1
|
Angel MR, Séguin B, Löhr CV, Beer TM, Feliciano J, Ramsey SA, Thomas GV. Comparative Transcriptomes of Canine and Human Prostate Cancers Identify Mediators of Castration Resistance. Vet Comp Oncol 2024. [PMID: 39375962 DOI: 10.1111/vco.13017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Prostate cancer continues to be one of the most lethal cancers in men. While androgen deprivation therapy is initially effective in treating prostate cancer, most cases of advanced prostate cancer eventually progress to castration-resistant prostate cancer (CRPC), which is incurable. Similarly, the most aggressive form of prostatic carcinoma occurs in dogs that have been castrated. To identify molecular similarities between canine prostate cancer and human CRPC, we performed a comparative analysis of gene expression profiles. Through this transcriptomic analysis, we found that prostatic carcinoma in castrated dogs demonstrates an androgen-indifferent phenotype, characterised by low-androgen receptor and neuroendocrine-associated genes. Notably, we identified two genes, ISG15 and AZGP1, that were consistently up- and down-regulated, respectively, in both canine prostatic carcinoma and human CRPC. Additionally, we identified several other genes, including GPX3, S100P and IFITM1, that exhibited similar expression patterns in both species. Protein-protein interaction network analysis demonstrated that these five genes were part of a larger network of interferon-induced genes, suggesting that they may act together in signalling pathways that are disrupted in prostate cancer. Accordingly, our findings suggest that the interferon pathway may play a role in the development and progression of CRPC in both dogs and humans and chart a new therapeutic approach.
Collapse
Affiliation(s)
- Marcela Riveros Angel
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Bernard Séguin
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - John Feliciano
- Veterinary Diagnostics & Imaging Consultants, Tualatin, Oregon, USA
| | - Stephen A Ramsey
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
- College of Engineering, Oregon State University, Corvallis, Oregon, USA
| | - George V Thomas
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Gupta M, Arya S, Agrawal P, Gupta H, Sikka R. Unravelling the molecular tapestry of pterygium: insights into genes for diagnostic and therapeutic innovations. Eye (Lond) 2024; 38:2880-2887. [PMID: 38907016 PMCID: PMC11461965 DOI: 10.1038/s41433-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Pterygium, an ocular surface disorder, manifests as a wing-shaped extension from the corneoscleral limbus onto the cornea, impacting vision and causing inflammation. With a global prevalence of 12%, varying by region, the condition is linked to UV exposure, age, gender, and socioeconomic factors. This review focuses on key genes associated with pterygium, shedding light on potential therapeutic targets. Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, contribute to ECM remodelling and angiogenesis in pterygium. Vascular endothelial growth factor (VEGF) plays a crucial role in angiogenesis and is elevated in pterygium tissues. B-cell lymphoma-2, S100 proteins, DNA repair genes (hOGG1, XRCC1), CYP monooxygenases, p53, and p16 are implicated in pterygium development. A protein-protein interaction network analysis highlighted 28 edges between the aforementioned proteins, except for VEGF, indicating a high level of interaction. Gene ontology, microRNA and pathway analyses revealed the involvement of processes such as base excision repair, IL-17 and p53 signalling, ECM disassembly, oxidative stress, hypoxia, metallopeptidase activity and others that are essential for pterygium development. In addition, miR-29, miR-125, miR-126, miR-143, miR-200, miR-429, and miR-451a microRNAs were predicted, which were shown to have a role in pterygium development and disease severity. Identification of these molecular mechanisms provides insights for potential diagnostic and therapeutic strategies for pterygium.
Collapse
Affiliation(s)
- Mahak Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Shubhang Arya
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | | | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
3
|
Romano Spica V, Volpini V, Valeriani F, Carotenuto G, Arcieri M, Platania S, Castrignanò T, Clementi ME, Michetti F. In Silico Predicting the Presence of the S100B Motif in Edible Plants and Detecting Its Immunoreactive Materials: Perspectives for Functional Foods, Dietary Supplements and Phytotherapies. Int J Mol Sci 2024; 25:9813. [PMID: 39337302 PMCID: PMC11431829 DOI: 10.3390/ijms25189813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
The protein S100B is a part of the S100 protein family, which consists of at least 25 calcium-binding proteins. S100B is highly conserved across different species, supporting important biological functions. The protein was shown to play a role in gut microbiota eubiosis and is secreted in human breast milk, suggesting a physiological trophic function in newborn development. This study explores the possible presence of the S100B motif in plant genomes, and of S100B-like immunoreactive material in different plant extracts, opening up potential botanical uses for dietary supplementation. To explore the presence of the S100B motif in plants, a bioinformatic workflow was used. In addition, the immunoreactivity of S100B from vegetable and fruit samples was tested using an ELISA assay. The S100B motif was expected in silico in the genome of different edible plants belonging to the Viridiplantae clade, such as Durio zibethinus or Malus domestica and other medicinal species. S100B-like immunoreactive material was also detected in samples from fruits or leaves. The finding of S100B-like molecules in plants sheds new light on their role in phylogenesis and in the food chain. This study lays the foundation to elucidate the possible beneficial effects of plants or derivatives containing the S100B-like principle and their potential use in nutraceuticals.
Collapse
Affiliation(s)
- Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Veronica Volpini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Giovanni Carotenuto
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Manuel Arcieri
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Serena Platania
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viale dell'Università s.n.c., 01100 Viterbo, Italy
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, L.go F. Vito 1, 00168 Rome, Italy
| | - Fabrizio Michetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
| |
Collapse
|
4
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
5
|
Jiang L, Chen S, Li S, Wang J, Chen W, Shi Y, Xiong W, Miao C. Exploring biomarkers for diagnosing and predicting organ dysfunction in patients with perioperative sepsis: a preliminary investigation. Perioper Med (Lond) 2024; 13:81. [PMID: 39049003 PMCID: PMC11267738 DOI: 10.1186/s13741-024-00438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Early diagnosis and prediction of organ dysfunction are critical for intervening and improving the outcomes of septic patients. The study aimed to find novel diagnostic and predictive biomarkers of organ dysfunction for perioperative septic patients. METHOD This is a prospective, controlled, preliminary, and single-center study of emergency surgery patients. Mass spectrometry, Gene Ontology (GO) functional analysis, and the protein-protein interaction (PPI) network were performed to identify the differentially expressed proteins (DEPs) from sepsis patients, which were selected for further verification via enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was used to estimate the relative correlation of selected serum protein levels and clinical outcomes of septic patients. Calibration curves were plotted to assess the calibration of the models. RESULTS Five randomized serum samples per group were analyzed via mass spectrometry, and 146 DEPs were identified. GO functional analysis and the PPI network were performed to evaluate the molecular mechanisms of the DEPs. Six DEPs were selected for further verification via ELISA. Cathepsin B (CatB), vascular cell adhesion protein 1 (VCAM-1), neutrophil gelatinase-associated lipocalin (NGAL), protein S100-A9, prosaposin, and thrombospondin-1 levels were significantly increased in the patients with sepsis compared with those of the controls (p < 0.001). Logistic regression analysis showed that CatB, S100-A9, VCAM-1, prosaposin, and NGAL could be used for preoperative diagnosis and postoperative prediction of organ dysfunction. CatB and S100-A9 were possible predictive factors for preoperative diagnosis of renal failure in septic patients. Internal validation was assessed using the bootstrapping validation. The preoperative diagnosis of renal failure model displayed good discrimination with a C-index of 0.898 (95% confidence interval 0.843-0.954) and good calibration. CONCLUSION Serum CatB, S100-A9, VCAM-1, prosaposin, and NGAL may be novel markers for preoperative diagnosis and postoperative prediction of organ dysfunction. Specifically, S100-A9 and CatB were indicators of preoperative renal dysfunction in septic patients. Combining these two biomarkers may improve the accuracy of predicting preoperative septic renal dysfunction. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trials Registry (ChiCTR2200060418) on June 1, 2022.
Collapse
Affiliation(s)
- Linghui Jiang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shichao Li
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaxing Wang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wannan Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuncen Shi
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wanxia Xiong
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Changhong Miao
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Orlandi KN, Harms MJ. Zebrafish do not have calprotectin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600640. [PMID: 38979154 PMCID: PMC11230264 DOI: 10.1101/2024.06.25.600640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The protein heterodimer calprotectin and its component proteins, S100A8 and S100A9, play important antibacterial and proinflammatory roles in the mammalian innate immune response. Gaining mechanistic insights into the regulation and biological function of calprotectin will help facilitate patient diagnostics and therapy and further our understanding of the host-microbe interface. Recent literature has identified zebrafish s100a10b as zebrafish calprotectin based on sequence similarity, genomic context, and transcriptional upregulation during the immune response to bacterial infections. The field would benefit from expanding the breadth of calprotectin studies into a zebrafish innate immunity model. Here, we carefully evaluated the possibility that zebrafish possess a calprotectin. We found that zebrafish do not possess an ortholog of mammalian S100A8 or S100A9. We then identified four zebrafish s100 proteins- including s100a10b-that are expressed in immune cells and upregulated during the immune response. We recombinantly expressed and purified these proteins and measured the antimicrobial and proinflammatory characteristics. We found that none of the zebrafish proteins exhibited activity comparable to mammalian calprotectin. Our work demonstrates conclusively that zebrafish have no ortholog of calprotectin, and the most plausible candidate proteins have not convergently evolved similar functions.
Collapse
|
7
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Kahl M, Offner T, Trendel A, Weiss L, Manzini I, Hassenklöver T. S100Z is expressed in a lateral subpopulation of olfactory receptor neurons in the main olfactory system of Xenopus laevis. Dev Neurobiol 2024; 84:59-73. [PMID: 38439531 DOI: 10.1002/dneu.22935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.
Collapse
Affiliation(s)
- Melina Kahl
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alena Trendel
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
9
|
Melle C, Hoffmann B, Wiesenburg A, Biskup C. FLIM-FRET-based analysis of S100A11/annexin interactions in living cells. FEBS Open Bio 2024; 14:626-642. [PMID: 38408765 PMCID: PMC10988696 DOI: 10.1002/2211-5463.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Proteins achieve their biological functions in cells by cooperation in protein complexes. In this study, we employed fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurements to investigate protein complexes comprising S100A11 and different members of the annexin (ANX) family, such as ANXA1, ANXA2, ANXA4, ANXA5, and AnxA6, in living cells. Using an S100A11 mutant without the capacity for Ca2+ binding, we found that Ca2+ binding of S100A11 is important for distinct S100A11/ANXA2 complex formation; however, ANXA1-containing complexes were unaffected by this mutant. An increase in the intracellular calcium concentration induced calcium ionophores, which strengthened the ANXA2/S100A11 interaction. Furthermore, we were able to show that S100A11 also interacts with ANXA4 in living cells. The FLIM-FRET approach used here can serve as a tool to analyze interactions between S100A11 and distinct annexins under physiological conditions in living cells.
Collapse
Affiliation(s)
- Christian Melle
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Annett Wiesenburg
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| |
Collapse
|
10
|
Xia P, Ji X, Yan L, Lian S, Chen Z, Luo Y. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity. Immunology 2024; 171:365-376. [PMID: 38013255 DOI: 10.1111/imm.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023] Open
Abstract
S100 proteins are small proteins that are only expressed in vertebrates. They are widely expressed in many different cell types and are involved in the regulation of calcium homeostasis, glucose metabolism, cell proliferation, apoptosis, inflammation and tumorigenesis. As members of the S100 protein subfamily of myeloid-related proteins, S100A8, S100A9 and S100A12 play a crucial role in resisting microbial infection and maintaining immune homeostasis. These proteins chelate the necessary metal nutrients of pathogens invading the host by means of 'nutritional immunity' and directly inhibit the growth of pathogens in the host. They interact with receptors on the cell surface to initiate inflammatory signal transduction, induce cytokine expression and participate in the inflammatory response and immune regulation. Furthermore, the increased content of these proteins during the pathological process makes them useful as disease markers for screening and detecting related diseases. This article summarizes the structure and function of the proteins S100A8, S100A9 and S100A12 and lays the foundation for further understanding their roles in infection, immunity and inflammation, as well as their potential applications in the prevention and treatment of infectious diseases.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Xingduo Ji
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Li Yan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Siqi Lian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Ziyue Chen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| | - Yi Luo
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Šimić G, Vukić V, Babić M, Banović M, Berečić I, Španić E, Zubčić K, Golubić AT, Barišić Kutija M, Merkler Šorgić A, Vogrinc Ž, Lehman I, Hof PR, Sertić J, Barišić N. Total tau in cerebrospinal fluid detects treatment responders among spinal muscular atrophy types 1-3 patients treated with nusinersen. CNS Neurosci Ther 2024; 30:e14051. [PMID: 36513962 PMCID: PMC10915981 DOI: 10.1111/cns.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
AIMS Considering the substantial variability in treatment response across patients with spinal muscular atrophy (SMA), reliable markers for monitoring response to therapy and predicting treatment responders need to be identified. The study aimed to determine if measured concentrations of disease biomarkers (total tau protein, neurofilament light chain, and S100B protein) correlate with the duration of nusinersen treatment and with scores obtained using functional scales for the assessment of motor abilities. METHODS A total of 30 subjects with SMA treated with nusinersen between 2017 and 2021 at the Department of Pediatrics, University Hospital Centre Zagreb, Croatia, were included in this study. Cerebrospinal fluid (CSF) samples were collected by lumbar puncture prior to intrathecal application of nusinersen. Protein concentrations in CSF samples were determined by enzyme-linked immunosorbent assay in 26 subjects. The motor functions were assessed using functional motor scales. RESULTS The main finding was significantly decreased total tau correlating with the number of nusinersen doses and motor improvement in the first 18-24 months of treatment (in all SMA patients and SMA type 1 patients). Neurofilament light chain and S100B were not significantly changed after administration of nusinersen. CONCLUSIONS The measurement of total tau concentration in CSF is a reliable index for monitoring the biomarker and clinical response to nusinersen therapy in patients with SMA.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Vana Vukić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Marija Babić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain ResearchUniversity of Zagreb School of MedicineZagrebCroatia
| | - Anja Tea Golubić
- Department of Nuclear Medicine and Radiation ProtectionUniversity Hospital Centre ZagrebZagrebCroatia
| | | | - Ana Merkler Šorgić
- Department of Laboratory Diagnostics, Laboratory for Molecular DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Željka Vogrinc
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Ivan Lehman
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jadranka Sertić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
- Department of Medical Chemistry and BiochemistryUniversity of Zagreb School of MedicineZagrebCroatia
| | - Nina Barišić
- Department of PediatricsUniversity Hospital Centre ZagrebZagrebCroatia
| |
Collapse
|
12
|
Lammi MJ, Qu C. Regulation of Oxygen Tension as a Strategy to Control Chondrocytic Phenotype for Cartilage Tissue Engineering and Regeneration. Bioengineering (Basel) 2024; 11:211. [PMID: 38534484 DOI: 10.3390/bioengineering11030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Cartilage defects and osteoarthritis are health problems which are major burdens on health care systems globally, especially in aging populations. Cartilage is a vulnerable tissue, which generally faces a progressive degenerative process when injured. This makes it the 11th most common cause of global disability. Conservative methods are used to treat the initial phases of the illness, while orthopedic management is the method used for more progressed phases. These include, for instance, arthroscopic shaving, microfracturing and mosaicplasty, and joint replacement as the final treatment. Cell-based implantation methods have also been developed. Despite reports of successful treatments, they often suffer from the non-optimal nature of chondrocyte phenotype in the repair tissue. Thus, improved strategies to control the phenotype of the regenerating cells are needed. Avascular tissue cartilage relies on diffusion for nutrients acquisition and the removal of metabolic waste products. A low oxygen content is also present in cartilage, and the chondrocytes are, in fact, well adapted to it. Therefore, this raises an idea that the regulation of oxygen tension could be a strategy to control the chondrocyte phenotype expression, important in cartilage tissue for regenerative purposes. This narrative review discusses the aspects related to oxygen tension in the metabolism and regulation of articular and growth plate chondrocytes and progenitor cell phenotypes, and the role of some microenvironmental factors as regulators of chondrocytes.
Collapse
Affiliation(s)
- Mikko J Lammi
- Department of Medical and Translational Biology, Umeå University, SE-90187 Umeå, Sweden
| | - Chengjuan Qu
- Department of Odontology, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
13
|
Zhao Y, Fu W, Wang L. Biomarkers in aortic dissection: Diagnostic and prognostic value from clinical research. Chin Med J (Engl) 2024; 137:257-269. [PMID: 37620283 PMCID: PMC10836883 DOI: 10.1097/cm9.0000000000002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Aortic dissection is a life-threatening condition for which diagnosis mainly relies on imaging examinations, while reliable biomarkers to detect or monitor are still under investigation. Recent advances in technologies provide an unprecedented opportunity to yield the identification of clinically valuable biomarkers, including proteins, ribonucleic acids (RNAs), and deoxyribonucleic acids (DNAs), for early detection of pathological changes in susceptible patients, rapid diagnosis at the bedside after onset, and a superior therapeutic regimen primarily within the concept of personalized and tailored endovascular therapy for aortic dissection.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Vascular Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Vascular Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, China
| |
Collapse
|
14
|
Mohammed TO, Lin YR, Akter L, Weissenbruch K, Ngo KX, Zhang Y, Kodera N, Bastmeyer M, Miyanari Y, Taoka A, Franz CM. S100A11 promotes focal adhesion disassembly via myosin II-driven contractility and Piezo1-mediated Ca2+ entry. J Cell Sci 2024; 137:jcs261492. [PMID: 38277157 DOI: 10.1242/jcs.261492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.
Collapse
Affiliation(s)
- Tareg Omer Mohammed
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - You-Rong Lin
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Lucky Akter
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kai Weissenbruch
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Kien Xuan Ngo
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yanjun Zhang
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Martin Bastmeyer
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yusuke Miyanari
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1162, Japan
| | - Azuma Taoka
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1162, Japan
| | - Clemens M Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| |
Collapse
|
15
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
16
|
Wang SH, Xia YJ, Yu J, He CY, Han JR, Bai JX. S100 Calcium-Binding Protein A8 Functions as a Tumor-Promoting Factor in Renal Cell Carcinoma via Activating NF-κB Signaling Pathway. J INVEST SURG 2023; 36:2241081. [PMID: 37527815 DOI: 10.1080/08941939.2023.2241081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/10/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC), arising from the renal tubular epithelium, is one of the most common types of genitourinary malignancies. Based on the Gene Expression Omnibus (GEO) database (GSE100666), S100 calcium-binding protein A8 (S100A8) was highly expressed in RCC tissues. S100A8, an inflammatory regulatory factor, has emerged as an important mediator associated with the occurrence and development of cancer. MATERIALS AND METHODS The Gene Expression Omnibus (GEO) database was used to identify the key genes and investigate the main signaling pathways in RCC. Human RCC samples and corresponding adjacent normal tissues were collected in our hospital. The expression of S100A8 in human RCC samples was detected using western blotting and immunohistochemical analysis. S100A8 overexpression or knockdown was mediated by using Lipofectamine 3000 in human renal cell carcinoma cell line 786-O and ACHN cells. Basic experiments, including MTT and cell apoptosis assays, were utilized for investigating the function of S100A8 in RCC. Furthermore, the levels of inflammation were also evaluated in 786-O and ACHN cells. RESULTS In the current study, we found that downregulation of S100A8 inhibited proliferation and promoted apoptosis in 786-O and ACHN RCC cells. Of note, S100A8 silencing downregulated the phosphorylation of NF-κB p65, thereby decreasing the levels of TNF-α, cleaved caspase1, and MMP9. By contrast, S100A8 upregulation could increase these expressions. CONCLUSION Overall, S100A8 knockdown restrained RCC malignant biological properties, which was associated with the deactivation of the NF-κB signaling pathway. This present study demonstrates new insights that S100A8 may be a potential therapeutic target in RCC.
Collapse
Affiliation(s)
- Shu-Hui Wang
- Department of Integrated Traditional Chinese and Western Medicine and Geriatrics, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yan-Jie Xia
- Department of Laboratory Medicine, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Chun-Yan He
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jie-Ru Han
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ji-Xiang Bai
- Department of Urology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| |
Collapse
|
17
|
Zhang M, Barroso E, Ruart M, Peña L, Peyman M, Aguilar-Recarte D, Montori-Grau M, Rada P, Cugat C, Montironi C, Zarei M, Jurado-Aguilar J, Camins A, Balsinde J, Valverde ÁM, Wahli W, Palomer X, Vázquez-Carrera M. Elafibranor upregulates the EMT-inducer S100A4 via PPARβ/δ. Biomed Pharmacother 2023; 167:115623. [PMID: 37783154 DOI: 10.1016/j.biopha.2023.115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Elafibranor is a dual peroxisome proliferator-activated receptor (PPAR)α and β/δ agonist that has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Here, we examined the effects of elafibranor in mice fed a choline-deficient high-fat diet (CD-HFD), a model of metabolic dysfunction-associated steatohepatitis (MASH) that presents obesity and insulin resistance. Our findings revealed that elafibranor treatment ameliorated steatosis, inflammation, and fibrogenesis in the livers of CD-HFD-fed mice. Unexpectedly, elafibranor also increased the levels of the epithelial-mesenchymal transition (EMT)-promoting protein S100A4 via PPARβ/δ activation. The increase in S100A4 protein levels caused by elafibranor was accompanied by changes in the levels of markers associated with the EMT program. The S100A4 induction caused by elafibranor was confirmed in the BRL-3A rat liver cells and a mouse primary hepatocyte culture. Furthermore, elafibranor reduced the levels of ASB2, a protein that promotes S100A4 degradation, while ASB2 overexpression prevented the stimulating effect of elafibranor on S100A4. Collectively, these findings reveal an unexpected hepatic effect of elafibranor on increasing S100A4 and promoting the EMT program.
Collapse
Affiliation(s)
- Meijian Zhang
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Maria Ruart
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Lucía Peña
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Mona Peyman
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - David Aguilar-Recarte
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Patricia Rada
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Clara Cugat
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carla Montironi
- Pathology Department, Hospital Clínic, Barcelona, Spain; Liver Cancer Translational Research Group, Liver Unit, IDIBAPS-Hospital Clínic, University of Barcelona, Spain
| | - Mohammad Zarei
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA; Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, USA
| | - Javier Jurado-Aguilar
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jesús Balsinde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Ángela M Valverde
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, F-31027 Toulouse Cedex 3, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
18
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
19
|
Babić M, Banović M, Berečić I, Banić T, Babić Leko M, Ulamec M, Junaković A, Kopić J, Sertić J, Barišić N, Šimić G. Molecular Biomarkers for the Diagnosis, Prognosis, and Pharmacodynamics of Spinal Muscular Atrophy. J Clin Med 2023; 12:5060. [PMID: 37568462 PMCID: PMC10419842 DOI: 10.3390/jcm12155060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive degenerative illness that affects 1 in every 6 to 11,000 live births. This autosomal recessive disorder is caused by homozygous deletion or mutation of the SMN1 gene (survival motor neuron). As a backup, the SMN1 gene has the SMN2 gene, which produces only 10% of the functional SMN protein. Nusinersen and risdiplam, the first FDA-approved medications, act as SMN2 pre-mRNA splicing modifiers and enhance the quantity of SMN protein produced by this gene. The emergence of new therapies for SMA has increased the demand for good prognostic and pharmacodynamic (response) biomarkers in SMA. This article discusses current molecular diagnostic, prognostic, and pharmacodynamic biomarkers that could be assessed in SMA patients' body fluids. Although various proteomic, genetic, and epigenetic biomarkers have been explored in SMA patients, more research is needed to uncover new prognostic and pharmacodynamic biomarkers (or a combination of biomarkers).
Collapse
Affiliation(s)
- Marija Babić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Maria Banović
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ivana Berečić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Tea Banić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Monika Ulamec
- Department of Pathology, University Clinical Hospital Sestre Milosrdnice Zagreb, 10000 Zagreb, Croatia
- Department of Pathology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Alisa Junaković
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jadranka Sertić
- Department of Medical Chemistry and Biochemistry, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Qi Y, Zhang Y, Li J, Cai M, Zhang B, Yu Z, Li Y, Huang J, Chen X, Song Y, Liu S. S100A family is a group of immune markers associated with poor prognosis and immune cell infiltration in hepatocellular carcinoma. BMC Cancer 2023; 23:637. [PMID: 37420211 DOI: 10.1186/s12885-023-11127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common human cancers with poor prognosis in the world. HCC has become the second leading cause of cancer-related death in China. It is urgent to identify novel biomarker and valid target to effectively diagnose, treat or predict the prognosis of HCC. It has been reported that S100A family is closely related to cell proliferation and migration of different cancers. However, the values of S100As in HCC remain to be further analyzed. METHODS We investigated the transcriptional and translational expression of S100As, as well as the value of this family in HCC patients from the various databases. RESULTS S100A10 was most relevant to HCC. CONCLUSIONS The results from HCC patients' tissues and different cells also confirmed the role of S100A10 in HCC. Furthermore, we proved that S100A10 could influenced the cell proliferation of HCC cells via ANXA2/Akt/mTOR pathway. However, it would appear that the relationship between S100A10 and HCC is complex and requires more research.
Collapse
Affiliation(s)
- Yuchen Qi
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
- Department of Cardiology, Xiangdong Hospital Affiliated to Hunan Normal University, Liling, Hunan Province, 412200, China
| | - Yujing Zhang
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Jianwen Li
- Department of Cardiology, Xiangdong Hospital Affiliated to Hunan Normal University, Liling, Hunan Province, 412200, China
| | - Mengting Cai
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Bo Zhang
- Department of Minimally Invasive Surgery, The Second People's Hospital of Hunan Province, Changsha, Hunan Province, 410005, China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Junkai Huang
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Xu Chen
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Central Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
- Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, 410005, China.
| |
Collapse
|
21
|
de Klerk E, Xiao Y, Emfinger CH, Keller MP, Berrios DI, Loconte V, Ekman AA, White KL, Cardone RL, Kibbey RG, Attie AD, Hebrok M. Loss of ZNF148 enhances insulin secretion in human pancreatic β cells. JCI Insight 2023; 8:157572. [PMID: 37288664 PMCID: PMC10393241 DOI: 10.1172/jci.insight.157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Insulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets. Here, we show that reduction of ZNF148 in human islets, and its deletion in stem cell-derived β cells (SC-β cells), enhances insulin secretion. Transcriptomics of ZNF148-deficient SC-β cells identifies increased expression of annexin and S100 genes whose proteins form tetrameric complexes involved in regulation of insulin vesicle trafficking and exocytosis. ZNF148 in SC-β cells prevents translocation of annexin A2 from the nucleus to its functional place at the cell membrane via direct repression of S100A16 expression. These findings point to ZNF148 as a regulator of annexin-S100 complexes in human β cells and suggest that suppression of ZNF148 may provide a novel therapeutic strategy to enhance insulin secretion.
Collapse
Affiliation(s)
| | - Yini Xiao
- UCSF Diabetes Center, UCSF, San Francisco, California, USA
| | - Christopher H Emfinger
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | | - Valentina Loconte
- Department of Anatomy, School of Medicine, UCSF, San Francisco, California, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Axel A Ekman
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, California, USA
| | - Kate L White
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rebecca L Cardone
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Richard G Kibbey
- Department of Internal Medicine (Endocrinology), Yale University, New Haven, Connecticut, USA
| | - Alan D Attie
- Departments of Biochemistry, Chemistry, and Medicine, University of Wisconsin-Madison, DeLuca Biochemistry Laboratories, Madison, Wisconsin, USA
| | | |
Collapse
|
22
|
Xian Z, Tian J, Zhao Y, Yi Y, Li C, Han J, Zhang Y, Wang Y, Wang L, Liu S, Pan C, Liu C, Wang D, Meng J, Tang X, Wang F, Liang A. Differences in p38-STAT3-S100A11 signaling after the administration of aristolochic acid I and IVa may account for the disparity in their nephrotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154815. [PMID: 37062136 DOI: 10.1016/j.phymed.2023.154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The safety of herbs containing aristolochic acids (AAs) has become a widespread concern. Previous reports indicate that AAs are highly nephrotoxic and carcinogenic, although there are more than 170 analogues of aristolochic acid. Not all AAs have the same degree of nephrotoxicity or carcinogenicity. Previous studies have found that aristolochic acid IVa (AA-IVa), the principal component of AAs within members of the Aristolochiaceae family, especially Asarum, a commonly used herb in China, has essentially no significant nephrotoxicity. However, several studies, including ours, have shown that aristolochic acid I (AA-I) is clearly nephrotoxic. PURPOSE The focus of the study was to elucidate the molecular mechanism responsible for the difference in nephrotoxicity between the AA-I and AA-IVa. STUDY DESIGN/METHOD Mice were administered with AA-I or AA-IVa for 22 weeks through the oral route, followed by a 50-week recovery time. The kidney tissues of mice were extracted at the end of 22 weeks. Pathological examination and proteomic detection (tandem mass tagging (TMT) and phosphorylated proteomics) were performed on the kidney tissue to investigate the key signaling pathways and targets of AAs-induced renal interstitial fibrosis (RIF). The key signaling pathways and targets were verified by Western blot (WB), siRNA transfection, and luciferase assays. RESULTS AA-I caused severe nephrotoxicity, high mortality, and extensive RIF. However, the same AA-IVa dosage exhibited almost no nephrotoxicity and does not trigger RIF. The activation of the p38-STAT3-S100A11 signaling pathway and upregulated expression of α smooth muscle actin (α-SMA) and Bcl2-associated agonist of cell death (Bad) proteins could be the molecular mechanism underlying AA-I-induced nephrotoxicity. On the other hand, AA-IVa did not regulate the activation of the p38-STAT3-S100A11 signaling pathway and had relatively little effect on the expression of α-SMA and Bad. Consequently, the difference in the regulation of p38-STAT3-S100A11 pathway, α-SMA, and Bad proteins between AA-I and AA-IVa may be responsible for the divergence in their level of nephrotoxicity. CONCLUSION This is the first study to reveal the molecular mechanism underlying the difference in nephrotoxicity between AA-I and AA-IVa. Whether STAT3 is activated or not may be the key factor leading to the difference in nephrotoxicity between AA-I and AA-IVa.
Collapse
Affiliation(s)
- Zhong Xian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pathology Department, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenyue Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dunfang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xuan Tang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fang Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
23
|
Sharman K, Patterson NH, Weiss A, Neumann EK, Guiberson ER, Ryan DJ, Gutierrez DB, Spraggins JM, Van de Plas R, Skaar EP, Caprioli RM. Rapid Multivariate Analysis Approach to Explore Differential Spatial Protein Profiles in Tissue. J Proteome Res 2023; 22:1394-1405. [PMID: 35849531 PMCID: PMC9845430 DOI: 10.1021/acs.jproteome.2c00206] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Spatially targeted proteomics analyzes the proteome of specific cell types and functional regions within tissue. While spatial context is often essential to understanding biological processes, interpreting sub-region-specific protein profiles can pose a challenge due to the high-dimensional nature of the data. Here, we develop a multivariate approach for rapid exploration of differential protein profiles acquired from distinct tissue regions and apply it to analyze a published spatially targeted proteomics data set collected from Staphylococcus aureus-infected murine kidney, 4 and 10 days postinfection. The data analysis process rapidly filters high-dimensional proteomic data to reveal relevant differentiating species among hundreds to thousands of measured molecules. We employ principal component analysis (PCA) for dimensionality reduction of protein profiles measured by microliquid extraction surface analysis mass spectrometry. Subsequently, k-means clustering of the PCA-processed data groups samples by chemical similarity. Cluster center interpretation revealed a subset of proteins that differentiate between spatial regions of infection over two time points. These proteins appear involved in tricarboxylic acid metabolomic pathways, calcium-dependent processes, and cytoskeletal organization. Gene ontology analysis further uncovered relationships to tissue damage/repair and calcium-related defense mechanisms. Applying our analysis in infectious disease highlighted differential proteomic changes across abscess regions over time, reflecting the dynamic nature of host-pathogen interactions.
Collapse
Affiliation(s)
- Kavya Sharman
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Program in Chemical & Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Andy Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
| | - Elizabeth K Neumann
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Emma R Guiberson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Ryan
- Pfizer Inc., Chesterfield, Missouri 63017, United States
| | - Danielle B Gutierrez
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
24
|
Li J, Wang L, Zhang X, Wen X, Wei X, Qin Q, Wang S. Grouper annexin A2 affects RGNNV by regulating the host immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108771. [PMID: 37100308 DOI: 10.1016/j.fsi.2023.108771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Annexin A2 (AnxA2) is ubiquitous in vertebrates and has been identified as a multifunctional protein participating in a series of biological processes, such as endocytosis, exocytosis, signal transduction, transcription regulation, and immune responses. However, the function of AnxA2 in fish during virus infection still remains unknown. In this study, we identified and characterized AnxA2 (EcAnxA2) in Epinephelus coioides. EcAnxA2 encoded a 338 amino acids protein with four identical annexin superfamily conserved domains, which shared high identity with other AnxA2 of different species. EcAnxA2 was widely expressed in different tissues of healthy groupers, and its expression was significantly increased in grouper spleen cells infected with red-spotted grouper nervous necrosis virus (RGNNV). Subcellular locatio n analyses showed that EcAnxA2 diffusely distributed in the cytoplasm. After RGNNV infection, the spatial distribution of EcAnxA2 was unaltered, and a few EcAnxA2 co-localized with RGNNV during the late stage of infection. Furthermore, overexpression of EcAnxA2 significantly increased RGNNV infection, and knockdown of EcAnxA2 reduced RGNNV infection. In addition, overexpressed EcAnxA2 reduced the transcription of interferon (IFN)-related and inflammatory factors, including IFN regulatory factor 7 (IRF7), IFN stimulating gene 15 (ISG15), melanoma differentiation related gene 5 (MDA5), MAX interactor 1 (Mxi1) laboratory of genetics and physiology 2 (LGP2), IFN induced 35 kDa protein (IFP35), tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin 6 (IL-6). The transcription of these genes was up-regulated when EcAnxA2 was inhibited by siRNA. Taken together, our results showed that EcAnxA2 affected RGNNV infection by down-regulating the host immune response in groupers, which provided new insights into the roles of AnxA2 in fish during virus infection.
Collapse
Affiliation(s)
- Junrong Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaozhi Wen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyan Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Li B, Zhu W, Shi D, Che H, Lyu Q, Jiang B. New progress with calcium-binding protein S100A16 in digestive system disease. Expert Rev Gastroenterol Hepatol 2023; 17:263-272. [PMID: 36718596 DOI: 10.1080/17474124.2023.2174968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION This review summarizes and analyzes the abnormal expression and mechanism of S100A16 in digestive system diseases, which is expected to provide new ideas and methods for adjuvant treatment and prognosis evaluation of digestive system diseases. AREAS COVERED Based on original publications found in database systems (PubMed, Cochrane), we introduce the mechanism and research progress of S100A16 in digestive system tumors, inflammatory bowel disease and fatty liver. EXPERT OPINION S100A16 is closely related to the proliferation, migration, and invasion of digestive system tumor cells. Further, it plays an important role in inflammatory bowel disease and fatty liver.
Collapse
Affiliation(s)
- Binbin Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wanqing Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Di Shi
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Huilin Che
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qinglan Lyu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| | - Bimei Jiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
26
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
27
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
28
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
29
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
30
|
Müller M, Eghbalian R, Boeckel JN, Frese KS, Haas J, Kayvanpour E, Sedaghat-Hamedani F, Lackner MK, Tugrul OF, Ruppert T, Tappu R, Martins Bordalo D, Kneuer JM, Piekarek A, Herch S, Schudy S, Keller A, Grammes N, Bischof C, Klinke A, Cardoso-Moreira M, Kaessmann H, Katus HA, Frey N, Steinmetz LM, Meder B. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 2022; 13:6209. [PMID: 36266340 PMCID: PMC9585074 DOI: 10.1038/s41467-022-33658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.
Collapse
Affiliation(s)
- Marion Müller
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Rose Eghbalian
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Karen S Frese
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Elham Kayvanpour
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Maximilian K Lackner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Oguz F Tugrul
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at ZMBH, Heidelberg University, Heidelberg, Germany
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Rewati Tappu
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jasmin M Kneuer
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Annika Piekarek
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sabine Herch
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schudy
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Nadja Grammes
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Cornelius Bischof
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Henrik Kaessmann
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Benjamin Meder
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany.
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
31
|
Wang H, Mao X, Ye L, Cheng H, Dai X. The Role of the S100 Protein Family in Glioma. J Cancer 2022; 13:3022-3030. [PMID: 36046652 PMCID: PMC9414020 DOI: 10.7150/jca.73365] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
The S100 protein family consists of 25 members and share a common structure defined in part by the Ca2+ binding EF-hand motif. Multiple members' dysregulated expression is associated with progression, diagnosis and prognosis in a broad range of diseases, especially in tumors. They could exert wide range of functions both in intracellular and extracellular, including cell proliferation, cell differentiation, cell motility, enzyme activities, immune responses, cytoskeleton dynamics, Ca2+ homeostasis and angiogenesis. Gliomas are the most prevalent primary tumors of the brain and spinal cord with multiple subtypes that are diagnosed and classified based on histopathology. Up to now the role of several S100 proteins in gliomas have been explored. S100A8, S100A9 and S100B were highly expression in serum and may present as a marker correlated with survival and prognosis of glioma patients. Individual member was confirmed as a new regulator of glioma stem cells (GSCs) and a mediator of mesenchymal transition in glioblastoma (GBM). Additionally, several members up- or downregulation have been reported to involve in the development of glioma by interacting with signaling pathways and target proteins. Here we detail S100 proteins that are associated with glioma, and discuss their potential effects on progression, diagnosis and prognosis.
Collapse
Affiliation(s)
- Haopeng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
32
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
33
|
Mokhtar DM, Sayed RKA, Zaccone G, Albano M, Hussein MT. Ependymal and Neural Stem Cells of Adult Molly Fish ( Poecilia sphenops, Valenciennes, 1846) Brain: Histomorphometry, Immunohistochemical, and Ultrastructural Studies. Cells 2022; 11:2659. [PMID: 36078068 PMCID: PMC9455025 DOI: 10.3390/cells11172659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
This study was conducted on 16 adult specimens of molly fish (Poecilia sphenops) to investigate ependymal cells (ECs) and their role in neurogenesis using ultrastructural examination and immunohistochemistry. The ECs lined the ventral and lateral surfaces of the optic ventricle and their processes extended through the tectal laminae and ended at the surface of the tectum as a subpial end-foot. Two cell types of ECs were identified: cuboidal non-ciliated (5.68 ± 0.84/100 μm2) and columnar ciliated (EC3.22 ± 0.71/100 μm2). Immunohistochemical analysis revealed two types of GFAP immunoreactive cells: ECs and astrocytes. The ECs showed the expression of IL-1β, APG5, and Nfr2. Moreover, ECs showed immunostaining for myostatin, S100, and SOX9 in their cytoplasmic processes. The proliferative activity of the neighboring stem cells was also distinct. The most interesting finding in this study was the glia-neuron interaction, where the processes of ECs met the progenitor neuronal cells in the ependymal area of the ventricular wall. These cells showed bundles of intermediate filaments in their processes and basal poles and were connected by desmosomes, followed by gap junctions. Many membrane-bounded vesicles could be demonstrated on the surface of the ciliated ECs that contained neurosecretion. The abluminal and lateral cell surfaces of ECs showed pinocytotic activities with many coated vesicles, while their apical cytoplasm contained centrioles. The occurrence of stem cells in close position to the ECs, and the presence of bundles of generating axons in direct contact with these stem cells indicate the role of ECs in neurogenesis. The TEM results revealed the presence of neural stem cells in a close position to the ECs, in addition to the presence of bundles of generating axons in direct contact with these stem cells. The present study indicates the role of ECs in neurogenesis.
Collapse
Affiliation(s)
- Doaa M. Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut 71526, Egypt
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Giacomo Zaccone
- Department of Veterinary Sciences, Polo Universitario dell’Annunziata, University of Messina, 98168 Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Manal T. Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut 71526, Egypt
| |
Collapse
|
34
|
Jurewicz E, Filipek A. Ca2+- binding proteins of the S100 family in preeclampsia. Placenta 2022; 127:43-51. [DOI: 10.1016/j.placenta.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
|
35
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
36
|
Picone S, Ritieni A, Graziani G, Paolillo P, D'Adamo E, Botondi V, Panichi D, Torresi S, David D, di Ludovico A, Chiarelli F, Gazzolo D. Lutein levels in arterial cord blood correlate with neurotrophic calcium binding S100B protein in healthy preterm and term newborns. Ital J Pediatr 2022; 48:80. [PMID: 35643585 PMCID: PMC9148452 DOI: 10.1186/s13052-022-01276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occurring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still debated. We investigated whether LT cord blood concentrations correlate with S100B in a cohort of preterm and term healthy newborns. METHODS We conducted a prospective study on the distribution of LT and S100B in arterial cord blood of healthy preterm (n = 50) and term (n = 50) newborns. RESULTS S100B and LT showed a pattern of concentration characterized by higher levels (P < 0.01, for all) at 33-36 weeks gestation (GA) followed by a progressive decrease (P < 0.01, for all) from 37 onwards with a dip at term. Both S100B and LT were gender-dependent with significantly (P < 0.01, for all) higher levels in females in preterm and term groups. S100B (R = 0.68; P < 0.001) and LT (R = 0.40; P = 0.005) correlated with GA at sampling. A positive significant correlation (R = 0.87; P < 0.001) between S100B and LT was found. CONCLUSIONS The present data showing a correlation between S100B and LT supports the notion of a LT trophic role in the CNS. Further investigations in high-risk infants are needed to elucidate LT involvement in the pathophysiological cascade of events leading to CNS development and damage.
Collapse
Affiliation(s)
- Simonetta Picone
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino General Hospital, Rome, Italy
| | - Alberto Ritieni
- Department of Pharmacy, Federico II Naples University, Naples, Italy
| | - Giulia Graziani
- Department of Pharmacy, Federico II Naples University, Naples, Italy
| | - Piermichele Paolillo
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino General Hospital, Rome, Italy
| | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Valentina Botondi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Daniele Panichi
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Sara Torresi
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Daniela David
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy.
| |
Collapse
|
37
|
Qi Y, Zhao T, Li R, Han M. Macrophage-Secreted S100A4 Supports Breast Cancer Metastasis by Remodeling the Extracellular Matrix in the Premetastatic Niche. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9895504. [PMID: 35496059 PMCID: PMC9046007 DOI: 10.1155/2022/9895504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 12/03/2022]
Abstract
Metastasis is the major cause of cancer-related mortalities. A tumor-supportive microenvironment, also known as the premetastatic niche at secondary tumor sites, plays a crucial role in metastasis. Remodeling of the extracellular matrix (ECM) is essential for premetastatic niche formation, especially for circulating tumor cell colonization. However, the underlying molecular mechanism that contributes to this effect remains unclear. Here, we developed a lung metastasis model with 4T1 breast cancer cells and found that the metastasis critically depended on the early recruitment of macrophages to the lung. Disruption of macrophage recruitment reduced fibroblast activation and lung metastasis. Furthermore, we identified the secreted protein S100A4, which is produced by M2 macrophages and participates in fibroblast activation and ECM protein deposition via the ERK signaling pathway. Collectively, these results indicate that recruiting S100A4-expressing inflammatory macrophages plays a vital role in ECM remodeling in the premetastatic niche and may act as a potential therapeutic target for breast cancer lung metastasis.
Collapse
Affiliation(s)
- Yana Qi
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Tingting Zhao
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Ranran Li
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| | - Mingyong Han
- Cancer Therapy and Research Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong, China
| |
Collapse
|
38
|
Cheng M, Shi YL, Shang PP, Chen YJ, Xu YD. Inhibitory Effect of S100A11 on Airway Smooth Muscle Contraction and Airway Hyperresponsiveness. Curr Med Sci 2022; 42:333-340. [PMID: 35419674 DOI: 10.1007/s11596-022-2559-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE S100A11 is a member of the S100 calcium-binding protein family and has intracellular and extracellular regulatory activities. We previously reported that S100A11 was differentially expressed in the respiratory tracts of asthmatic rats as compared with normal controls. Here, we aimed to analyze the potential of S100A11 to regulate both allergen-induced airway hyperresponsiveness (AHR) as well as acetylcholine (ACh)-induced hypercontractility of airway smooth muscle (ASM) and contraction of ASM cells (ASMCs). METHODS Purified recombinant rat S100A11 protein (rS100A11) was administered to OVA-sensitized and challenged rats and then the AHR of animals was measured. The relaxation effects of rS100A11 on ASM were detected using isolated tracheal rings and primary ASMCs. The expression levels of un-phosphorylated myosin light chain (MLC) and phosphorylated MLC in ASMCs were analyzed using Western blotting. RESULTS Treatment with rS100A11 attenuated AHR in the rats. ASM contraction assays showed that rS100A11 reduced the contractile responses of isolated tracheal rings and primary ASMCs treated with ACh. In addition, rS100A11 markedly decreased the ACh-induced phosphorylation of the myosin light chain in ASMCs. Moreover, rS100A11 also suppressed the contractile response of tracheal rings in calcium-free buffer medium. CONCLUSION These results indicate that S100A11 protein can relieve AHR by relaxing ASM independently of extracellular calcium. Our data support the idea that S100A11 is a potential therapeutic target for reducing airway resistance in asthma patients.
Collapse
Affiliation(s)
- Mi Cheng
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Pan-Pan Shang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| |
Collapse
|
39
|
The S100A7 nuclear interactors in autoimmune diseases: a coevolutionary study in mammals. Immunogenetics 2022; 74:271-284. [PMID: 35174412 DOI: 10.1007/s00251-022-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/10/2022] [Indexed: 11/05/2022]
Abstract
S100A7, a member of the S100A family of Ca2+-binding proteins, is considered a key effector in immune response. In particular, S100A7 dysregulation has been associated with several diseases, including autoimmune disorders. At the nuclear level, S100A7 interacts with several protein-binding partners which are involved in transcriptional regulation and DNA repair. By using the BioGRID and GAAD databases, S100A7 nuclear interactors with a putative involvement in autoimmune diseases were retrieved. We selected fatty acid-binding protein 5 (FABP5), autoimmune regulator (AIRE), cystic fibrosis transmembrane conductance regulator (CFTR), chromodomain helicase DNA-binding protein 4 (CHD4), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), histone deacetylase 2 (HDAC2), v-myc avian myelocytomatosis viral oncogene homolog (MYC), protection of telomeres protein 1 (POT1), telomeric repeat-binding factor (NIMA-interacting) 1 (TERF1), telomeric repeat-binding factor 2 (TERF2), and Zic family member 1 (ZIC1). Linear correlation coefficients between interprotein distances were calculated with MirrorTree. Coevolution clusters were also identified with the use of a recent version of the Blocks in Sequences (BIS2) algorithm implemented in the BIS2Analyzer web server. Analysis of pair positions identified interprotein coevolving clusters between S100A7 and the binding partners CFTR and TERF1. Such findings could guide further analysis to better elucidate the function of S100A7 and its binding partners and to design drugs targeting for these molecules in autoimmune diseases.
Collapse
|
40
|
Kazakov AS, Sofin AD, Avkhacheva NV, Deryusheva EI, Rastrygina VA, Permyakova ME, Uversky VN, Permyakov EA, Permyakov SE. Interferon-β Activity Is Affected by S100B Protein. Int J Mol Sci 2022; 23:ijms23041997. [PMID: 35216109 PMCID: PMC8877046 DOI: 10.3390/ijms23041997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Alexander D. Sofin
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Nadezhda V. Avkhacheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
41
|
Wu YY, Li XF, Wu S, Niu XN, Yin SQ, Huang C, Li J. Role of the S100 protein family in rheumatoid arthritis. Arthritis Res Ther 2022; 24:35. [PMID: 35101111 PMCID: PMC8802512 DOI: 10.1186/s13075-022-02727-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic autoimmune disease characterized by synovial hyperplasia, inflammatory cell infiltration, and proliferation of inflammatory tissue (angiogranuloma). The destruction of joints and surrounding tissues eventually causes joint deformities and dysfunction or even loss. The S100 protein family is one of the biggest subtribes in the calcium-binding protein family and has more than 20 members. The overexpression of most S100 proteins in rheumatoid arthritis is closely related to its pathogenesis. This paper reviews the relationship between S100 proteins and the occurrence and development of rheumatoid arthritis. It will provide insights into the development of new clinical diagnostic markers and therapeutic targets for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.,Postdoctoral Station of Clinical Medicine of Anhui Medical University, Hefei, Anhui, China
| | - Sha Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xue-Ni Niu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Su-Qin Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
42
|
Lapergola G, Graziosi A, D'Adamo E, Brindisino P, Ferrari M, Romanelli A, Strozzi M, Libener R, Gavilanes DAW, Maconi A, Satriano A, Varrica A, Gazzolo D. S100B in cardiac surgery brain monitoring: friend or foe? Clin Chem Lab Med 2022; 60:317-331. [PMID: 35001583 DOI: 10.1515/cclm-2021-1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
Recent advances in perioperative management of adult and pediatric patients requiring open heart surgery (OHS) and cardiopulmonary bypass (CPB) for cardiac and/or congenital heart diseases repair allowed a significant reduction in the mortality rate. Conversely morbidity rate pattern has a flat trend. Perioperative period is crucial since OHS and CPB are widely accepted as a deliberate hypoxic-ischemic reperfusion damage representing the cost to pay at a time when standard of care monitoring procedures can be silent or unavailable. In this respect, the measurement of neuro-biomarkers (NB), able to detect at early stage perioperative brain damage could be especially useful. In the last decade, among a series of NB, S100B protein has been investigated. After the first promising results, supporting the usefulness of the protein as predictor of short/long term adverse neurological outcome, the protein has been progressively abandoned due to a series of limitations. In the present review we offer an up-dated overview of the main S100B pros and cons in the peri-operative monitoring of adult and pediatric patients.
Collapse
Affiliation(s)
| | | | - Ebe D'Adamo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | | | | | - Anna Romanelli
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| | - Mariachiara Strozzi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Roberta Libener
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Danilo A W Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University, Maastricht, The Netherlands
| | - Antonio Maconi
- Department of Maternal, Fetal and Neonatal Medicine, ASO SS Antonio, Biagio and C. Arrigo, Alessandria, Italy
| | - Angela Satriano
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, Milan, Italy
| | - Alessandro Varrica
- Department of Pediatric Cardiac Surgery, IRCCS San Donato Milanese Hospital, Milan, Italy
| | - Diego Gazzolo
- Neonatal Intensive Care Unit, G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
43
|
Han F, Zhang L, Liao S, Zhang Y, Qian L, Hou F, Gong J, Lai M, Zhang H. The interaction between S100A2 and KPNA2 mediates NFYA nuclear import and is a novel therapeutic target for colorectal cancer metastasis. Oncogene 2022; 41:657-670. [PMID: 34802034 DOI: 10.1038/s41388-021-02116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
Nucleocytoplasmic transport of proteins is disrupted and dysregulated in cancer cells. Nuclear pore complexes and cargo proteins are two main transportation regulators. However, the mechanism regulating nucleocytoplasmic transport in cancer remains elusive. Here, we identified a S100A2/KPNA2 cotransport complex that transports the tumor-associated transcription factor NFYA in colorectal cancer (CRC). Through the S100A2/KNPA2 complex, depending on its interaction with S100A2, NFYA is transported to the nucleus and inhibits the transcriptional activity of E-cadherin, which in turn promotes CRC metastasis. Targeting the S100A2/KPNA2 binding sites with the specific inhibitor delanzomib is a potential therapeutic approach for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Lei Zhang
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shaoxia Liao
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Lili Qian
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Feijun Hou
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Gong
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
44
|
Zhang W, Liu J, Li X, Zheng Y, Chen L, Wang D, Foda MF, Ma Z, Zhao Y, Han H. Precise Chemodynamic Therapy of Cancer by Trifunctional Bacterium-Based Nanozymes. ACS NANO 2021; 15:19321-19333. [PMID: 34851608 DOI: 10.1021/acsnano.1c05605] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemodynamic therapy (CDT) destroys cancer cells by converting H2O2 or O2 into reactive oxygen species (ROS), but its therapeutic efficacy is restricted by the antioxidant capacity of tumor. Previous solutions focused on strengthening the nanodrugs with the ability to increase ROS production or weaken the antioxidant capacity of cancer cells. Conversely, we here develop a mild nanodrug with negligible side effects. Specifically, the Au@Pt nanozyme decorated on a bacterial surface (Bac-Au@Pt) is reported to achieve precise CDT. Due to the tumor targeting ability of bacteria and catalytic property of Au@Pt nanozyme under acidic conditions, this nanosystem can release ROS to tumor cells effectively. In addition, the interferon gamma released by T cells specifically decreases the intracellular reductants in tumor cells, while having no obvious effect on normal cells. Therefore, a low dose of Bac-Au@Pt achieves a satisfactory therapeutic efficacy to tumor cells and is nontoxic to normal cells even at their acidic components. This nanosystem enables CDT and immunotherapy to mutually benefit and improve by each other, providing a promising strategy to achieve high anticancer efficacy even with a low dose usage.
Collapse
Affiliation(s)
- Weiyun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xuyu Li
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Lianfu Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, PR China
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Mohamed Frahat Foda
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
45
|
Moreira GG, Cantrelle FX, Quezada A, Carvalho FS, Cristóvão JS, Sengupta U, Puangmalai N, Carapeto AP, Rodrigues MS, Cardoso I, Fritz G, Herrera F, Kayed R, Landrieu I, Gomes CM. Dynamic interactions and Ca 2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nat Commun 2021; 12:6292. [PMID: 34725360 PMCID: PMC8560819 DOI: 10.1038/s41467-021-26584-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
The microtubule-associated protein tau is implicated in the formation of oligomers and fibrillar aggregates that evade proteostasis control and spread from cell-to-cell. Tau pathology is accompanied by sustained neuroinflammation and, while the release of alarmin mediators aggravates disease at late stages, early inflammatory responses encompass protective functions. This is the case of the Ca2+-binding S100B protein, an astrocytic alarmin which is augmented in AD and which has been recently implicated as a proteostasis regulator, acting over amyloid β aggregation. Here we report the activity of S100B as a suppressor of tau aggregation and seeding, operating at sub-stoichiometric conditions. We show that S100B interacts with tau in living cells even in microtubule-destabilizing conditions. Structural analysis revealed that tau undergoes dynamic interactions with S100B, in a Ca2+-dependent manner, notably with the aggregation prone repeat segments at the microtubule binding regions. This interaction involves contacts of tau with a cleft formed at the interface of the S100B dimer. Kinetic and mechanistic analysis revealed that S100B inhibits the aggregation of both full-length tau and of the microtubule binding domain, and that this proceeds through effects over primary and secondary nucleation, as confirmed by seeding assays and direct observation of S100B binding to tau oligomers and fibrils. In agreement with a role as an extracellular chaperone and its accumulation near tau positive inclusions, we show that S100B blocks proteopathic tau seeding. Together, our findings establish tau as a client of the S100B chaperone, providing evidence for neuro-protective functions of this inflammatory mediator across different tauopathies. The calcium binding protein S100B is an abundantly expressed protein in the brain and has neuro-protective functions by inhibiting Aβ aggregation and metal ion toxicity. Here, the authors combine cell biology and biochemical experiments with chemical kinetics and NMR measurements and show that S100B protein is an extracellular Tau chaperone and further characterize the interactions between S100B and Tau.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Andrea Quezada
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa S Carvalho
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana S Cristóvão
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ana P Carapeto
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mário S Rodrigues
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Isabel Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-013, Porto, Portugal
| | - Güenter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, 70599, Germany
| | - Federico Herrera
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd, Medical Research Building, Room 10.138C, Galveston, TX, 77555-1045, USA.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, F-59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Cláudio M Gomes
- Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal. .,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
46
|
Ecsédi P, Gógl G, Nyitray L. Studying the Structures of Relaxed and Fuzzy Interactions: The Diverse World of S100 Complexes. Front Mol Biosci 2021; 8:749052. [PMID: 34708078 PMCID: PMC8542695 DOI: 10.3389/fmolb.2021.749052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
S100 proteins are small, dimeric, Ca2+-binding proteins of considerable interest due to their associations with cancer and rheumatic and neurodegenerative diseases. They control the functions of numerous proteins by forming protein–protein complexes with them. Several of these complexes were found to display “fuzzy” properties. Examining these highly flexible interactions, however, is a difficult task, especially from a structural biology point of view. Here, we summarize the available in vitro techniques that can be deployed to obtain structural information about these dynamic complexes. We also review the current state of knowledge about the structures of S100 complexes, focusing on their often-asymmetric nature.
Collapse
Affiliation(s)
- Péter Ecsédi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gergő Gógl
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
47
|
Abstract
Objective To investigate the clinical significance of serum S100 calcium-binding protein A10 (S100A10) levels in lung cancer. Methods This prospective study enrolled patients with lung cancer, patients with benign lung nodules and healthy control subjects. Serum S100A10 levels and three biomarkers were measured and compared between the groups. Associations between serum S100A10 and clinical characteristics in patients with lung cancer were investigated. The diagnostic efficacy of serum S100A10 and carcinoembryonic antigen for lung cancer was calculated. Results The study enrolled 82 patients with lung cancer, 21 with benign lung nodules and 50 healthy controls. Serum S100A10 levels were significantly higher in patients with lung cancer compared with patients with benign lung nodules and healthy control subjects. Serum S100A10 levels of patients with advanced lung cancer were significantly higher than those with early stage disease. Patients with lymph node metastases had significantly higher serum S100A10 levels than patients without lymph node metastases. The cut-off serum S100A10 value for lung cancer detection was 1.34 ng/ml, which had a sensitivity of 48.2%, a specificity of 76.2% and an area under the curve of 0.63. Conclusion Serum S100A10 was significantly correlated with disease stage and lymph node metastasis. It has the potential to be a tumour biomarker for lung cancer.
Collapse
Affiliation(s)
- Yu-Lei Hou
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Hong Zhang
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Bao Guo
- Department of Cardiothoracic Surgery, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Chen
- Clinical Laboratories, 117972The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Wu Y, Li H, Qin Y. S100A4 promotes the progression of lipopolysaccharide-induced acute epididymitis in mice†. Biol Reprod 2021; 102:1213-1224. [PMID: 32072170 DOI: 10.1093/biolre/ioaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022] Open
Abstract
S100A4 has been suggested to be a critical regulator of tumor metastasis and is implicated in the progression of inflammation. The aim of this study is to investigate the expression and possible role of S100A4 in epididymitis. Using a mouse model of epididymitis induced by the injection of lipopolysaccharide (LPS) in the deferent duct, we found that LPS administration induced an upregulation of S100a4 transcription (P < 0.05) and a recruitment of S100A4 positive cells in the epididymal interstitium of wild type (WT) mice. Co-immunofluorescence showed that S100A4 was mainly expressed by granulocytes, CD4 lymphocytes, and macrophages. Deficiency of S100A4 reduced epididymal pathological reaction and the mRNA levels of the pro-inflammatory cytokines IL-1β and TNF-α (P < 0.01), suggesting that S100A4 promotes the progression of epididymitis. Furthermore, S100A4 deficiency alleviated the decline of sperm motility and rectified the abnormal expression of sperm membrane protein AMAD3, which suggested that in the progression of epididymitis, S100A4 aggravates the damage to sperm vitality. In addition, both Ki-67 marked cell proliferation and transferase-mediated dUTP-biotin nick end labeling detected cell apoptosis were reduced in S100a4-/- mice compared with WT mice after LPS treatment, indicating that S100A4 promotes both cell proliferation and cell apoptosis in epididymitis. Overall, these results demonstrate that S100A4 promotes the progression of LPS-induced epididymitis and facilitates a decline in sperm vitality, and its function may be related to the process of cell proliferation and apoptosis during inflammation.
Collapse
Affiliation(s)
- Yingjie Wu
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Haoran Li
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yinghe Qin
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
49
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
No association between children's febrile seizures and S100B protein levels: A meta-analysis. Seizure 2021; 92:158-165. [PMID: 34525431 DOI: 10.1016/j.seizure.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND In recent years, studies have examined the relationship between febrile seizures in children and S100B protein with contradictory results. We systematically evaluated the relationship between children's febrile seizures and S100B protein levels. METHODS We used Stata 11.0 software to conduct a meta-analysis of the included studies published in The China National Knowledge Infrastructure, VIP, Wanfang, Chinese Biology Medicine Disc, PubMed, Web of Science, Cochrane Library, and EMBASE databases as well as clinical trial registries in China, Europe, and the United States. RESULTS Six case-control studies were finally included in the meta-analysis. The results of the meta-analysis showed that the serum S100B protein level of children with febrile seizures was 0.72 higher than the serum S100B protein level of healthy children (Z=6.85, 95% CI 0.52∼0.93, P<0.05). There was no difference in the serum S100B protein level between the children with febrile seizures and children with fever but without seizures (Z=0.70, 95% CI -0.20∼0.41, P>0.05). CONCLUSION The level of serum S100B protein in children with febrile seizures was higher than that of healthy children and was statistically significant, whereas the increase in children with higher fever without seizures was not statistically significant. Because there was only a difference in serum S100B protein levels between children with febrile seizures and healthy children but not in febrile children without seizures as the strongest confounding factors for the results, febrile seizures do not elevate the level of S100B protein levels any more than fever.
Collapse
|