-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
10
|
Link JM, Hu JC, Athanasiou KA. Chondroitinase ABC Enhances Integration of Self-Assembled Articular Cartilage, but Its Dosage Needs to Be Moderated Based on Neocartilage Maturity. Cartilage 2021; 13:672S-683S. [PMID: 32441107 PMCID: PMC8804832 DOI: 10.1177/1947603520918653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To enhance the in vitro integration of self-assembled articular cartilage to native articular cartilage using chondroitinase ABC. DESIGN To examine the hypothesis that chondroitinase ABC (C-ABC) integration treatment (C-ABCint) would enhance integration of neocartilage of different maturity levels, this study was conducted in 2 phases. In phase I, the impact on integration of 2 treatments, TCL (TGF-β1, C-ABC, and lysyl oxidase like 2) and C-ABCint, was examined via a 2-factor, full factorial design. In phase II, construct maturity (2 levels) and C-ABCint concentration (3 levels) were the factors in a full factorial design to determine whether the effective C-ABCint dose was dependent on neocartilage maturity level. Neocartilages formed or treated per the factors above were placed into native cartilage rings, cultured for 2 weeks, and, then, integration was studied histologically and mechanically. Prior to integration, in phase II, a set of treated constructs were also assayed to provide a baseline of properties. RESULTS In phase I, C-ABCint and TCL treatments synergistically enhanced interface Young's modulus by 6.2-fold (P = 0.004) and increased interface tensile strength by 3.8-fold (P = 0.02) compared with control. In phase II, the interaction of the factors C-ABCint and construct maturity was significant (P = 0.0004), indicating that the effective C-ABCint dose to improve interface Young's modulus is dependent on construct maturity. Construct mechanical properties were preserved regardless of C-ABCint dose. CONCLUSIONS Applying C-ABCint to neocartilage is an effective integration strategy with translational potential, provided its dose is calibrated appropriately based on implant maturity, that also preserves implant biomechanical properties.
Collapse
Affiliation(s)
- Jarrett M. Link
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering,
University of California, Irvine, CA, USA,Kyriacos A. Athanasiou, Distinguished
Professor Henry Samueli Chair, Director, DELTAi (Driving
Engineering and Life-science Translational Advances @ Irvine), Department of
Biomedical Engineering, Henry Samueli School of Engineering, University of
California, 3418 Engineering Hall, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Sultana R, Brooks CB, Shrestha A, Ogundele OM, Lee CC. Perineuronal Nets in the Prefrontal Cortex of a Schizophrenia Mouse Model: Assessment of Neuroanatomical, Electrophysiological, and Behavioral Contributions. Int J Mol Sci 2021; 22:11140. [PMID: 34681799 PMCID: PMC8538055 DOI: 10.3390/ijms222011140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Schizophrenia is a neurodevelopmental disorder whose etiopathogenesis includes changes in cellular as well as extracellular structures. Perineuronal nets (PNNs) associated with parvalbumin-positive interneurons (PVs) in the prefrontal cortex (PFC) are dysregulated in schizophrenia. However, the postnatal development of these structures along with their associated neurons in the PFC is unexplored, as is their effects on behavior and neural activity. Therefore, in this study, we employed a DISC1 (Disruption in Schizophrenia) mutation mouse model of schizophrenia to assess these developmental changes and tested whether enzymatic digestion of PNNs in the PFC affected schizophrenia-like behaviors and neural activity. Developmentally, we found that the normal formation of PNNs, PVs, and colocalization of these two in the PFC, peaked around PND 22 (postnatal day 22). However, in DISC1, mutation animals from PND 0 to PND 60, both PNNs and PVs were significantly reduced. After enzymatic digestion of PNNs with chondroitinase in adult animals, the behavioral pattern of control animals mimicked that of DISC1 mutation animals, exhibiting reduced sociability, novelty and increased ultrasonic vocalizations, while there was very little change in other behaviors, such as working memory (Y-maze task involving medial temporal lobe) or depression-like behavior (tail-suspension test involving processing via the hypothalamic pituitary adrenal (HPA) axis). Moreover, following chondroitinase treatment, electrophysiological recordings from the PFC exhibited a reduced proportion of spontaneous, high-frequency firing neurons, and an increased proportion of irregularly firing neurons, with increased spike count and reduced inter-spike intervals in control animals. These results support the proposition that the aberrant development of PNNs and PVs affects normal neural operations in the PFC and contributes to the emergence of some of the behavioral phenotypes observed in the DISC1 mutation model of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| | | | | | | | - Charles Chulsoo Lee
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Baton Rouge, LA 70803, USA; (C.B.B.); (A.S.); (O.M.O.)
| |
Collapse
|
12
|
Dixon AR, Warren JP, Culbert MP, Mengoni M, Wilcox RK. Review of in vitro mechanical testing for intervertebral disc injectable biomaterials. J Mech Behav Biomed Mater 2021; 123:104703. [PMID: 34365096 DOI: 10.1016/j.jmbbm.2021.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 01/17/2023]
Abstract
Many early stage interventions for intervertebral disc degeneration are under development involving injection of a biomaterial into the affected tissue. Due to the complex mechanical behaviour of the intervertebral disc, there are challenges in comprehensively evaluating the performance of these injectable biomaterials in vitro. The aim of this review was to examine the different methods that have been developed to mechanically test injectable intervertebral disc biomaterials in an in vitro disc model. Testing methods were examined with emphasis on overall protocol, artificial degeneration method, mechanical testing regimes and injection delivery. Specifically, the effects of these factors on the evaluation of different aspects of device performance was assessed. Broad testing protocols varied between studies and enabled evaluation of different aspects of an injectable treatment. Studies employed artificial degeneration methodologies which were either on a macro scale through mechanical means or on a microscale with biochemical means. Mechanical loading regimes differed greatly across studies, with load being either held constant, ramped to failure, or applied cyclically, with large variability on all loading parameters. Evaluation of the risk of herniation was possible by utilising ramped loading, whereas cyclic loading enabled the examination of the restoration of mechanical behaviour for initial screening of biomaterials and surgical technique optimisation studies. However, there are large variations in the duration or tests, and further work is needed to define an appropriate number of cycles to standardise this type of testing. Biomaterial delivery was controlled by set volume or haptic feedback, and future investigations should generate evidence applying physiological loading during injection and normalisation of injection parameters based on disc size. Based on the reviewed articles and considering clinical risks, a series of recommendations have been made for future intervertebral disc mechanical testing.
Collapse
Affiliation(s)
- A R Dixon
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| | - J P Warren
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M P Culbert
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - M Mengoni
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom
| | - R K Wilcox
- University of Leeds, Institute of Medical and Biological Engineering, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
13
|
Warren PM, Fawcett JW, Kwok JCF. Substrate Specificity and Biochemical Characteristics of an Engineered Mammalian Chondroitinase ABC. ACS OMEGA 2021; 6:11223-11230. [PMID: 34056277 PMCID: PMC8153898 DOI: 10.1021/acsomega.0c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Chondroitin sulfate proteoglycans inhibit regeneration, neuroprotection, and plasticity following spinal cord injury. The development of a second-generation chondroitinase ABC enzyme, capable of being secreted from mammalian cells (mChABC), has facilitated the functional recovery of animals following severe spinal trauma. The genetically modified enzyme has been shown to efficiently break down the inhibitory extracellular matrix surrounding cells at the site of injury, while facilitating cellular integration and axonal growth. However, the activity profile of the enzyme in relation to the original bacterial chondroitinase (bChABC) has not been determined. Here, we characterize the activity profile of mChABC and compare it to bChABC, both enzymes having been maintained under physiologically relevant conditions for the duration of the experiment. We show that this genetically modified enzyme can be secreted reliably and robustly in high yields from a mammalian cell line. The modifications made to the cDNA of the enzyme have not altered the functional activity of mChABC compared to bChABC, ensuring that it has optimal activity on chondroitin sulfate-A, with an optimal pH at 8.0 and temperature at 37 °C. However, mChABC shows superior thermostability compared to bChABC, ensuring that the recombinant enzyme operates with enhanced activity over a variety of physiologically relevant substrates and temperatures compared to the widely used bacterial alternative without substantially altering its kinetic output. The determination that mChABC can function with greater robustness under physiological conditions than bChABC is an important step in the further development of this auspicious treatment strategy toward a clinical application.
Collapse
Affiliation(s)
- Philippa M. Warren
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Wolfson
Centre for Age Related Diseases, Institute of Psychiatry, Psychology
and Neuroscience, King’s College
London, Guy’s
Campus, London Bridge, London SE1 1UL, U.K.
- Department
of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 0PY, U.K.
| | - James W. Fawcett
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Centre
for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Jessica C. F. Kwok
- Department
of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, U.K.
- Centre
for Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
14
|
Shin J, Kang EH, Choi S, Jeon EJ, Cho JH, Kang D, Lee H, Yun IS, Cho SW. Tissue-Adhesive Chondroitin Sulfate Hydrogel for Cartilage Reconstruction. ACS Biomater Sci Eng 2021; 7:4230-4243. [PMID: 33538598 DOI: 10.1021/acsbiomaterials.0c01414] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondroitin sulfate (CS), the main component of cartilage extracellular matrix, has attracted attention as a biomaterial for cartilage tissue engineering. However, current CS hydrogel systems still have limitations for application in successful cartilage tissue engineering owing to their unsuitable degradation kinetics, insufficient mechanical similarity, and lack of integration with the native cartilage tissue. In this study, using mussel adhesive-inspired catechol chemistry, we developed a functional CS hydrogel that exhibits tunable physical and mechanical properties as well as excellent tissue adhesion for efficient integration with native tissues. Various properties of the developed catechol-functionalized CS (CS-CA) hydrogel, including swelling, degradation, mechanical properties, and adhesiveness, could be tailored by varying the conjugation ratio of the catechol group to the CS backbone and the concentration of the CS-CA conjugates. CS-CA hydrogels exhibited significantly increased modulus (∼10 kPa) and superior adhesive properties (∼3 N) over conventional CS hydrogels (∼hundreds Pa and ∼0.05 N). In addition, CS-CA hydrogels incorporating decellularized cartilage tissue dice promoted the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by providing a cartilage-like microenvironment. Finally, the transplantation of autologous cartilage dice using tissue-adhesive CS-CA hydrogels enhanced cartilage integration with host tissue and neo-cartilage formation owing to favorable physical, mechanical, and biological properties for cartilage formation. In conclusion, our study demonstrated the potential utility of the CS-CA hydrogel system in cartilage tissue reconstruction.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Hye Kang
- Institute for Human Tissue Restoration, Department of Plastic and Reconstructive Surgery, Yonsei University College of Medicine, Severance Hospital, Seoul 03722, Republic of Korea
| | - Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Donyoung Kang
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - In Sik Yun
- Department of Plastic and Reconstructive Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.,Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Raspa A, Carminati L, Pugliese R, Fontana F, Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. J Control Release 2021; 330:1208-1219. [DOI: 10.1016/j.jconrel.2020.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
|
16
|
Alabbas A, Desai UR. Enzyme immobilization offers a robust tool to scale up the production of longer, diverse, natural glycosaminoglycan oligosaccharides. Glycobiology 2020; 30:768-773. [PMID: 32193533 DOI: 10.1093/glycob/cwaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Although structurally diverse, longer glycosaminoglycan (GAG) oligosaccharides are critical to understand human biology, few are available. The major bottleneck has been the predominant production of oligosaccharides, primarily disaccharides, upon enzymatic depolymerization of GAGs. In this work, we employ enzyme immobilization to prepare hexasaccharide and longer sequences of chondroitin sulfate in good yields with reasonable homogeneity. Immobilized chondroitinase ABC displayed good efficiency, robust operational pH range, broad thermal stability, high recycle ability and excellent distribution of products in comparison to the free enzyme. Diverse sequences could be chromatographically resolved into well-defined peaks and characterized using LC-MS. Enzyme immobilization technology could enable easier access to diverse longer GAG sequences.
Collapse
Affiliation(s)
- Alhumaidi Alabbas
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Pharmaceutical Chemistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
17
|
Schommer NN, Nguyen J, Yung BS, Schultheis K, Muthumani K, Weiner DB, Humeau L, Broderick KE, Smith TRF. Active Immunoprophylaxis and Vaccine Augmentations Mediated by a Novel Plasmid DNA Formulation. Hum Gene Ther 2020; 30:523-533. [PMID: 30860399 PMCID: PMC6479233 DOI: 10.1089/hum.2018.241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plasmid DNA (pDNA) gene delivery is a highly versatile technology that has the potential to address a multitude of unmet medical needs. Advances in pDNA delivery to host tissue with the employment of in vivo electroporation (EP) have led to significantly enhanced gene expression and the recent demonstration of clinical efficacy with the platform. Building upon this platform, this study reports that enzyme-mediated modification of the muscle tissue extracellular matrix structure at the site of pDNA delivery operates in a synergistic manner with EP to enhance both local and systemic gene expression further. Specifically, administration of chondroitinase ABC (Cho ABC) to the site of intramuscular delivery of pDNA led to transient disruption of chondroitin sulfate scaffolding barrier, permitting enhanced gene distribution and expression across the tissue. The employment of Cho ABC in combination with CELLECTRA® intramuscular EP resulted in increased gene expression by 5.5-fold in mice and 17.98-fold in rabbits. The study demonstrates how this protocol can be universally applied to an active prophylaxis platform to increase the in vivo production of functional immunoglobulin G, and to DNA vaccine protocols to permit drug dose sparing. The data indicate the Cho ABC formulation to be of significant value upon combination with EP to drive enhanced gene expression levels in pDNA delivery protocols.
Collapse
Affiliation(s)
- Nina N Schommer
- 1 Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Jacklyn Nguyen
- 1 Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | - Bryan S Yung
- 1 Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | | | - Kar Muthumani
- 2 The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | - David B Weiner
- 2 The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania
| | - Laurent Humeau
- 1 Inovio Pharmaceuticals, Inc., Plymouth Meeting, Pennsylvania
| | | | | |
Collapse
|
18
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
19
|
Jiang EY, Sloan SR, Wipplinger C, Kirnaz S, Härtl R, Bonassar LJ. Proteoglycan removal by chondroitinase ABC improves injectable collagen gel adhesion to annulus fibrosus. Acta Biomater 2019; 97:428-436. [PMID: 31425894 DOI: 10.1016/j.actbio.2019.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) herniations are currently treated with interventions that leave the IVD with persistent lesions prone to further herniations. Annulus fibrosus (AF) repair has become of interest as a method to seal defects in the IVD and prevent reherniation, but this requires strong adhesion of the implanted biomaterial to the native AF tissue. Our group has previously developed a high-density collagen (HDC) gel for AF repair and tested its efficacy in vivo, but its adhesion to the AF could be improved. Increased cell adhesion to cartilage has previously been reported through chondroitinase ABC (ChABC) digestion, which removes proteoglycans and increases access to cell binding motifs. Such approaches could also increase biomaterial adhesion to tissue, but the effects of ChABC digestion on AF have yet to be investigated. In this study, ovine AF tissue was digested with either 10 U/mL ChABC or saline for up to 10 min and the effect of this treatment on collagen adhesion between AF tissue samples was investigated by histology and mechanical testing in a lap-shear configuration. ChABC digestion removed proteoglycans within the AF in a time-dependent fashion and enhanced adhesion of the HDC gel to the AF. ChABC digestion increased the elastic toughness and total shear energy of the HDC gel-AF interface by 88% and 46% respectively. ChABC treatment enhanced the adhesion of the HDC gel to the AF without significantly decreasing native AF cell viability. Thus, ChABC digestion is a viable method to improve adhesion of biomaterials for AF repair. STATEMENT OF SIGNIFICANCE: Intervertebral disc herniations are currently treated with interventions that leave persistent lesions in the annulus fibrosus that are prone to further herniations. Annular repair is a promising method to seal lesions and prevent reherniation, but requires strong adhesion of the implanted biomaterial to native annulus fibrosus. Since large proteoglycans like aggrecan occupy regions of the extracellular matrix between collagen fibers in the annulus fibrosus, we hypothesized that removing proteoglycans via chondroitinase digestion would increase the adhesion of annular repair hydrogels. This investigation demonstrated that chondroitinase removed proteoglycans within annulus fibrosus tissue, enhanced the interaction of an injected collagen gel with the native tissue, and mechanically improved adhesion between the collagen gel and annulus fibrosus. This is the first study of its kind to evaluate the biochemical and mechanical effects of short-term chondroitinase digestion on annulus fibrosus tissue.
Collapse
|
20
|
Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep 2019; 9:13939. [PMID: 31558805 PMCID: PMC6763627 DOI: 10.1038/s41598-019-50404-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 01/12/2023] Open
Abstract
The synaptic transmission in the mammalian brain is not limited to the interplay between the pre- and the postsynapse of neurons, but involves also astrocytes as well as extracellular matrix (ECM) molecules. Glycoproteins, proteoglycans and hyaluronic acid of the ECM pervade the pericellular environment and condense to special superstructures termed perineuronal nets (PNN) that surround a subpopulation of CNS neurons. The present study focuses on the analysis of PNNs in a quadruple knockout mouse deficient for the ECM molecules tenascin-C (TnC), tenascin-R (TnR), neurocan and brevican. Here, we analysed the proportion of excitatory and inhibitory synapses and performed electrophysiological recordings of the spontaneous neuronal network activity of hippocampal neurons in vitro. While we found an increase in the number of excitatory synaptic molecules in the quadruple knockout cultures, the number of inhibitory synaptic molecules was significantly reduced. This observation was complemented with an enhancement of the neuronal network activity level. The in vivo analysis of PNNs in the hippocampus of the quadruple knockout mouse revealed a reduction of PNN size and complexity in the CA2 region. In addition, a microarray analysis of the postnatal day (P) 21 hippocampus was performed unravelling an altered gene expression in the quadruple knockout hippocampus.
Collapse
|
21
|
Wang S, Su T, Zhang Q, Guan J, He J, Gu L, Li F. Comparative Study of Two Chondroitin Sulfate/Dermatan Sulfate 4- O-Sulfatases With High Identity. Front Microbiol 2019; 10:1309. [PMID: 31244815 PMCID: PMC6581707 DOI: 10.3389/fmicb.2019.01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023] Open
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) sulfatases are potential tools for structural and functional studies of CD/DS chains. In our previous study, a CS/DS 4-O-endosulfatase (endoVB4SF) was identified from a marine bacterium (Wang et al., 2015). Herein, another CS/DS 4-O-sulfatase (exoPB4SF) was identified from a Photobacterium sp. ExoPB4SF shares an 83% identity with endoVB4SF but showed strict exolytic activity. Comparative studies were performed for both enzymes on the basis of biochemical features, substrate-degrading patterns and three-dimensional structures. exoPB4SF exhibited a wider temperature and pH adaptability and better thermostability than endoVB4SF. Furthermore, exoPB4SF is a strict exolytic sulfatase that only releases the sulfate group from the GalNAc residue located at the reducing end, whereas endoVB4SF preferentially removed sulfate esters from the reducing end toward the non-reducing end though its directional degradation property was not strict. In addition, the structure of endoVB4SF was determined by X-ray crystallography at 1.95 Å. It adopts a globular conformation with two monomers per asymmetric unit. The exoPB4SF structure was constructed by homology modeling. Molecular docking results showed that although the residues around the catalytic center are conserved, the residues at the active site of endoVB4SF adopted a more favorable conformation for the binding of long CS/DS chains than those of exoPB4SF, which may explain why the two highly homogenous sulfatases possessed different action patterns. The results of this study provide insight into the structure-function relationship of CS/DS endo- and exosulfatases for the first time.
Collapse
Affiliation(s)
- Shumin Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tiantian Su
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingdong Zhang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jingwen Guan
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing He
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lichuan Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Chondroitin Sulfate-Degrading Enzymes as Tools for the Development of New Pharmaceuticals. Catalysts 2019. [DOI: 10.3390/catal9040322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chondroitin sulfates are linear anionic sulfated polysaccharides found in biological tissues, mainly within the extracellular matrix, which are degraded and altered by specific lyases depending on specific time points. These polysaccharides have recently acquired relevance in the pharmaceutical industry due to their interesting therapeutic applications. As a consequence, chondroitin sulfate (CS) lyases have been widely investigated as tools for the development of new pharmaceuticals based on these polysaccharides. This review focuses on the major breakthrough represented by chondroitin sulfate-degrading enzymes and their structures and mechanisms of function in addition to their major applications.
Collapse
|
23
|
Omidi-Ardali H, Aminian M, Golestani A, Shahaboddin ME, Maleki M. N∆89 and C∆274 Truncated Enzymes of Chondroitinase ABC I Regain More Imperturbable Microenvironments Around Structural Components in Comparison to their Wild Type. Protein J 2019; 38:151-159. [DOI: 10.1007/s10930-019-09821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Hettiaratchi MH, O'Meara MJ, Teal CJ, Payne SL, Pickering AJ, Shoichet MS. Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J Control Release 2019; 297:14-25. [DOI: 10.1016/j.jconrel.2019.01.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
|
25
|
Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev 2018. [PMID: 29513146 DOI: 10.1152/physrev.00017.2017] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since no approved therapies to restore mobility and sensation following spinal cord injury (SCI) currently exist, a better understanding of the cellular and molecular mechanisms following SCI that compromise regeneration or neuroplasticity is needed to develop new strategies to promote axonal regrowth and restore function. Physical trauma to the spinal cord results in vascular disruption that, in turn, causes blood-spinal cord barrier rupture leading to hemorrhage and ischemia, followed by rampant local cell death. As subsequent edema and inflammation occur, neuronal and glial necrosis and apoptosis spread well beyond the initial site of impact, ultimately resolving into a cavity surrounded by glial/fibrotic scarring. The glial scar, which stabilizes the spread of secondary injury, also acts as a chronic, physical, and chemo-entrapping barrier that prevents axonal regeneration. Understanding the formative events in glial scarring helps guide strategies towards the development of potential therapies to enhance axon regeneration and functional recovery at both acute and chronic stages following SCI. This review will also discuss the perineuronal net and how chondroitin sulfate proteoglycans (CSPGs) deposited in both the glial scar and net impede axonal outgrowth at the level of the growth cone. We will end the review with a summary of current CSPG-targeting strategies that help to foster axonal regeneration, neuroplasticity/sprouting, and functional recovery following SCI.
Collapse
Affiliation(s)
- Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Philippa Mary Warren
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University , Cleveland, Ohio ; and School of Biomedical Sciences, University of Leeds , Leeds , United Kingdom
| |
Collapse
|
26
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
27
|
Rani A, Dhillon A, Sharma K, Goyal A. Insights into the structural characteristics and substrate binding analysis of chondroitin AC lyase (PsPL8A) from Pedobacter saltans. Int J Biol Macromol 2018; 109:980-991. [PMID: 29155196 DOI: 10.1016/j.ijbiomac.2017.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
The structure of chondroitin AC lyase (PsPL8A) of family 8 polysaccharide lyase was characterized. Modeled PsPL8A structure showed, it contains N-terminal (α/α)6 incomplete toroidal fold and a layered β sandwich structure at C-terminal. Ramchandran plot displayed 98.5% residues in favoured and 1.2% in generously allowed region. Secondary structure of PsPL8A by CD revealed 27.31% α helices 22.7% β sheets and 49.9% random coils. Protein melting study showed, PsPL8A completely unfolds at 60°C. SAXS analysis showed, PsPL8A is fully folded in solution form. The ab initio derived dummy model of PsPL8A superposed well with its modeled structure excluding some α-helices and loop region. Structural superposition and docking analysis showed, N153, W105, H203, Y208, Y212, R266 and E349 were involved in catalysis. Mutants N153A, H203A, Y212F, R266A and E349A created by SDM revealed no residual activity. Isothermal titration calorimetry analysis of Y212F and H203A with C4S polysaccharide, showed moderate binding by Y212F (Ka=9.56±3.81×105) and no binding with H203A, showing active contribution of Y212 in substrate binding. Residues Y212 and H203 or R266 might act as general base and general acid respectively. Residues N153 and E349 are likely contributing in charge neutralization and stabilizing enolate anion intermediate during β-elimination.
Collapse
Affiliation(s)
- Aruna Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Dhillon
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kedar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
28
|
de Mattos Pimenta Vidal C, Leme-Kraus AA, Rahman M, Farina AP, Bedran-Russo AK. Role of proteoglycans on the biochemical and biomechanical properties of dentin organic matrix. Arch Oral Biol 2017. [PMID: 28651092 DOI: 10.1016/j.archoralbio.2017.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Proteoglycans (PGs) are multifunctional biomacromolecules of the extracellular matrix of collagen-based tissues. In teeth, besides a pivotal regulatory role on dentin biomineralization, PGs provide mechanical support to the mineralized tissue and compressive strength to the biosystem. This study assessed enzymatic protocols for selective PGs removal from demineralized dentin to determine the roles of these biomacromolecules in the bulk mechanical properties and biostability of type I collagen. METHODS Selective removal of glycosaminoglycans chains (GAGs) and PGs from demineralized dentin was carried out by enzymatic digestion protocols using chondroitinase ABC (c-ABC) and trypsin (Try). A comprehensive study design included assessment of dentin matrix mass loss, biodegradability of the PGs/GAGs-depleted dentin matrix, ultimate tensile strength (UTS) and energy to fracture tests. Quantitative data was statistically analyzed by two-way and one-way ANOVA followed by the appropriate post hoc tests (α=0.05). RESULTS Transmission electron microscopy images show effective GAGs removal by c-ABC and Try and both enzymatic methods released statistically similar amounts of GAGs from the demineralized dentin. Try digestion resulted in about 25% dentin matrix mass loss and increased susceptibility to collagenolytic digestion when compared to c-ABC (p=0.0224) and control (p=0.0901). Moreover, PGs digestion by Try decreased the tensile strengths of dentin. Statistically lower energy to fracture was observed in c-ABC-treated dentin matrix. CONCLUSIONS GAGs plays a pivotal role on tissue mechanics and anisotropy, while the core protein of PGs have a protective role on matrix biostability.
Collapse
Affiliation(s)
- Cristina de Mattos Pimenta Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA; Department of Operative Dentistry, College of Dentistry, University of Iowa, 801 Newton Rd, Iowa City, IA, 52242, USA
| | - Ariene Arcas Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Momina Rahman
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Ana Paula Farina
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA; School of Dentistry, University of Passo Fundo, BR 285, São José,Building A7, Passo Fundo, RS, 99052-900, Brazil
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Führmann T, Anandakumaran PN, Shoichet MS. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help? Adv Healthc Mater 2017; 6. [PMID: 28247563 DOI: 10.1002/adhm.201601130] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/05/2016] [Indexed: 12/31/2022]
Abstract
Traumatic spinal cord injury (SCI) results in an immediate loss of motor and sensory function below the injury site and is associated with a poor prognosis. The inhibitory environment that develops in response to the injury is mainly due to local expression of inhibitory factors, scarring and the formation of cystic cavitations, all of which limit the regenerative capacity of endogenous or transplanted cells. Strategies that demonstrate promising results induce a change in the microenvironment at- and around the lesion site to promote endogenous cell repair, including axonal regeneration or the integration of transplanted cells. To date, many of these strategies target only a single aspect of SCI; however, the multifaceted nature of SCI suggests that combinatorial strategies will likely be more effective. Biomaterials are a key component of combinatorial strategies, as they have the potential to deliver drugs locally over a prolonged period of time and aid in cell survival, integration and differentiation. Here we summarize the advantages and limitations of widely used strategies to promote recovery after injury and highlight recent research where biomaterials aided combinatorial strategies to overcome some of the barriers of spinal cord regeneration.
Collapse
Affiliation(s)
- Tobias Führmann
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
| | - Priya N. Anandakumaran
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
| | - Molly S. Shoichet
- The Donnelly Centre for Cellular and Biomolecular Research; 160 College Street, Room 514 Toronto ON M5S 3E1 Canada
- Department of Chemical Engineering and Applied Chemistry; 200 College Street Toronto ON M5S 3E5 Canada
- Institute of Biomaterials and Biomedical Engineering; 164 College Street Toronto ON M5S 3G9 Canada
- Department of Chemistry; University of Toronto; 80 St George St Toronto ON M5S 3H6 Canada
| |
Collapse
|
30
|
Wu JH, Li M, Liang Y, Lu T, Duan CY. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro. Chin Med J (Engl) 2017; 129:1592-9. [PMID: 27364797 PMCID: PMC4931267 DOI: 10.4103/0366-6999.184464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. METHODS ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. RESULTS Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). CONCLUSIONS Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs.
Collapse
Affiliation(s)
- Jian-Huang Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Liang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tao Lu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
31
|
Nazari-Robati M, Golestani A, Asadikaram G. Improvement of proteolytic and oxidative stability of Chondroitinase ABC I by cosolvents. Int J Biol Macromol 2016; 91:812-7. [PMID: 27311501 DOI: 10.1016/j.ijbiomac.2016.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/26/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
Abstract
Recently, utilization of the enzyme Chondroitinase ABC I (cABC I) has received considerable attention in treatment of spinal cord injury. cABC I removes chondroitin sulfate proteoglycans which are inhibitory to axon growth and enhances nerve regeneration. Therefore, determination of cABC I resistance to proteolysis and oxidation provides valuable information for optimizing its clinical application. In this work, proteolytic stability of cABC I to trypsin and chymotrypsin as well as its oxidative resistance to H2O2 was measured. Moreover, the effect of cosolvents glycerol, sorbitol and trehalose on cABC I proteolytic and oxidative stability was determined. The results indicated that cABC I is highly susceptible to proteolysis and oxidation. Comparison of proteolytic patterns demonstrated a high degree of similarity which confirmed the exposure of specific regions of cABC I to proteolysis. However, proteolytic degradation was significantly reduced in the presence of cosolvents. In addition, cosolvents decreased the rate of both cABC I proteolytic and oxidative inactivation. Notably, the degree of stabilization provided by these cosolvents varied greatly. These findings indicated the high potential of cosolvents in protein stabilization to proteolysis and oxidative inactivation.
Collapse
Affiliation(s)
- Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - GholamReza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast 2016; 2016:5214961. [PMID: 26881114 PMCID: PMC4736403 DOI: 10.1155/2016/5214961] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022] Open
Abstract
Synapses are specialized structures that mediate rapid and efficient signal transmission between neurons and are surrounded by glial cells. Astrocytes develop an intimate association with synapses in the central nervous system (CNS) and contribute to the regulation of ion and neurotransmitter concentrations. Together with neurons, they shape intercellular space to provide a stable milieu for neuronal activity. Extracellular matrix (ECM) components are synthesized by both neurons and astrocytes and play an important role in the formation, maintenance, and function of synapses in the CNS. The components of the ECM have been detected near glial processes, which abut onto the CNS synaptic unit, where they are part of the specialized macromolecular assemblies, termed perineuronal nets (PNNs). PNNs have originally been discovered by Golgi and represent a molecular scaffold deposited in the interface between the astrocyte and subsets of neurons in the vicinity of the synapse. Recent reports strongly suggest that PNNs are tightly involved in the regulation of synaptic plasticity. Moreover, several studies have implicated PNNs and the neural ECM in neuropsychiatric diseases. Here, we highlight current concepts relating to neural ECM and PNNs and describe an in vitro approach that allows for the investigation of ECM functions for synaptogenesis.
Collapse
|
33
|
Walters R, Medintz IL, Delehanty JB, Stewart MH, Susumu K, Huston AL, Dawson PE, Dawson G. The Role of Negative Charge in the Delivery of Quantum Dots to Neurons. ASN Neuro 2015; 7:7/4/1759091415592389. [PMID: 26243591 PMCID: PMC4550297 DOI: 10.1177/1759091415592389] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery. In this study, we compared three zwitterionic QD coatings differing only in their regions of positive or negative charge, as well as a positively charged (NH2) polyethylene glycol (PEG) coat, for their ability to deliver the cell-membrane-penetrating chaperone lipopeptide JB577 (WG(Palmitoyl)VKIKKP9G2H6) to individual cells in neonatal rat hippocampal slices. We confirm both that preferential uptake in neurons, and the lack of uptake in glia, is strongly associated with having a region of greater negative charge on the QD coating. In addition, the role of negatively charged chondroitin sulfate of the extracellular matrix (ECM) in restricting uptake was further suggested by digesting neonatal rat hippocampal slices with chondroitinase ABC and showing increased uptake of QDs by oligodendrocytes. Treatment still did not affect uptake in astrocytes or microglia. Finally, the future potential of using QDs as vehicles for trafficking proteins into cells continues to show promise, as we show that by administering a histidine-tagged green fluorescent protein (eGFP-His6) to hippocampal slices, we can observe neuronal uptake of GFP.
Collapse
Affiliation(s)
- Ryan Walters
- Committee on Neurobiology, University of Chicago, IL, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Michael H Stewart
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Alan L Huston
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | - Glyn Dawson
- Committee on Neurobiology, University of Chicago, IL, USA Departments of Pediatrics, Biochemistry and Molecular Biology, University of Chicago, IL, USA
| |
Collapse
|
34
|
Kale V, Friðjónsson Ó, Jónsson JÓ, Kristinsson HG, Ómarsdóttir S, Hreggviðsson GÓ. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:479-492. [PMID: 25912370 DOI: 10.1007/s10126-015-9629-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.
Collapse
Affiliation(s)
- Varsha Kale
- Matís, Vínlandsleið 12, 113, Reykjavík, Iceland
| | | | | | | | | | | |
Collapse
|
35
|
Study the effect of His-tag on chondroitinase ABC I based on characterization of enzyme. Int J Biol Macromol 2015; 78:96-101. [DOI: 10.1016/j.ijbiomac.2015.03.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 03/21/2015] [Accepted: 03/26/2015] [Indexed: 11/22/2022]
|
36
|
Chen Z, Li Y, Feng Y, Chen L, Yuan Q. Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv 2015. [DOI: 10.1039/c5ra15220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arg660 was found as a new active site and Asn795Ala and Trp818Ala mutants showed higher activities than the wild type based on molecular docking simulation analysis for the first time.
Collapse
Affiliation(s)
- Zhenya Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Ye Li
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liang Chen
- Department of Biotechnology
- Beijing Polytechnic
- Beijing 100029
- China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
37
|
Burnside ER, Bradbury EJ. Review: Manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol Appl Neurobiol 2014; 40:26-59. [DOI: 10.1111/nan.12114] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/20/2013] [Indexed: 12/17/2022]
Affiliation(s)
- E. R. Burnside
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| | - E. J. Bradbury
- King's College London; Regeneration Group; The Wolfson Centre for Age-Related Diseases; Guy's Campus; London UK
| |
Collapse
|
38
|
Kawaguchi Y, Sugiura N, Kimata K, Kimura M, Kakuta Y. The crystal structure of novel chondroitin lyase ODV-E66, a baculovirus envelope protein. FEBS Lett 2013; 587:S0014-5793(13)00778-3. [PMID: 24512853 DOI: 10.1016/j.febslet.2013.10.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 11/28/2022]
Abstract
Chondroitin lyases have been known as pathogenic bacterial enzymes that degrade chondroitin. Recently, baculovirus envelope protein ODV-E66 was identified as the first reported viral chondroitin lyase. ODV-E66 has low sequence identity with bacterial lyases at <12%, and unique characteristics reflecting the life cycle of baculovirus. To understand ODV-E66's structural basis, the crystal structure was determined and it was found that the structural fold resembled that of polysaccharide lyase 8 proteins and that the catalytic residues were also conserved. This structure enabled discussion of the unique substrate specificity and the stability of ODV-E66 as well as the host specificity of baculovirus.
Collapse
Affiliation(s)
- Yoshirou Kawaguchi
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- Research Complex for the Medicine Frontiers, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitu Kakuta
- Laboratory of Structural Biology, Graduate School of System Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan; Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.
| |
Collapse
|
39
|
Lee JC, Min HJ, Lee S, Seong SC, Lee MC. Effect of chondroitinase ABC on adhesion and behavior of synovial membrane-derived mesenchymal stem cells in rabbit partial-thickness chondral defects. J Orthop Res 2013; 31:1293-301. [PMID: 23629810 DOI: 10.1002/jor.22353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 03/01/2013] [Indexed: 02/04/2023]
Abstract
Transplanted cells may have difficulty attaching to the surface of partial-thickness chondral lesions because of the anti-adhesive properties of the proteoglycan rich matrix. Therefore, the current study attempts to evaluate the effect of chondroitinase ABC (chABC) on the adhesion and behavior of transplanted synovial membrane-derived mesenchymal stem cells (SDSCs) in rabbit partial-thickness chondral defects. In ex vivo adhesion experiments, chABC treatment (0.1 U/ml) was increased in SDSC attachment to the cartilage explants, and significantly diminished by pretreatment with neutralizing antibody against fibronectin. In the in vivo experiments, 1 day and 4 weeks after the chABC treatment (0.1 and 1 U/ml), the immunoreactivity (IR) against CS-56 (intact chondroitin sulfate antibody) was markedly decreased; however, the IR of 2B6 (stub of the chondroitin 4-sulfate chain), 3B3 (stub of the chondroitin 6-sulfate chain), and fibronectin was increased. At 12 weeks, this IR returned to normal except in the high-dose chABC-treated group (1 U/ml). Furthermore, the attachment of SDSCs to the chondral defects after chABC treatment was increased at 7 days compared with that in the chondral defects pretreated with saline. However, the tissue repaired by SDSCs was negatively stained for type II collagen at 12 weeks. In conclusion, these results showed that the exposure to fibronectin by chABC treatment enhances the attachment of SDSCs to partial-thickness chondral defects. However, the tissue regenerated by SDSCs showed lack of hyaline cartilage regeneration. Thus, to understand the fate of transplanted MSCs in cartilage defect is very important for successful cell therapies.
Collapse
Affiliation(s)
- Jae-Chul Lee
- Department of Orthopedic Surgery, Seoul National University College of Medicine, #28 Yongondong, Chongnogu, Seoul, 110-744, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Nazari-Robati M, Khajeh K, Aminian M, Mollania N, Golestani A. Enhancement of thermal stability of chondroitinase ABC I by site-directed mutagenesis: An insight from Ramachandran plot. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:479-86. [DOI: 10.1016/j.bbapap.2012.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
|
41
|
García-Alías G, Fawcett JW. Training and anti-CSPG combination therapy for spinal cord injury. Exp Neurol 2011; 235:26-32. [PMID: 21946272 DOI: 10.1016/j.expneurol.2011.09.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 12/18/2022]
Abstract
Combining different therapies is a promising strategy to promote spinal cord repair, by targeting axon plasticity and functional circuit reconnectivity. In particular, digestion of chondroitin sulphate proteoglycans at the site of the injury by the activity of the bacterial enzyme chondrotinase ABC, together with the development of intensive task specific motor rehabilitation has shown synergistic effects to promote behavioural recovery. This review describes the mechanisms by which chondroitinase ABC and motor rehabilitation promote neural plasticity and we discuss their additive and independent effects on promoting behavioural recovery.
Collapse
|
42
|
Schneider EW, Johnson MW. Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review. Clin Ophthalmol 2011; 5:1151-65. [PMID: 21887098 PMCID: PMC3162296 DOI: 10.2147/opth.s14840] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Indexed: 12/18/2022] Open
Abstract
With the dissemination of optical coherence tomography over the past two decades, the role of persistent vitreomacular adhesion (VMA) in the development of numerous macular pathologies - including idiopathic macular hole, vitreomacular traction syndrome, cystoid and diabetic macular edema, neovascularization in diabetic retinopathy and retinal vein occlusion, exudative age-related macular degeneration, and myopic traction maculopathy - has been established. While invasive vitreoretinal procedures have long been utilized to address complications related to these disorders, such an approach is hampered by incomplete vitreoretinal separation and vitreous removal, surgical complications, and high costs. In light of such limitations, investigators have increasingly looked to nonsurgical means for the treatment of persistent pathologic VMA. Chief among these alternative measures is the intravitreal application of pharmacologic agents for the induction of vitreous liquefaction and/or vitreoretinal separation, an approach termed pharmacologic vitreolysis. This article aims to review the available evidence regarding the use of pharmacologic agents in the treatment of VMA-related pathology. In addition, a discussion of vitreous molecular organization and principles of physiologic posterior vitreous detachment is provided to allow for a consideration of vitreolytic agent mode of action and molecular targets.
Collapse
Affiliation(s)
- Eric W Schneider
- Department of Ophthalmology and Visual Sciences, University of Michigan, WK Kellogg Eye Center, Ann Arbor, MI, USA
| | - Mark W Johnson
- Department of Ophthalmology and Visual Sciences, University of Michigan, WK Kellogg Eye Center, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Garron ML, Cygler M. Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 2010; 20:1547-73. [PMID: 20805221 DOI: 10.1093/glycob/cwq122] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polysaccharide lyases (PLs) have been assigned to 21 families based on their sequences, with ~ 50 singletons awaiting further classification. For 19 of these families, the structure of at least one protein is known. In this review, we have analyzed the available structural information and show that presently known PL families belong to six general folds. Only two general catalytic mechanisms have been observed among these PLs: (1) metal-assisted neutralization of the acidic group of the sugar next to the cleaved bond, with, rather unusually, arginine or lysine playing the role of Brønsted base and (2) neutralization of the acidic group on the sugar by a close approach of an amino or acidic group forcing its protonation and Tyr or Tyr-His acting as the Brønsted base and acid.
Collapse
Affiliation(s)
- Marie-Line Garron
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
44
|
Natoli RM, Revell CM, Athanasiou KA. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng Part A 2009; 15:3119-28. [PMID: 19344291 DOI: 10.1089/ten.tea.2008.0478] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Collagen content and tensile properties of engineered articular cartilage have remained inferior to glycosaminoglycan (GAG) content and compressive properties. Based on a cartilage explant study showing greater tensile properties after chondroitinase ABC (C-ABC) treatment, C-ABC as a strategy for cartilage tissue engineering was investigated. A scaffold-less approach was employed, wherein chondrocytes were seeded into non-adherent agarose molds. C-ABC was used to deplete GAG from constructs 2 weeks after initiating culture, followed by 2 weeks culture post-treatment. Staining for GAG and type I, II, and VI collagen and transmission electron microscopy were performed. Additionally, quantitative total collagen, type I and II collagen, and sulfated GAG content were measured, and compressive and tensile mechanical properties were evaluated. At 4 wks, C-ABC treated construct ultimate tensile strength and tensile modulus increased 121% and 80% compared to untreated controls, reaching 0.5 and 1.3 MPa, respectively. These increases were accompanied by increased type II collagen concentration, without type I collagen. As GAG returned, compressive stiffness of C-ABC treated constructs recovered to be greater than 2 wk controls. C-ABC represents a novel method for engineering functional articular cartilage by departing from conventional anabolic approaches. These results may be applicable to other GAG-producing tissues functioning in a tensile capacity, such as the musculoskeletal fibrocartilages.
Collapse
Affiliation(s)
- Roman M Natoli
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
45
|
Muir EM, Fyfe I, Gardiner S, Li L, Warren P, Fawcett JW, Keynes RJ, Rogers JH. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J Biotechnol 2009; 145:103-10. [PMID: 19900493 PMCID: PMC2809921 DOI: 10.1016/j.jbiotec.2009.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/22/2009] [Accepted: 11/02/2009] [Indexed: 10/26/2022]
Abstract
Although many eukaryotic proteins have been secreted by transfected bacterial cells, little is known about how a bacterial protein is treated as it passes through the secretory pathway when expressed in a eukaryotic cell. The eukaryotic N-glycosylation system could interfere with folding and secretion of prokaryotic proteins whose sequence has not been adapted for glycosylation in structurally appropriate locations. Here we show that such interference does indeed occur for chondroitinase ABC from the bacterium Proteus vulgaris, and can be overcome by eliminating potential N-glycosylation sites. Chondroitinase ABC was heavily glycosylated when expressed in mammalian cells or in a mammalian translation system, and this process prevented secretion of functional enzyme. Directed mutagenesis of selected N-glycosylation sites allowed efficient secretion of active chondroitinase. As these proteoglycans are known to inhibit regeneration of axons in the mammalian central nervous system, the modified chondroitinase gene is a potential tool for gene therapy to promote neural regeneration, ultimately in human spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth M Muir
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3EG, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Prabhakar V, Capila I, Soundararajan V, Raman R, Sasisekharan R. Recombinant expression, purification, and biochemical characterization of chondroitinase ABC II from Proteus vulgaris. J Biol Chem 2009; 284:974-82. [PMID: 18849565 PMCID: PMC2613618 DOI: 10.1074/jbc.m806630200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/29/2008] [Indexed: 11/06/2022] Open
Abstract
Chondroitin lyases (or chondroitinases) are a family of enzymes that depolymerize chondroitin sulfate (CS) and dermatan sulfate (DS) galactosaminoglycans, which have gained prominence as important players in central nervous system biology. Two distinct chondroitinase ABC enzymes, cABCI and cABCII, were identified in Proteus vulgaris. Recently, cABCI was cloned, recombinantly expressed, and extensively characterized structurally and biochemically. This study focuses on recombinant expression, purification, biochemical characterization, and understanding the structure-function relationship of cABCII. The biochemical parameters for optimal activity and kinetic parameters associated with processing of various CS and DS substrates were determined. The profile of products formed by action of cABCII on different substrates was compared with product profile of cABCI. A homology-based structural model of cABCII and its complexes with CS oligosaccharides was constructed. This structural model provided molecular insights into the experimentally observed differences in the product profile of cABCII as compared with that of cABCI. The critical active site residues involved in the catalytic activity of cABCII identified based on the structural model were validated using site-directed mutagenesis and kinetic characterization of the mutants. The development of such a contaminant-free cABCII enzyme provides additional tools to decode the biologically important structure-function relationship of CS and DS galactosaminoglycans and offers novel therapeutic strategies for recovery after central nervous system injury.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Department of Biological Engineering, Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
There is accumulating evidence of the importance of linear polysaccharides in modulating biological phenomena in both the normal and the diseased states. This layer of regulation results from interactions between polysaccharides and other biomolecules, such as proteins, at the cell-extracellular matrix interface. The specific sequence of chemical modifications within the polymer backbone imparts a potential for interaction with other molecular species, and thus there exists important information within the various sulfation, acetylation, and epimerization states of such complex carbohydrates. A variety of factors have made the deciphering of this chemical code elusive. To this end, this report describes several techniques to elucidate the structural information inherent in glycosaminoglycan species. First, the use of depolymerizing enzymes that cleave polysaccharides at specific sites is described. Then, capillary electrophoretic (CE) techniques are employed to characterize the disaccharide species present in an enzymatically-cleaved polysaccharide sample. Mass spectrometry (MS) procedures can further be used to establish the length of an oligosaccharide chain and the presence of specific functional groups.
Collapse
Affiliation(s)
- Vikas Prabhakar
- Division of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
48
|
Mazzoni A, Pashley DH, Ruggeri A, Vita F, Falconi M, Di Lenarda R, Breschi L. Adhesion to chondroitinase ABC treated dentin. J Biomed Mater Res B Appl Biomater 2008; 86:228-36. [PMID: 18161809 DOI: 10.1002/jbm.b.31010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dentin bonding relies on complete resin impregnation throughout the demineralised hydrophilic collagen mesh. Chondroitin sulphate-glycosaminoglycans are claimed to regulate the three-dimensional arrangement of the dentin organic matrix and its hydrophilicity. The aim of this study was to investigate bond strength of two etch-and-rinse adhesives to chondroitinase ABC treated dentin. Human extracted molars were treated with chondroitinase ABC and a double labeling immunohistochemical technique was applied to reveal type I collagen and chondroitin 4/6 sulphate distribution under field emission in-lens scanning electron microscope. The immunohistochemical technique confirmed the effective removal of chondroitin 4/6 sulphate after the enzymatic treatment. Dentin surfaces exposed to chondroitinase ABC and untreated specimens prepared on untreated acid-etched dentin were bonded with Adper Scotchbond Multi-Purpose or Prime and Bond NT. Bonded specimens were submitted to microtensile testing and nanoleakage interfacial analysis under transmission electron microscope. Increased mean values of microtensile bond strength and reduced nanoleakage expression were found for both adhesives after chondroitinase ABC treatment of the dentin surface. Adper Scotchbond Multi-Purpose increased its bond strength about 28%, while bonding made with Prime and Bond NT almost doubled (92% increase) compared to untreated specimens. This study supports the hypothesis that adhesion can be enhanced by removal of chondroitin 4/6 sulphate and dermatan sulphate, probably due to a reduced amount of water content and enlarged interfibrillar spaces. Further studies should validate this hypothesis investigating the stability of chondroitin 4/6 and dermatan sulphate-depleted dentin bonded interface over time.
Collapse
Affiliation(s)
- Annalisa Mazzoni
- Department of SAU and FAL, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Shaya D, Hahn BS, Park NY, Sim JS, Kim YS, Cygler M. Characterization of Chondroitin Sulfate Lyase ABC from Bacteroides thetaiotaomicron WAL2926. Biochemistry 2008; 47:6650-61. [DOI: 10.1021/bi800353g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Shaya
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Bum-Soo Hahn
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Nam Young Park
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Joon-Soo Sim
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Yeong Shik Kim
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| | - Miroslaw Cygler
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada, National Institute of Agricultural Biotechnology, 225 Seodun-Dong, Suwon 441-707, South Korea, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea, and Biotechnology Research Institute, NRC, 6100 Royalmount Avenue, Montréal, Québec, Canada H4P 2R2
| |
Collapse
|
50
|
Madhunapantula SV, Achur RN, Bhavanandan VP, Gowda DC. The effect of substitution of the N-acetyl groups of N-acetylgalactosamine residues in chondroitin sulfate on its degradation by chondroitinase ABC. Glycoconj J 2007; 24:465-73. [PMID: 17533514 DOI: 10.1007/s10719-007-9039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 03/05/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Chondroitinase ABC is a lyase that degrades chondroitin sulfate, dermatan sulfate and hyaluronic acid into disaccharides. The purpose of this study was to determine the ability of chondroitinase ABC to degrade chondroitin sulfate in which the N-acetyl groups are substituted with different acyl groups. The bovine tracheal chondroitin sulfate A (bCSA) was N-deacetylated by hydrazinolysis, and the free amino groups derivatized into N-formyl, N-propionyl, N-butyryl, N-hexanoyl or N-benzoyl amides. Treatment of the N-acyl or N-benzoyl derivatives of bCSA with chondroitinase ABC and analysis of the products showed that the N-formyl, N-hexanoyl and N-benzoyl derivatives are completely resistant to the enzyme. In contrast, the N-propionyl or N-butyryl derivatives were degraded into disaccharides with slower kinetics compared to that of unmodified bCSA. The rate of degradation of bCSA derivatives by the enzyme was found to be in the order of N-acetyl>N-propionyl>>N-butyryl bCSA. These results have important implications for understanding the interaction of N-acetyl groups of glycosaminoglycans with chondroitinase ABC.
Collapse
Affiliation(s)
- Subbarao V Madhunapantula
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|