1
|
Kaltashov IA, Ivanov DG, Yang Y. Mass spectrometry-based methods to characterize highly heterogeneous biopharmaceuticals, vaccines, and nonbiological complex drugs at the intact-mass level. MASS SPECTROMETRY REVIEWS 2024; 43:139-165. [PMID: 36582075 PMCID: PMC10307928 DOI: 10.1002/mas.21829] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.
Collapse
Affiliation(s)
- Igor A. Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | - Daniil G. Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst MA 01003
| | | |
Collapse
|
2
|
Meier M, Gupta M, Akgül S, McDougall M, Imhof T, Nikodemus D, Reuten R, Moya-Torres A, To V, Ferens F, Heide F, Padilla-Meier GP, Kukura P, Huang W, Gerisch B, Mörgelin M, Poole K, Antebi A, Koch M, Stetefeld J. The dynamic nature of netrin-1 and the structural basis for glycosaminoglycan fragment-induced filament formation. Nat Commun 2023; 14:1226. [PMID: 36869049 PMCID: PMC9984387 DOI: 10.1038/s41467-023-36692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.
Collapse
Affiliation(s)
- Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Serife Akgül
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Denise Nikodemus
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Raphael Reuten
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Obsterics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Vu To
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fraser Ferens
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Birgit Gerisch
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kate Poole
- Max Delbrück Center for Molecular Medicine, Robert Roessle Str 10, Berlin-Buch, Germany.,EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany.
| | - Manuel Koch
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Xu Q, Dunbrack R. The protein common assembly database (ProtCAD)-a comprehensive structural resource of protein complexes. Nucleic Acids Res 2023; 51:D466-D478. [PMID: 36300618 PMCID: PMC9825537 DOI: 10.1093/nar/gkac937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/29/2023] Open
Abstract
Proteins often act through oligomeric interactions with other proteins. X-ray crystallography and cryo-electron microscopy provide detailed information on the structures of biological assemblies, defined as the most likely biologically relevant structures derived from experimental data. In crystal structures, the most relevant assembly may be ambiguously determined, since multiple assemblies observed in the crystal lattice may be plausible. It is estimated that 10-15% of PDB entries may have incorrect or ambiguous assembly annotations. Accurate assemblies are required for understanding functional data and training of deep learning methods for predicting assembly structures. As with any other kind of biological data, replication via multiple independent experiments provides important validation for the determination of biological assembly structures. Here we present the Protein Common Assembly Database (ProtCAD), which presents clusters of protein assembly structures observed in independent structure determinations of homologous proteins in the Protein Data Bank (PDB). ProtCAD is searchable by PDB entry, UniProt identifiers, or Pfam domain designations and provides downloads of coordinate files, PyMol scripts, and publicly available assembly annotations for each cluster of assemblies. About 60% of PDB entries contain assemblies in clusters of at least 2 independent experiments. All clusters and coordinates are available on ProtCAD web site (http://dunbrack2.fccc.edu/protcad).
Collapse
Affiliation(s)
- Qifang Xu
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
4
|
Niu C, Du Y, Kaltashov IA. Towards better understanding of the heparin role in NETosis: feasibility of using native mass spectrometry to monitor interactions of neutrophil elastase with heparin oligomers. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 463:116550. [PMID: 33692650 PMCID: PMC7939139 DOI: 10.1016/j.ijms.2021.116550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Neutrophil elastase is a serine protease released by neutrophils, and its dysregulation has been associated with a variety of debilitating pathologies, most notably cystic fibrosis. This protein is also a prominent component of the so-called neutrophil extracellular traps (NETs), whose formation is a part of the innate immunity response to invading pathogens, but also contributes to a variety of pathologies ranging from autoimmune disorders and inflammation to cancer to thrombotic complications in COVID-19. Retention of neutrophil elastase within NETs is provided by ejected DNA chains, although this protein is also capable of interacting with a range of other endogenous polyanions, such as heparin and heparan sulfate. In this work, we evaluate the feasibility of using native mass spectrometry (MS) as a means of studying interactions of neutrophil elastase with heparin oligomers ranging from structurally homogeneous synthetic pentasaccharide fondaparinux to relatively long (up to twenty saccharide units) and structurally heterogeneous chains produced by partial depolymerization of heparin. The presence of heterogeneous glycan chains on neutrophil elastase and the structural heterogeneity of heparin oligomers render the use of standard MS to study their complexes impractical. However, supplementing MS with limited charge reduction in the gas phase allows meaningful data to be extracted from MS measurements. In contrast to earlier molecular modeling studies where a single heparin-binding site was identified, our work reveals the existence of multiple binding sites, with a single protein molecule being able to accommodate up to three decasaccharides. The measurements also reveal the ability of even relatively short heparin oligomers to bridge two protein molecules, suggesting that characterization of these complexes using native MS can shed light on the structural properties of NETs. Lastly, the use of MS allows the binding preferences of heparin oligomers to neutrophil elastase to be studied with respect to specific structural properties of heparin, such as the level of sulfation (i.e., charge density). All experimental measurements are carried out in parallel with molecular dynamics simulations of the protein/heparin oligomer systems, which are in remarkable agreement with the experimental data and highlight the role of electrostatic interactions as dominant forces governing the formation of these complexes.
Collapse
Affiliation(s)
| | | | - Igor A. Kaltashov
- Corresponding author: Igor A. Kaltashov; address: 240 Thatcher Way, Life Sciences Laboratories N369, Amherst, MA 01003; ; phone: 413-545-1460; fax: 413-545-4490
| |
Collapse
|
5
|
Niu C, Zhao Y, Bobst CE, Savinov SN, Kaltashov IA. Identification of Protein Recognition Elements within Heparin Chains Using Enzymatic Foot-Printing in Solution and Online SEC/MS. Anal Chem 2020; 92:7565-7573. [PMID: 32347711 DOI: 10.1021/acs.analchem.0c00115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.
Collapse
Affiliation(s)
- Chendi Niu
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Cedric E Bobst
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Sergey N Savinov
- Biochemistry and Molecular Biology Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Zhao Y, Kaltashov IA. Evaluation of top-down mass spectrometry and ion-mobility spectroscopy as a means of mapping protein-binding motifs within heparin chains. Analyst 2020; 145:3090-3099. [PMID: 32150181 PMCID: PMC7160044 DOI: 10.1039/d0an00097c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying structural elements within heparin (as well as other glycosaminoglycan) chains that enable their interaction with a specific client protein remains a challenging task due to the high degree of both intra- and inter-chain heterogeneity exhibited by this polysaccharide. The new experimental approach explored in this work is based on the assumption that the heparin chain segments bound to the protein surface will be less prone to collision-induced dissociation (CID) in the gas phase compared to the chain regions that are not involved in binding. Facile removal of the unbound chain segments from the protein/heparin complex should allow the length and the number of sulfate groups within the protein-binding segment of the heparin chain to be determined by measuring the mass of the truncated heparin chain that remains bound to the protein. Conformational integrity of the heparin-binding interface on the protein surface in the course of CID is ensured by monitoring the evolution of collisional cross-section (CCS) of the protein/heparin complexes as a function of collisional energy. A dramatic increase in CCS signals the occurrence of large-scale conformational changes within the protein and identifies the energy threshold, beyond which relevant information on the protein-binding segments of heparin chains is unlikely to be obtained. Testing this approach using a 1 : 1 complex formed by a recombinant form of an acidic fibroblast growth factor (FGF-1) and a synthetic pentasaccharide GlcNS,6S-GlcA-GlcNS,3S,6S-IdoA2S-GlcNS,6S-Me as a model system indicated that a tri-saccharide fragment is the minimal-length FGF-binding segment. Extension of this approach to a decameric heparin chain (dp10) allowed meaningful binding data to be obtained for a 1 : 1 protein/dp10 complex, while the ions representing the higher stoichiometry complex (2 : 1) underwent dissociation via asymmetric charge partitioning without generating truncated heparin chains that remain bound to the protein.
Collapse
Affiliation(s)
- Yunlong Zhao
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| | - Igor A Kaltashov
- Chemistry Department, University of Massachusetts-Amherst, 240 Thatcher Way, Amherst, MA 01003, USA.
| |
Collapse
|
7
|
Czaya B, Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int J Mol Sci 2019; 20:E4195. [PMID: 31461904 PMCID: PMC6747522 DOI: 10.3390/ijms20174195] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
In patients with chronic kidney disease (CKD), adverse outcomes such as systemic inflammation and anemia are contributing pathologies which increase the risks for cardiovascular mortality. Amongst these complications, abnormalities in mineral metabolism and the metabolic milieu are associated with chronic inflammation and iron dysregulation, and fibroblast growth factor 23 (FGF23) is a risk factor in this context. FGF23 is a bone-derived hormone that is essential for regulating vitamin D and phosphate homeostasis. In the early stages of CKD, serum FGF23 levels rise 1000-fold above normal values in an attempt to maintain normal phosphate levels. Despite this compensatory action, clinical CKD studies have demonstrated powerful and dose-dependent associations between FGF23 levels and higher risks for mortality. A prospective pathomechanism coupling elevated serum FGF23 levels with CKD-associated anemia and cardiovascular injury is its strong association with chronic inflammation. In this review, we will examine the current experimental and clinical evidence regarding the role of FGF23 in renal physiology as well as in the pathophysiology of CKD with an emphasis on chronic inflammation and anemia.
Collapse
Affiliation(s)
- Brian Czaya
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Wang J, Liu S, Li J, Yi Z. The role of the fibroblast growth factor family in bone-related diseases. Chem Biol Drug Des 2019; 94:1740-1749. [PMID: 31260189 DOI: 10.1111/cbdd.13588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/25/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor (FGF) family members are important regulators of cell growth, proliferation, differentiation, and regeneration. The abnormal expression of certain FGF family members can cause skeletal diseases, including achondroplasia, craniosynostosis syndrome, osteoarthritis, and Kashin-Beck disease. Accumulating evidence shows that FGFs play a crucial role in the growth and proliferation of bone and in the pathogenesis of certain bone-related diseases. Here, we review the involvement of FGFs in bone-related processes and diseases; FGF1 in the differentiation of human bone marrow mesenchymal stem cells and fracture repair; FGF2, FGF9, and FGF18 in osteoarthritis; FGF6 in bone and muscle injury; FGF8 in osteoarthritis and Kashin-Beck disease; and FGF21 and FGF23 on bone regulation. These findings indicate that FGFs are targets for novel therapeutic interventions for bone-related diseases.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhi Yi
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Ayerst BI, Smith RAA, Nurcombe V, Day AJ, Merry CLR, Cool SM. Growth Differentiation Factor 5-Mediated Enhancement of Chondrocyte Phenotype Is Inhibited by Heparin: Implications for the Use of Heparin in the Clinic and in Tissue Engineering Applications. Tissue Eng Part A 2017; 23:275-292. [PMID: 27899064 PMCID: PMC5397242 DOI: 10.1089/ten.tea.2016.0364] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The highly sulfated glycosaminoglycan (GAG) heparin is widely used in the clinic as an anticoagulant, and researchers are now using it to enhance stem cell expansion/differentiation protocols, as well as to improve the delivery of growth factors for tissue engineering (TE) strategies. Growth differentiation factor 5 (GDF5) belongs to the bone morphogenetic protein family of proteins and is vital for skeletal formation; however, its interaction with heparin and heparan sulfate (HS) has not been studied. We identify GDF5 as a novel heparin/HS binding protein and show that HS proteoglycans are vital in localizing GDF5 to the cell surface. Clinically relevant doses of heparin (≥10 nM), but not equivalent concentrations of HS, were found to inhibit GDF5's biological activity in both human mesenchymal stem/stromal cell-derived chondrocyte pellet cultures and the skeletal cell line ATDC5. We also found that heparin inhibited both GDF5 binding to cell surface HS and GDF5-induced induction of Smad 1/5/8 signaling. Furthermore, GDF5 significantly increased aggrecan gene expression in chondrocyte pellet cultures, without affecting collagen type X expression, making it a promising target for the TE of articular cartilage. Importantly, this study may explain the variable (and disappointing) results seen with heparin-loaded biomaterials for skeletal TE and the adverse skeletal effects reported in the clinic following long-term heparin treatment. Our results caution the use of heparin in the clinic and in TE applications, and prompt the transition to using more specific GAGs (e.g., HS derivatives), with better-defined structures and fewer off-target effects.
Collapse
Affiliation(s)
- Bethanie I Ayerst
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Raymond A A Smith
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Victor Nurcombe
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anthony J Day
- 2 Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biology, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester , Manchester, United Kingdom
| | - Catherine L R Merry
- 3 School of Materials, University of Manchester , Manchester, United Kingdom .,4 Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham , Nottingham, United Kingdom
| | - Simon M Cool
- 1 Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,5 Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| |
Collapse
|
10
|
Ahmed YA, Yates EA, Moss DJ, Loeven MA, Hussain SA, Hohenester E, Turnbull JE, Powell AK. Panels of chemically-modified heparin polysaccharides and natural heparan sulfate saccharides both exhibit differences in binding to Slit and Robo, as well as variation between protein binding and cellular activity. MOLECULAR BIOSYSTEMS 2016; 12:3166-75. [PMID: 27502551 PMCID: PMC5048398 DOI: 10.1039/c6mb00432f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023]
Abstract
Heparin/heparan sulfate (HS) glycosaminoglycans are required for Slit-Robo cellular responses. Evidence exists for interactions between each combination of Slit, Robo and heparin/HS and for formation of a ternary complex. Heparin/HS are complex mixtures displaying extensive structural diversity. The relevance of this diversity has been studied to a limited extent using a few select chemically-modified heparins as models of HS diversity. Here we extend these studies by parallel screening of structurally diverse panels of eight chemically-modified heparin polysaccharides and numerous natural HS oligosaccharide chromatographic fractions for binding to both Drosophila Slit and Robo N-terminal domains and for activation of a chick retina axon response to the Slit fragment. Both the polysaccharides and oligosaccharide fractions displayed variability in binding and cellular activity that could not be attributed solely to increasing sulfation, extending evidence for the importance of structural diversity to natural HS as well as model modified heparins. They also displayed differences in their interactions with Slit compared to Robo, with Robo preferring compounds with higher sulfation. Furthermore, the patterns of cellular activity across compounds were different to those for binding to each protein, suggesting that biological outcomes are selectively determined in a subtle manner that does not simply reflect the sum of the separate interactions of heparin/HS with Slit and Robo.
Collapse
Affiliation(s)
- Yassir A. Ahmed
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
- Department of Chemistry , Faculty of Science , King Faisal University , Kingdom of Saudi Arabia
| | - Edwin A. Yates
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | - Diana J. Moss
- Department of Cellular and Molecular Physiology , University of Liverpool , UK
| | - Markus A. Loeven
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | | | | | - Jeremy E. Turnbull
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
| | - Andrew K. Powell
- Centre for Glycobiology , Institute of Integrative Biology , University of Liverpool , UK
- School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK .
| |
Collapse
|
11
|
Paradigms in the structural biology of the mitogenic ternary complex FGF:FGFR:heparin. Biochimie 2016; 127:214-26. [DOI: 10.1016/j.biochi.2016.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/29/2016] [Indexed: 11/20/2022]
|
12
|
Koschut D, Richert L, Pace G, Niemann HH, Mély Y, Orian-Rousseau V. Live cell imaging shows hepatocyte growth factor-induced Met dimerization. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1552-8. [PMID: 27094128 DOI: 10.1016/j.bbamcr.2016.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/01/2016] [Accepted: 04/15/2016] [Indexed: 12/24/2022]
Abstract
The canonical model of receptor tyrosine kinase (RTK) activation assumes that ligand-induced dimerization of inactive receptor monomers is a prerequisite for autophosphorylation. For several RTK families, recent results of fluorescence microscopy provided evidence for preformed receptor dimers that may or may not require ligand binding for kinase activity. Here we report, for the first time, the application of advanced quantitative fluorescence microscopy techniques to study changes in the oligomerization state of the RTK Met in response to stimulation by its endogenous ligand hepatocyte growth factor (HGF). We used inducible C-terminal fusions between Met and enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) in combination with fluorescence resonance energy transfer (FRET)-based fluorescence-lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS). A small fraction of HGF-independent Met dimers appeared to be present in cells even at low receptor density. At high receptor density, both the fraction of Met dimers and the level of Met autophosphorylation increased in the absence of HGF. Stimulation with HGF at low receptor density significantly increased the fraction of Met dimers on live cells. We found no indications of Met oligomers larger than dimers. Our findings thus confirm a model of Met activation through HGF-induced dimerization and at the same time they support previous reports of Met dimers in unstimulated cells. The tools established in this work will be useful to further characterize the mechanism of Met activation and to define the contribution of co-receptors.
Collapse
Affiliation(s)
- David Koschut
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Ludovic Richert
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Giuseppina Pace
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany
| | - Hartmut H Niemann
- Department of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Yves Mély
- UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie 74 route du Rhin, 67401 Illkirch, France
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), Postfach 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
13
|
Blaszczyk M, Harmer NJ, Chirgadze DY, Ascher DB, Blundell TL. Achieving high signal-to-noise in cell regulatory systems: Spatial organization of multiprotein transmembrane assemblies of FGFR and MET receptors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:103-11. [PMID: 25957048 PMCID: PMC4832006 DOI: 10.1016/j.pbiomolbio.2015.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
How is information communicated both within and between cells of living systems with high signal to noise? We discuss transmembrane signaling models involving two receptor tyrosine kinases: the fibroblast growth factor receptor (FGFR) and the MET receptor. We suggest that simple dimerization models might occur opportunistically giving rise to noise but cooperative clustering of the receptor tyrosine kinases observed in these systems is likely to be important for signal transduction. We propose that this may be a more general prerequisite for high signal to noise in transmembrane receptor signaling.
Collapse
Affiliation(s)
- Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Nicholas J Harmer
- The Henry Wellcome Building for Biocatalysis, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
14
|
Nugent MA, Zaia J, Spencer JL. Heparan sulfate-protein binding specificity. BIOCHEMISTRY (MOSCOW) 2014; 78:726-35. [PMID: 24010836 DOI: 10.1134/s0006297913070055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heparan sulfate (HS) represents a large class of linear polysaccharides that are required for the function of all mammalian physiological systems. HS is characterized by a repeating disaccharide backbone that is subject to a wide range of modifications, making this class of macromolecules arguably the most information dense in all of biology. The majority of HS functions are associated with the ability to bind and regulate a wide range of proteins. Indeed, recent years have seen an explosion in the discovery of new activities for HS where it is now recognized that this class of glycans functions as co-receptors for growth factors and cytokines, modulates cellular uptake of lipoproteins, regulates protease activity, is critical to amyloid plaque formation, is used by opportunistic pathogens to enter cells, and may even participate in epigenetic regulation. This review will discuss the current state of understanding regarding the specificity of HS-protein binding and will describe the concept that protein binding to HS depends on the overall organization of domains within HS rather than fine structure.
Collapse
Affiliation(s)
- M A Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
15
|
Brown A, Robinson CJ, Gallagher JT, Blundell TL. Cooperative heparin-mediated oligomerization of fibroblast growth factor-1 (FGF1) precedes recruitment of FGFR2 to ternary complexes. Biophys J 2013; 104:1720-30. [PMID: 23601319 DOI: 10.1016/j.bpj.2013.02.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/31/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022] Open
Abstract
Fibroblast growth factors (FGFs) utilize cell surface heparan sulfate as a coreceptor in the assembly of signaling complexes with FGF-receptors on the plasma membrane. Here we undertake a complete thermodynamic characterization of the assembly of the FGF signaling complex using isothermal titration calorimetry. Heparin fragments of defined length are used as chemical analogs of the sulfated domains of heparan sulfate and examined for their ability to oligomerize FGF1. Binding is modeled using the McGhee-von Hippel formalism for the cooperative binding of ligands to a monodimensional lattice. Oligomerization of FGFs on heparin is shown to be mediated by positive cooperativity (α = 6). Heparin octasaccharide is the shortest length capable of dimerizing FGF1 and on longer heparin chains FGF1 binds with a minimal footprint of 4.2 saccharide units. The thermodynamics and stoichiometry of the ternary complex suggest that in solution FGF1 binds to heparin in a trans-dimeric manner before FGFR recruitment.
Collapse
Affiliation(s)
- Alan Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. Structural insights into proteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci U S A 2013; 110:16420-5. [PMID: 24062467 PMCID: PMC3799379 DOI: 10.1073/pnas.1310097110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.
Collapse
Affiliation(s)
- Daniel M. Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
17
|
Kaltashov IA, Bobst CE, Nguyen SN, Wang S. Emerging mass spectrometry-based approaches to probe protein-receptor interactions: focus on overcoming physiological barriers. Adv Drug Deliv Rev 2013; 65:1020-30. [PMID: 23624418 DOI: 10.1016/j.addr.2013.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 01/10/2023]
Abstract
Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.
Collapse
|
18
|
Cattaruzza S, Ozerdem U, Denzel M, Ranscht B, Bulian P, Cavallaro U, Zanocco D, Colombatti A, Stallcup WB, Perris R. Multivalent proteoglycan modulation of FGF mitogenic responses in perivascular cells. Angiogenesis 2012; 16:309-27. [PMID: 23124902 DOI: 10.1007/s10456-012-9316-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/12/2012] [Indexed: 01/10/2023]
Abstract
Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones. Pull-down experiments, protein-protein binding assays and flow cytometry FRET coherently revealed an elective ligand-independent association of NG2 with FGFR1 and FGFR3. The NG2 cooperation with these receptors was also corroborated functionally by the outcome of FGF-2 treatments of cells engineered to express diverse NG2/FGFR combinations. Comprehensively, the findings suggest that perivascular NG2 may serve as a dual modulator of the availability/accessibility of FGF at the cell membrane, as well as the resulting FGFR transducing activity.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Pedemontana Occidentale 12, 33081, Aviano, PN, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Messina EL, Nienaber J, Daneshmand M, Villamizar N, Samulski J, Milano C, Bowles DE. Adeno-associated viral vectors based on serotype 3b use components of the fibroblast growth factor receptor signaling complex for efficient transduction. Hum Gene Ther 2012; 23:1031-42. [PMID: 22680698 DOI: 10.1089/hum.2012.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adeno-associated virus type 3b (AAV3b) has been largely ignored by gene therapists because of the inability of vectors based on this serotype to transduce target tissues efficiently. Here we describe a phenomenon unique to AAV3b in that vectors based on this serotype mediate enhanced transduction in the presence of heparin. Among the many biological functions attributed to heparin, its interaction with, and ability to regulate, several growth factors (GFs) and growth factor receptors (GFRs) has been well characterized. Using GFR-overexpressing cell lines, soluble GFs and heparins, as well as specific GFR inhibitors, we have demonstrated a requirement for fibroblast growth factor receptor-2 (FGFR2) and FGF1 in the heparin-mediated augmentation of AAV3b vector transduction. In contrast to AAV2, we establish that heparin can be used as an adjunct with AAV3b to further increase transduction in a variety of cells and target tissues, additionally suggesting that AAV3b may be an attractive viral vector for clinical use during procedures in which heparin is used. In summary, AAV3b exhibits FGFR2-dependent, markedly enhanced transduction efficiency in the presence of heparin and FGFs, which could make it a useful vector for gene therapy in a variety of human diseases.
Collapse
Affiliation(s)
- Emily L Messina
- Cardiothoracic Division, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee J, Marino MA, Koizumi H, Reilly PTA. Simulation of Duty Cycle-Based Trapping and Ejection of Massive Ions Using Linear Digital Quadrupoles: the Enabling Technology for High Resolution Time-of-Flight Mass Spectrometry in the Ultra High Mass Range. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2011; 304:36-40. [PMID: 21731427 PMCID: PMC3126150 DOI: 10.1016/j.ijms.2011.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Duty cycle-based trapping and extraction processes have been investigated for linear digitally-driven multipoles by simulating ion trajectories. The duty cycles of the applied waveforms were adjusted so that an effective trapping or ejection electric field was created between the rods and the grounded end cap electrodes. By manipulating the duty cycles of the waveforms, the potentials of the multipole rods can be set equal for part of the waveform cycle. When all rods are negative for this period, the device traps positive ions and when all are positive, it ejects them in focused trajectories. Four Linac II electrodes[1] have been added between the quadrupole rods along the asymptotes to create an electric field along the symmetry axis for collecting the ions near the exit end cap electrode and prompt ejection. This method permits the ions to be collected and then ejected in a concentrated and collimated plug into the acceleration region of a time-of-flight mass spectrometer (TOFMS). Our method has been shown to be independent of mass. Because the resolution of orthogonal acceleration TOFMS depends primarily on the dispersion of the ions injected into the acceleration region and not on the ion mass, this technology will enable high resolution in the ultrahigh mass range (m/z > 20,000).
Collapse
Affiliation(s)
- Jeonghoon Lee
- Department of Chemistry, Washington State University, Pullman, Washington 99164
| | | | | | | |
Collapse
|
21
|
Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Science 2011; 332:484-8. [PMID: 21454754 PMCID: PMC3154093 DOI: 10.1126/science.1200840] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.
Collapse
Affiliation(s)
- Charlotte H. Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yingjie Shen
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Alan P. Tenney
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- Motor Neuron Center, Columbia University, New York, NY 10032, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Geoffrey C. Sutton
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John T. Gallagher
- School of Cancer and Imaging Sciences, Faculty of Medical and Health Sciences, University of Manchester, Paterson Institute for Cancer Research, Manchester M20 4BX, UK
- Iduron, Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - John G. Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| |
Collapse
|
22
|
Naimy H, Buczek-Thomas JA, Nugent MA, Leymarie N, Zaia J. Highly sulfated nonreducing end-derived heparan sulfate domains bind fibroblast growth factor-2 with high affinity and are enriched in biologically active fractions. J Biol Chem 2011; 286:19311-9. [PMID: 21471211 DOI: 10.1074/jbc.m110.204693] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human fibroblast growth factor-2 (FGF2) regulates cellular processes including proliferation, adhesion, motility, and angiogenesis. FGF2 exerts its biological function by binding and dimerizing its receptor (FGFR), which activates signal transduction cascades. Effective binding of FGF2 to its receptor requires the presence of heparan sulfate (HS), a linear polysaccharide with N-sulfated domains (NS) localized at the cell surface and extracellular matrix. HS acts as a platform facilitating the formation of a functional FGF-FGFR-HS ternary complex. Crystal structures of the signaling ternary complex revealed two conflicting architectures. In the asymmetrical model, two FGFs and two FGFRs bind a single HS chain. In contrast, the symmetrical model postulates that one FGF and one FGFR bind to the free end of the HS chain and dimerization require these ends to join, bringing the two half-complexes together. In this study, we screened a hexasaccharide HS library for compositions that are able to bind FGF2. The library was composed primarily of NS domains internal to the HS chain with minor presence of non-reducing end (NRE) NS. The binders were categorized into low versus high affinity binders. The low affinity fraction contained primarily hexasaccharides with low degree of sulfation that were internal to the HS chains. In contrast, the high affinity bound fraction was enriched in NRE oligosaccharides that were considerably more sulfated and had the ability to promote FGFR-mediated cell proliferation. The results suggest a role of the NRE of HS in FGF2 signaling and favor the formation of the symmetrical architecture on short NS domains.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
23
|
Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004911. [PMID: 21421915 DOI: 10.1101/cshperspect.a004911] [Citation(s) in RCA: 625] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Basement membranes are widely distributed extracellular matrices that coat the basal aspect of epithelial and endothelial cells and surround muscle, fat, and Schwann cells. These extracellular matrices, first expressed in early embryogenesis, are self-assembled on competent cell surfaces through binding interactions among laminins, type IV collagens, nidogens, and proteoglycans. They form stabilizing extensions of the plasma membrane that provide cell adhesion and that act as solid-phase agonists. Basement membranes play a role in tissue and organ morphogenesis and help maintain function in the adult. Mutations adversely affecting expression of the different structural components are associated with developmental arrest at different stages as well as postnatal diseases of muscle, nerve, brain, eye, skin, vasculature, and kidney.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
24
|
Abstract
The glycosaminoglycans (GAGs) are linear polysaccharides expressed on animal cell surfaces and in extracellular matrices. Their biosynthesis is under complex control and confers a domain structure that is essential to their ability to bind to protein partners. Key to understanding the functions of GAGs are methods to determine accurately and rapidly patterns of sulfation, acetylation and uronic acid epimerization that correlate with protein binding or other biological activities. Mass spectrometry (MS) is particularly suitable for the analysis of GAGs for biomedical purposes. Using modern ionization techniques it is possible to accurately determine molecular weights of GAG oligosaccharides and their distributions within a mixture. Methods for direct interfacing with liquid chromatography have been developed to permit online mass spectrometric analysis of GAGs. New tandem mass spectrometric methods for fine structure determination of GAGs are emerging. This review summarizes MS-based approaches for analysis of GAGs, including tissue extraction and chromatographic methods compatible with LC/MS and tandem MS.
Collapse
Affiliation(s)
- Gregory O. Staples
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Dept. of Biochemistry, Boston University School of Medicine
| |
Collapse
|
25
|
Naimy H, Leymarie N, Zaia J. Screening for anticoagulant heparan sulfate octasaccharides and fine structure characterization using tandem mass spectrometry. Biochemistry 2010; 49:3743-52. [PMID: 20345121 DOI: 10.1021/bi100135d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan located on the surface and extracellular matrix of mammalian cells. HS is constituted of highly N-sulfated domains (NS domains) interrupted by lower sulfation domains. The arrangement of these domains dictates the function of HS which is mainly involved in binding proteins and regulating their biological activities. Heparin, a heparan sulfate analogue present in mast cells, resembles the NS domains of HS but lacks the alternating high and low sulfation architecture. Because the NS domains that range up to hexadecasaccharide in size are the main protein binders, heparin has been used as a model for HS in protein binding studies. Heparan sulfate, however, is the more physiologically relevant modulator of growth factor-receptor interactions. In this work, liquid chromatography and mass spectrometry (LC-MS) were used to compare the compositions of affinity-purified heparin and HS octasaccharides with anticoagulant activities versus library octasaccharides. The fine structures of the biologically active HS compositions were then compared against those of library octasaccharides using low-energy collision-induced dissociation tandem mass spectrometry. This approach confirmed isomeric enrichment of these compositions and, most importantly, produces ions diagnostic of their biological activity.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
26
|
Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Matrix Biol 2010; 29:442-52. [PMID: 20416374 DOI: 10.1016/j.matbio.2010.04.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 12/28/2022]
Abstract
The heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPG) are "ubiquitous" components of the cell surface and the extracellular matrix (EC) and play important roles in the physiopathology of developmental and homeostatic processes. Most biological properties of HS are mediated by interactions with "heparin-binding proteins" and can be modulated by exogenous heparin species (unmodified heparin, low molecular weight heparins, shorter heparin oligosaccharides and various non-anticoagulant derivatives of different sizes). Heparin species can promote or inhibit HS activities to different extents depending, among other factors, on how closely their structure mimics the biologically active HS sequences. Heparin shares structural similarities with HS, but is richer in "fully sulfated" sequences (S domains) that are usually the strongest binders to heparin/HS-binding proteins. On the other hand, HS is usually richer in less sulfated, N-acetylated sequences (NA domains). Some of the functions of HS chains, such as that of activating proteins by favoring their dimerization, often require short S sequences separated by rather long NA sequences. The biological activities of these species cannot be simulated by heparin, unless this polysaccharide is appropriately chemically/enzymatically modified or biotechnologically engineered. This mini review covers some information and concepts concerning the interactions of HS chains with heparin-binding proteins and some of the approaches for modulating HS interactions relevant to inflammation and cancer. This is approached through a few illustrative examples, including the interaction of HS and heparin-derived species with the chemokine IL-8, the growth factors FGF1 and FGF2, and the modulation of the activity of the enzyme heparanase by these species. Progresses in sequencing HS chains and reproducing them either by chemical synthesis or semi-synthesis, and in the elucidation of the 3D structure of oligosaccharide-protein complexes, are paving the way for rational approaches to the development of HS-inspired drugs in the field of inflammation and cancer, as well in other therapeutic fields.
Collapse
|
27
|
Koizumi H, Wang X, Whitten WB, Reilly PTA. Controlling the expansion into vacuum-the enabling technology for trapping atmosphere-sampled particulate ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:242-248. [PMID: 19926300 DOI: 10.1016/j.jasms.2009.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 10/01/2009] [Accepted: 10/10/2009] [Indexed: 05/28/2023]
Abstract
A new inlet has been designed to control the kinetic energy distributions of ions into a large-radius, frequency-adjusted, linear quadrupole ion trap. The work presented here demonstrates trapping singly-charged, intact proteins in the 10 to 200 kDa range injected from the atmosphere. The trapped ions were held while collisions with a buffer gas removed the remaining amounts of expansion-induced kinetic energy. The ions were then ejected from the trap on-demand into an awaiting detector. There is no low mass limit for ion injection and trapping. The upper limit presented in this study was defined by the limit of the conversion dynode-based detector at approximately 1.5 MDa. Trapping larger masses should be achievable. The transmission and capture efficiency across the entire mass range should be very high because the entire flow from the inlet empties directly into the trap. The kinetic energy distribution of massive ions is the primary reason for the working range limitation of mass spectrometers. Trapping ions with collisional cooling before mass analysis permits the motion of the ions to be completely defined by the applied fields. For this reason, this new inlet and trapping system represents a large step toward sensitive, high-resolution mass spectrometry into the megadalton range and beyond.
Collapse
Affiliation(s)
- Hideya Koizumi
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | |
Collapse
|
28
|
Guimond SE, Rudd TR, Skidmore MA, Ori A, Gaudesi D, Cosentino C, Guerrini M, Edge R, Collison D, McInnes E, Torri G, Turnbull JE, Fernig DG, Yates EA. Cations modulate polysaccharide structure to determine FGF-FGFR signaling: a comparison of signaling and inhibitory polysaccharide interactions with FGF-1 in solution. Biochemistry 2009; 48:4772-9. [PMID: 19400583 DOI: 10.1021/bi802318z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For heparan sulfate (HS) to bind and regulate the activity of proteins, the polysaccharide must present an appropriate sequence and adopt a suitable conformation. The conformations of heparin derivatives, as models of HS, are altered via a change in the associated cations, and this can drastically modify their FGF signaling activities. Here, we report that changing the cations associated with an N-acetyl-enriched heparin polysaccharide, from sodium to copper(II), converted it from supporting signaling through the fibroblast growth factor receptor (FGF-1-FGFR1c) tyrosine kinase signaling system to being inhibitory in a cell-based BaF3 assay. Nuclear magnetic resonance and synchrotron radiation circular dichroism (SRCD) spectroscopy demonstrated that the polysaccharide conformation differed in the presence of sodium or copper(II) cations. Electron paramagnetic resonance confirmed the environment of the copper(II) ion on the N-acetyl-enriched polysaccharide was distinct from that previously observed with intact heparin, which supported signaling. Secondary structures in solution complexes of polysaccharides with FGF-1 (which either supported signaling through FGFR1c or were inhibitory) were determined by SRCD. This allowed direct comparison of the two FGF-1-polysaccharide complexes in solution, containing identical molecular components and differing only in their cation content. Subtle structural differences were revealed, including a reduction in the level of disordered structure in the inhibitory complex.
Collapse
Affiliation(s)
- Scott E Guimond
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Study of the interaction of the Ig2 module of the fibroblast growth factor receptor, FGFR Ig2, with the fibroblast growth factor 1, FGF1, by means of NMR spectroscopy. FEBS Lett 2008; 582:3374-8. [DOI: 10.1016/j.febslet.2008.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 08/17/2008] [Accepted: 08/22/2008] [Indexed: 11/30/2022]
|
30
|
Biological implications of glycosaminoglycan interactions with haemopoietic cytokines. Immunol Cell Biol 2008; 86:598-607. [PMID: 18626488 DOI: 10.1038/icb.2008.49] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heparan sulphate (HS) glycosaminoglycans (GAGs) are an integral part of the signalling complex of fibroblast derived growth factor (FGF) family members, HS being regarded as a coreceptor. FGFs are also retained in the tissues by binding to HS structures. Early studies on the contribution of the bone marrow stroma to haemopoiesis suggested that cytokines with a role in haemopoiesis were similarly retained in the stroma through interactions with HS. However, the functional outcomes of these cytokines binding HS were poorly understood. Here the GAG-binding properties of cytokines of the four alpha-helical bundle family and the biological consequences of such binding are reviewed. From this analysis it is apparent that although many of these cytokines do bind GAGs, GAG binding is not a consistent feature, nor is the site of GAG binding conserved among these cytokines. The biological outcome of GAG binding depends, in part, on the location of the GAG-binding site on the cytokine. In some cases GAG binding appears to block signalling, whereas in others signalling is likely to be facilitated by binding. It is postulated that the interactions of these cytokines with their receptor complexes evolved independently of GAG binding, with GAG binding being an additional feature for a subset of this cytokine family. Nevertheless, because GAG binding localizes cytokines to sites within tissues, these interactions are likely to be critically important for the biology of these cytokines.
Collapse
|
31
|
Naimy H, Leymarie N, Bowman MJ, Costello CE, Zaia J. Characterization of heparin oligosaccharides binding specifically to antithrombin III using mass spectrometry. Biochemistry 2008; 47:3155-61. [PMID: 18260648 PMCID: PMC2716047 DOI: 10.1021/bi702043e] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heparan sulfate (HS) is a sulfated glycosaminoglycan attached to a core protein on the cell surface. Protein binding to cell surface HS is a key regulatory event for many cellular processes such as blood coagulation, cell proliferation, and migration. The concept whereby protein binding to HS is not random but requires a limited number of sulfation patterns is becoming clear. Here we describe a hydrophobic trapping assay for screening a library of heparin hexasaccharides for binders to antithrombin III (ATIII). The hexasaccharide compositions are defined with their building block content in the following format: (DeltaHexA:HexA:GlcN:SO 3:Ac). Of five initial compositions present in the library, (1:2:3:6:1), (1:2:3:7:1), (1:2:3:7:0), (1:2:3:8:0), and (1:2:3:9:0), only two are shown to bind ATIII, namely, (1:2:3:8:0) and (1:2:3:9:0). The use of amide hydrophilic interaction (HILIC) liquid chromatography-mass spectrometry permitted reproducible quantitative analysis of the composition of the initial library as well as that of the binding fraction. The specificity of the hexasaccharides binding ATIII was confirmed by assaying their ability to enhance ATIII-mediated inhibition of Factor Xa in vitro.
Collapse
Affiliation(s)
- Hicham Naimy
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Nancy Leymarie
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Michael J. Bowman
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St, Boston, Massachusetts 02118
| |
Collapse
|
32
|
Goodger SJ, Robinson CJ, Murphy KJ, Gasiunas N, Harmer NJ, Blundell TL, Pye DA, Gallagher JT. Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms. J Biol Chem 2008; 283:13001-8. [PMID: 18281281 DOI: 10.1074/jbc.m704531200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparin-like saccharides play an essential role in binding to both fibroblast growth factors (FGF) and their receptors at the cell surface. In this study we prepared a series of heparin oligosaccharides according to their size and sulfation level. We then investigated their affinity for FGF2 and their ability to support FGF2 mitogenesis of heparan sulfate-deficient cells expressing FGFR1c. Tetra- and hexasaccharides bound FGF2, but failed to dimerize the growth factor. Nevertheless, these saccharides promoted FGF2-mediated cell growth. Furthermore, whereas enzymatic removal of the non-reducing end 2-O-sulfate group had little effect on the 1:1 interaction with FGF2, it eliminated the mitogenic activity of these saccharides. This evidence supports the symmetric two-end model of ternary complex formation. In contrast, even at very low concentrations, octasaccharide and larger heparin fragments conferred a potent mitogenic activity that was independent of terminal 2-O-sulfation. This correlated with the ability to dimerize FGF2 in an apparently cooperative manner. This data suggests that potent mitogenic signaling results from heparin-mediated trans-dimerization of FGF2, consistent with the asymmetric model of ternary complex formation. We propose that, depending on saccharide structure, there are different architectures and modes of ternary complex assembly that differ in stability and/or efficiency of transmembrane signaling.
Collapse
Affiliation(s)
- Sarah J Goodger
- Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Smith SML, West LA, Hassell JR. The core protein of growth plate perlecan binds FGF-18 and alters its mitogenic effect on chondrocytes. Arch Biochem Biophys 2007; 468:244-51. [PMID: 17971291 PMCID: PMC2696159 DOI: 10.1016/j.abb.2007.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 02/04/2023]
Abstract
Fibroblast growth factor-18 (FGF-18) has been shown to regulate the growth plate chondrocyte proliferation, hypertrophy and cartilage vascularization necessary for endochondral ossification. The heparan sulfate proteoglycan perlecan is also critical for growth plate chondrocyte proliferation. FGF-18 null mice exhibit a skeletal dwarfism similar to that of perlecan null mice. Growth plate perlecan contains chondroitin sulfate (CS) and heparan sulfate (HS) chains and FGF-18 is known to bind to heparin and to heparan sulfate from some sources. We used cationic filtration and immunoprecipitation assays to investigate the binding of FGF-18 to perlecan purified from the growth plate and to recombinant perlecan domains expressed in COS-7 cells. FGF-18 bound to perlecan with a K(d) of 145 nM. Near saturation, approximately 103 molecules of FGF-18 bound per molecule of perlecan. At the lower concentrations used, FGF-18 bound with a K(d) of 27.8 nM. This binding was not significantly altered by chondroitinase nor heparitinase digestion of perlecan, but was substantially and significantly reduced by reduction and alkylation of the perlecan core protein. This indicates that the perlecan core protein (and not the CS nor HS chains) is involved in FGF-18 binding. FGF-18 bound equally to full-length perlecan purified from the growth plate and to recombinant domains I-III and III of perlecan. These data indicate that low affinity binding sites for FGF-18 are present in cysteine-rich regions of domain III of perlecan. FGF-18 stimulated 3H-thymidine incorporation in growth plate chondrocyte cultures derived from the lower and upper proliferating zones by 9- and 14-fold, respectively. The addition of perlecan reversed this increased incorporation in the lower proliferating chondrocytes by 74% and in the upper proliferating cells by 37%. These results suggest that perlecan can bind FGF-18 and alter the mitogenic effect of FGF-18 on growth plate chondrocytes.
Collapse
Affiliation(s)
- Simone M-L Smith
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B Downs Boulevard, Tampa, FL 33612, USA
| | | | | |
Collapse
|
35
|
Kirn-Safran CB, D'Souza SS, Carson DD. Heparan sulfate proteoglycans and their binding proteins in embryo implantation and placentation. Semin Cell Dev Biol 2007; 19:187-93. [PMID: 17766150 PMCID: PMC2275896 DOI: 10.1016/j.semcdb.2007.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
Complex interactions occur among embryonic, placental and maternal tissues during embryo implantation. Many of these interactions are controlled by growth factors, extracellular matrix and cell surface components that share the ability to bind heparan sulfate (HS) polysaccharides. HS is carried by several classes of cell surface and secreted proteins called HS proteoglycan that are expressed in restricted patterns during implantation and placentation. This review will discuss the expression of HS proteoglycans and various HS binding growth factors as well as extracellular matrix components and HS-modifying enzymes that can release HS-bound proteins in the context of implantation and placentation.
Collapse
|
36
|
Abzalimov RR, Dubin PL, Kaltashov IA. Glycosaminoglycans as Naturally Occurring Combinatorial Libraries: Developing a Mass Spectrometry-Based Strategy for Characterization of Anti-Thrombin Interaction with Low Molecular Weight Heparin and Heparin Oligomers. Anal Chem 2007; 79:6055-63. [PMID: 17658885 DOI: 10.1021/ac0710432] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparin is a densely charged polysaccharide, which is best known for its anticoagulant activity, although it also modulates a plethora of other biological processes. Unlike biopolymers whose synthesis is strictly controlled by a unique genetic template, heparin molecules exhibit a remarkable degree of structural heterogeneity, which poses a serious challenge for studies of heparin-protein interactions. This analytical challenge is often dealt with by reducing the enormous structural repertoire of heparin to a model small molecule. In this paper, we describe a different approach inspired by the experimental methodologies from the arsenal of combinatorial chemistry. Interaction of anti-thrombin III (AT) with heparinoids is studied using a mixture of oligoheparin molecules of fixed degree of polymerization, but varying chemical composition (heparin hexasaccharides obtained by size exclusion chromatography of an enzymatic digest of porcine intestinal heparin with bacterial heparinase), as well as a heparin-derived pharmaceutical preparation Tinzaparin (heparin oligosaccharides up to a 22-mer). AT binders are identified based on the results of ESI MS measurements of complexes formed by protein-oligoheparin association. Additionally, differential depletion of free heparin oligomers in solution in the presence of AT is used to verify the binding preferences. ESI MS characterization of oligoheparin-AT interaction under partially denaturing conditions allowed the conformer specificity of the protein-polyanion binding to be monitored. A model emerging from these studies invokes the notion of a well-defined binding site on AT, to which a flexible partner (heparin) adapts to maximize favorable intermolecular electrostatic interactions. This study demonstrates the enormous potential of ESI MS as an analytical tool to study the interactions of highly heterogeneous glycosaminoglycans with their cognate proteins outside of the commonly accepted reductionist paradigm, which reduces the intrinsic complexity of heparin by using structurally defined homogeneous low molecular weight mimetics.
Collapse
Affiliation(s)
- Rinat R Abzalimov
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
37
|
Abstract
The fact that ions of macromolecular complexes produced by electrospray ionization can be maintained intact in a mass spectrometer has stimulated exciting new lines of research. In this review we chart the progress of this research from the observation of simple homo-oligomers to complex heterogeneous macromolecular assemblies of mega-Dalton proportions. The applications described herein not only confirm the status of mass spectrometry (MS) as a structural biology approach to complement X-ray analysis or electron microscopy, but also highlight unique attributes of the methodology. This is exemplified in studies of the biogenesis of macromolecular complexes and in the exchange of subunits between macromolecular complexes. Moreover, recent successes in revealing the overall subunit architecture of complexes are set to promote MS from a complementary approach to a structural biology tool in its own right.
Collapse
Affiliation(s)
- Michal Sharon
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
38
|
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CLR, Dierks T. The heparanome--the enigma of encoding and decoding heparan sulfate sulfation. J Biotechnol 2007; 129:290-307. [PMID: 17337080 DOI: 10.1016/j.jbiotec.2007.01.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/22/2006] [Accepted: 01/26/2007] [Indexed: 12/24/2022]
Abstract
Heparan sulfate (HS) is a cell surface carbohydrate polymer modified with sulfate moieties whose highly ordered composition is central to directing specific cell signaling events. The ability of the cell to generate these information rich glycans with such specificity has opened up a new field of "heparanomics" which seeks to understand the systems involved in generating these cell type and developmental stage specific HS sulfation patterns. Unlike other instances where biological information is encrypted as linear sequences in molecules such as DNA, HS sulfation patterns are generated through a non-template driven process. Thus, deciphering the sulfation code and the dynamic nature of its generation has posed a new challenge to system biologists. The recent discovery of two sulfatases, Sulf1 and Sulf2, with the unique ability to edit sulfation patterns at the cell surface, has opened up a new dimension as to how we understand the regulation of HS sulfation patterning and pattern-dependent cell signaling events. This review will focus on the functional relationship between HS sulfation patterning and biological processes. Special attention will be given to Sulf1 and Sulf2 and how these key editing enzymes might act in concert with the HS biosynthetic enzymes to generate and regulate specific HS sulfation patterns in vivo. We will further explore the use of knock out mice as biological models for understanding the dynamic systems involved in generating HS sulfation patterns and their biological relevance. A brief overview of new technologies and innovations summarizes advances in the systems biology field for understanding non-template molecular networks and their influence on the "heparanome".
Collapse
Affiliation(s)
- William C Lamanna
- Department of Chemistry, Biochemistry I, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Imberty A, Lortat-Jacob H, Pérez S. Structural view of glycosaminoglycan–protein interactions. Carbohydr Res 2007; 342:430-9. [PMID: 17229412 DOI: 10.1016/j.carres.2006.12.019] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 01/28/2023]
Abstract
The essential role of protein-glycosaminoglycan interactions in the regulation of various physiological processes has been recognized for several decades but it is only recently that the molecular basis underlying such interactions has emerged. The different methodologies to elucidate the three-dimensional features of glycosaminoglycans along with the interactions with proteins cover high resolution NMR spectroscopy, X-ray crystallography, molecular modeling, and hydrodynamic measurements. The structural results that have accumulated have been organized in databases that allow rapid searching with entries related either to the type of glycosaminoglycan or the type of protein. Finally, three selected examples enlightening the complexity of the nature of the interactions occurring between proteins and glycosaminoglycans are given. The example of interactions between heparin and antithrombin III illustrates how such a complex mechanism as the regulation of blood coagulation by a specific pentasaccharide can be dissected through the combined use of dedicated carbohydrate chemistry and structural glycobiology. The second example deals with the study of complexes between chemokines and heparin, and shows how multimolecular complexes of proteins can be organized in space throughout the action of glycosaminoglycans. Again, the synthesis of chemical mimetics offers an unexpected route to the development of novel glycotherapeutics. Finally, the area of enzymes/glycosaminoglycans complexes is briefly covered to realize the limited knowledge that we have for such an important class of biomacromolecular complexes.
Collapse
Affiliation(s)
- Anne Imberty
- CERMAV-CNRS (affiliated with Université Joseph Fourier), BP 53, F-38041 Grenoble, France.
| | | | | |
Collapse
|
40
|
Alexopoulou AN, Multhaupt HAB, Couchman JR. Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 2006; 39:505-28. [PMID: 17097330 DOI: 10.1016/j.biocel.2006.10.014] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 01/24/2023]
Abstract
Syndecans are heparan sulphate proteoglycans consisting of a type I transmembrane core protein modified by heparan sulphate and sometimes chondroitin sulphate chains. They are major proteoglycans of many organs including the vasculature, along with glypicans and matrix proteoglycans. Heparan sulphate chains have potential to interact with a wide array of ligands, including many growth factors, cytokines, chemokines and extracellular matrix molecules relevant to growth regulation in vascular repair, hypoxia, angiogenesis and immune cell function. This is consistent with the phenotypes of syndecan knock-out mice, which while viable and fertile, show deficits in tissue repair. Furthermore, there are potentially important changes in syndecan distribution and function described in a variety of human vascular diseases. The purpose of this review is to describe syndecan structure and function, consider the role of syndecan core proteins in transmembrane signalling and also their roles as co-receptors with other major classes of cell surface molecules. Current debates include potential redundancy between syndecan family members, the significance of multiple heparan sulphate interactions, regulation of the cytoskeleton and cell behaviour and the switch between promoter and inhibitor of important cell functions, resulting from protease-mediated shedding of syndecan ectodomains.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- Division of Biomedical Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
41
|
The Fibroblast Growth Factor (FGF) – FGF Receptor Complex: Progress Towards the Physiological State. Top Curr Chem (Cham) 2006. [DOI: 10.1007/128_068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
42
|
Harmer NJ. Insights into the role of heparan sulphate in fibroblast growth factor signalling. Biochem Soc Trans 2006; 34:442-5. [PMID: 16709182 DOI: 10.1042/bst0340442] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signalling from the FGFs (fibroblast growth factors) is crucial for the correct development and homoeostasis of a wide range of cells and tissues. The FGF/FGFR (FGF receptor) signalling system forms an important paradigm for HS (heparan sulphate)-binding proteins, as both the growth factor and receptor bind to HS, and HS or heparin is an absolute requirement for full signalling. The FGF signalling system has been extremely well structurally characterized, and details of each interaction involved in forming a ternary complex of FGF-FGFR-heparin have been elucidated. Recent work has focused on a more thorough understanding of the nature of the FGF-heparin complex in particular, demonstrating that FGFs preferentially bind to similar sites on the co-receptor, and that FGF-FGFR pairs show greater specificity for heparin sulphation patterns than individual FGFs. Further work has suggested that FGF-FGFR-heparin signalling complexes contain one molecule of heparin only, and that when longer fragments of heparin are used to form FGF-FGFR-heparin complexes, multiple complexes form upon the saccharide. These observations form the basis of a model where the range of interactions that FGFs and FGFRs can form with one another and with HS may lead to the formation of complexes with more than two FGFR units. Therefore HS will be crucial to FGF signalling from the initial signalling event to the formation of large receptor clusters.
Collapse
Affiliation(s)
- N J Harmer
- Department of Biochemistry, Cambridge, UK.
| |
Collapse
|
43
|
Cattaruzza S, Perris R. Approaching theProteoglycome: Molecular Interactions of Proteoglycans and Their Functional Output. Macromol Biosci 2006; 6:667-80. [PMID: 16881045 DOI: 10.1002/mabi.200600100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
[Image: see text] Through their diverse core protein modules and glycan/glycosaminoglycan moieties, proteoglycans may engage in numerous cellular and molecular interactions which are dispensable during embryogenesis, are essential for the maintenance of a healthy state and are prone to modulation in pathological conditions. Proteoglycan interactions may involve binding to other structural components of the ECM, to cell surface receptors, to membrane-associated components, and to soluble signaling molecules, which through this interaction may become entrapped in the ECM or sequestered at the cell surface. Understanding of these multiple interplays is therefore of paramount importance and requires a detailed mapping through what we define as the proteoglycome.
Collapse
Affiliation(s)
- Sabrina Cattaruzza
- Department of Evolutionary and Functional Biology, University of Parma, Viale delle Scienze 11/A, Parma (PR) 43100, Italy
| | | |
Collapse
|