1
|
Sun S, Sun L, Zhou X, Wu C, Wang R, Lin SH, Kuang J. Phosphorylation-Dependent Activation of the ESCRT Function of ALIX in Cytokinetic Abscission and Retroviral Budding. Dev Cell 2016; 36:331-43. [PMID: 26859355 DOI: 10.1016/j.devcel.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 11/08/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022]
Abstract
The modular adaptor protein ALIX is a key player in multiple ESCRT-III-mediated membrane remodeling processes. ALIX is normally present in a closed conformation due to an intramolecular interaction that renders ALIX unable to perform its ESCRT functions. Here we demonstrate that M phase-specific phosphorylation of the intramolecular interaction site within the proline-rich domain (PRD) of ALIX transforms cytosolic ALIX from closed to open conformation. Defining the role of this mechanism of ALIX regulation in three classical ESCRT-mediated processes revealed that phosphorylation of the intramolecular interaction site in the PRD is required for ALIX to function in cytokinetic abscission and retroviral budding, but not in multivesicular body sorting of activated epidermal growth factor receptor. Thus, phosphorylation of the intramolecular interaction site in the PRD is one of the major mechanisms that activates the ESCRT function of ALIX.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Le Sun
- AbMax Biotechnology, Beijing 100085, China
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Chuanfen Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sue-Hwa Lin
- Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proc Natl Acad Sci U S A 2015; 112:E5543-51. [PMID: 26324913 DOI: 10.1073/pnas.1510516112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.
Collapse
|
3
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
4
|
EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012; 2012:657942. [PMID: 22500103 PMCID: PMC3303925 DOI: 10.1155/2012/657942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
Collapse
|
5
|
Abstract
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.
Collapse
Affiliation(s)
- Xuefeng Ren
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Kushima S, Mammadova G, Mahbub Hasan AKM, Fukami Y, Sato KI. Characterization of Lipovitellin 2 as a Tyrosine-Phosphorylated Protein in Oocytes, Eggs and Early Embryos ofXenopus laevis. Zoolog Sci 2011; 28:550-9. [DOI: 10.2108/zsj.28.550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Caballe A, Martin-Serrano J. ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 2011; 12:1318-26. [PMID: 21722282 DOI: 10.1111/j.1600-0854.2011.01244.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is a set of cellular protein complexes required for at least three topologically equivalent membrane scission events, namely multivesicular body (MVB) formation, retroviral particle release and midbody abscission during cytokinesis. Recently, several studies have explored the mechanism by which the core ESCRT-III subunits mediate membrane scission and might be differentially required according to the functions of the pathway. In this review, we discuss the links between the ESCRT machinery and cytokinesis, with special focus on abscission initiation and regulation.
Collapse
Affiliation(s)
- Anna Caballe
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
8
|
Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. Biochem J 2011; 432:525-34. [PMID: 20929444 DOI: 10.1042/bj20100862] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptor protein ALIX [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] links retroviruses to ESCRT (endosomal sorting complex required for transport) machinery during retroviral budding. This function of ALIX requires its interaction with the ESCRT-III component CHMP4 (charged multivesicular body protein 4) at the N-terminal Bro1 domain and retroviral Gag proteins at the middle V domain. Since cytoplasmic or recombinant ALIX is unable to interact with CHMP4 or retroviral Gag proteins under non-denaturing conditions, we constructed ALIX truncations and mutations to define the intrinsic mechanism through which ALIX interactions with these partner proteins are prohibited. Our results demonstrate that an intramolecular interaction between Patch 2 in the Bro1 domain and the TSG101 (tumour susceptibility gene 101 protein)-docking site in the proline-rich domain locks ALIX into a closed conformation that renders ALIX unable to interact with CHMP4 and retroviral Gag proteins. Relieving the intramolecular interaction of ALIX, by ectopically expressing a binding partner for one of the intramolecular interaction sites or by deleting one of these sites, promotes ALIX interaction with these partner proteins and facilitates ALIX association with the membrane. Ectopic expression of a GFP (green fluorescent protein)-ALIX mutant with a constitutively open conformation, but not the wild-type protein, increases EIAV (equine infectious anaemia virus) budding from HEK (human embryonic kidney)-293 cells. These findings predict that relieving the autoinhibitory intramolecular interaction of ALIX is a critical step for ALIX to participate in retroviral budding.
Collapse
|
9
|
Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Biochem J 2010; 431:93-102. [DOI: 10.1042/bj20100314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SFKs (Src family kinases) are central regulators of many signalling pathways. Their functions are tightly regulated through SH (Src homology) domain-mediated protein–protein interactions. A yeast two-hybrid screen using SH3 domains as bait identified Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X] as a novel Hck (haemopoietic cell kinase) SH3 domain interactor. The Alix–Hck-SH3 interaction was confirmed in vitro by a GST (glutathione transferase) pull-down assay and in intact cells by a mammalian two-hybrid assay. Furthermore, the interaction was demonstrated to be biologically relevant in cells. Through biophysical experiments, we then identified the PRR (proline-rich region) motif of Alix that binds Hck-SH3 and determined a dissociation constant of 34.5 μM. Heteronuclear NMR spectroscopy experiments were used to map the Hck-SH3 residues that interact with an ALIX construct containing the V and PRR domains or with the minimum identified interacting motif. Finally, SAXS (small-angle X-ray scattering) analysis showed that the N-terminal PRR of Alix is unfolded, at least before Hck-SH3 recognition. These results indicate that residues outside the canonical PxxP motif of Alix enhance its affinity and selectivity towards Hck-SH3. The structural framework of the Hck–Alix interaction will help to clarify how Hck and Alix assist during virus budding and cell-surface receptor regulation.
Collapse
|
10
|
The CHMP4b- and Src-docking sites in the Bro1 domain are autoinhibited in the native state of Alix. Biochem J 2009; 418:277-84. [PMID: 19016654 DOI: 10.1042/bj20081388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Bro1 domain of Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], which plays important roles in endosomal sorting and multiple ESCRT (endosomal sorting complex required for transport)-linked processes, contains the docking sites for the ESCRT-III component CHMP4b (charged multivesicular body protein 4b) and the regulatory tyrosine kinase, Src. Although the structural bases for these docking sites have been defined by crystallography studies, it has not been determined whether these sites are available in the native state of Alix. In the present study, we demonstrate that these two docking sites are unavailable in recombinant Alix under native conditions and that their availabilities can be induced by detergents. In HEK (human embryonic kidney)-293 cell lysates, these two docking sites are not available in cytosolic Alix, but are available in membrane-bound Alix. These findings show that the native state of Alix does not have a functional Bro1 domain and predict that Alix's involvement in endosomal sorting and other ESCRT-linked processes requires an activation step that relieves the autoinhibition of the Bro1 domain.
Collapse
|
11
|
The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody. Biochem J 2008; 414:215-20. [PMID: 18476810 DOI: 10.1042/bj20080642] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], a component of the endosomal sorting machinery, contains a three-dimensional docking site for HIV-1 p6(Gag) or EIAV (equine infectious anaemia virus) p9(Gag), and binding of the viral protein to this docking site allows the virus to hijack the host endosomal sorting machinery for budding from the plasma membrane. In the present study, we identified a monoclonal antibody that specifically recognizes the docking site for p6(Gag)/p9(Gag) and we used this antibody to probe the accessibility of the docking site in Alix. Our results show that the docking site is not available in cytosolic or recombinant Alix under native conditions and becomes available upon addition of the detergent Nonidet P40 or SDS. In HEK (human embryonic kidney)-293 cell lysates, an active p6(Gag)/p9(Gag) docking site is specifically available in Alix from the membrane fraction. The findings of the present study demonstrate that formation or exposure of the p6(Gag)/p9(Gag) docking site in Alix is a regulated event and that Alix association with the membrane may play a positive role in this process.
Collapse
|
12
|
Pan S, Wang R, Zhou X, Corvera J, Kloc M, Sifers R, Gallick GE, Lin SH, Kuang J. Extracellular Alix regulates integrin-mediated cell adhesions and extracellular matrix assembly. EMBO J 2008; 27:2077-90. [PMID: 18636094 DOI: 10.1038/emboj.2008.134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 06/19/2008] [Indexed: 01/12/2023] Open
Abstract
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in alpha5beta1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes alpha5beta1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605-709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.
Collapse
Affiliation(s)
- Shujuan Pan
- Department of Experimental Therapeutics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sato Y, Taoka M, Sugiyama N, Kubo KI, Fuchigami T, Asada A, Saito T, Nakajima K, Isobe T, Hisanaga SI. Regulation of the interaction of Disabled-1 with CIN85 by phosphorylation with Cyclin-dependent kinase 5. Genes Cells 2007; 12:1315-27. [DOI: 10.1111/j.1365-2443.2007.01139.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Kessler BM, Fortunati E, Melis M, Pals CEGM, Clevers H, Maurice MM. Proteome changes induced by knock-down of the deubiquitylating enzyme HAUSP/USP7. J Proteome Res 2007; 6:4163-72. [PMID: 17927229 DOI: 10.1021/pr0702161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modification of proteins by ubiquitin plays a major role in a broad array of biological processes. Reversal of this process through deubiquitylation likely represents an important regulatory step in the maintenance of cellular homeostasis. However, the biological functions of deubiquitylating enzymes still remain poorly characterized. To investigate the biological role of the herpes virus-associated ubiquitin-specific protease HAUSP/USP7, we have generated stably transfected cells carrying inducible shRNA expression plasmids. USP7 mRNA and protein were strongly down-regulated 48-72 h after shRNA induction. We used a selected clone to compare whole-cell proteomes by 2D-SDS-PAGE before and after knockdown of USP7. Alterations in 36 proteins were detected and their identities were revealed by mass spectrometry analysis. Components of the replication machinery, DNA/RNA binding proteins, enzymes involved in apoptosis and metabolism were found to be down-regulated upon USP7 removal, representing proteins that are either more rapidly turned over or synthesized less efficiently in the absence of USP7-mediated deubiquitylation. Alix/HP95, a protein implicated in endosomal organization and virus budding, was confirmed by immunoblotting to become down-regulated when USP7 levels were reduced. Our results extend the current list of USP7-dependent biological processes and suggest a role for this enzyme not only in transcriptional regulation but also in DNA replication, apoptosis, and possibly endosomal organization.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
15
|
Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP. Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 2007; 128:841-52. [PMID: 17350572 DOI: 10.1016/j.cell.2007.01.035] [Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 12/22/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
ALIX/AIP1 functions in enveloped virus budding, endosomal protein sorting, and many other cellular processes. Retroviruses, including HIV-1, SIV, and EIAV, bind and recruit ALIX through YPX(n)L late-domain motifs (X = any residue; n = 1-3). Crystal structures reveal that human ALIX is composed of an N-terminal Bro1 domain and a central domain that is composed of two extended three-helix bundles that form elongated arms that fold back into a "V." The structures also reveal conformational flexibility in the arms that suggests that the V domain may act as a flexible hinge in response to ligand binding. YPX(n)L late domains bind in a conserved hydrophobic pocket on the second arm near the apex of the V, whereas CHMP4/ESCRT-III proteins bind a conserved hydrophobic patch on the Bro1 domain, and both interactions are required for virus budding. ALIX therefore serves as a flexible, extended scaffold that connects retroviral Gag proteins to ESCRT-III and other cellular-budding machinery.
Collapse
Affiliation(s)
- Robert D Fisher
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
16
|
Nikko E, André B. Evidence for a direct role of the Doa4 deubiquitinating enzyme in protein sorting into the MVB pathway. Traffic 2007; 8:566-81. [PMID: 17376168 DOI: 10.1111/j.1600-0854.2007.00553.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Degradation of various membrane proteins in the lumen of the vacuole/lysosome requires their prior sorting into the multivesicular body (MVB) pathway. In this process, ubiquitin serves as a sorting signal for most cargoes. The yeast ubiquitin hydrolase Doa4 acts late in the MVB pathway. It's role is to catalyze deubiquitination of cargo proteins prior to their sorting into the endosomal vesicles. This step rescues ubiquitin from degradation in the vacuole/lysosome, enabling it to be recycled. Accordingly, the level of monomeric ubiquitin is typically reduced in doa4 mutants. Although MVB sorting of cargo proteins is also impaired in doa4 mutants, the question of whether this defect is due solely to Doa4's role in maintaining a normal pool of ubiquitin in the cell remains open. We here show that the requirement of Doa4 for correct MVB sorting of the endocytic cargo general amino acid permease and of the biosynthetic cargo carboxypeptidase S are not because of the role of Doa4 in ubiquitin recycling. This suggests a direct role of Doa4 in MVB sorting and we show that this role depends on Doa4's catalytic activity. We propose that deubiquitination by Doa4 of cargo proteins and/or some components of the MVB sorting machinery is essential to correct sorting of cargoes into the MVB pathway.
Collapse
Affiliation(s)
- Elina Nikko
- Laboratoire de la Physiologie Moléculaire de la Cellule, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | |
Collapse
|