1
|
The multiverse nature of epithelial to mesenchymal transition. Semin Cancer Biol 2019; 58:1-10. [DOI: 10.1016/j.semcancer.2018.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
|
2
|
The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci Rep 2018; 8:11467. [PMID: 30065348 PMCID: PMC6068163 DOI: 10.1038/s41598-018-29829-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Syndecan 1 (SDC-1) is a cell surface proteoglycan with a significant role in cell adhesion, maintaining epithelial integrity. SDC1 expression is inversely related to aggressiveness in prostate cancer (PCa). During epithelial to mesenchymal transition (EMT), loss of epithelial markers is mediated by transcriptional repressors such as SNAIL, SLUG, or ZEB1/2 that bind to E-box promoter sequences of specific genes. The effect of these repressors on SDC-1 expression remains unknown. Here, we demonstrated that SNAIL, SLUG and ZEB1 expressions are increased in advanced PCa, contrarily to SDC-1. SNAIL, SLUG and ZEB1 also showed an inversion to SDC-1 in prostate cell lines. ZEB1, but not SNAIL or SLUG, represses SDC-1 as demonstrated by experiments of ectopic expression in epithelial prostate cell lines. Inversely, expression of ZEB1 shRNA in PCa cell line increased SDC-1 expression. The effect of ZEB1 is transcriptional since ectopic expression of this gene represses SDC-1 promoter activity and ZEB1 binds to the SDC-1 promoter as detected by ChIP assays. An epigenetic mark associated to transcription repression H3K27me3 was bound to the same sites that ZEB1. In conclusion, this study identifies ZEB1 as a key repressor of SDC-1 during PCa progression and point to ZEB1 as a potentially diagnostic marker for PCa.
Collapse
|
3
|
Zhang Z, Liu W, Zhao L, Huang Z, Chen X, Ma N, Xu J, Zhang W, Zhang Y. Retinoblastoma 1 protects T cell maturation from premature apoptosis by inhibiting E2F1. Development 2018; 145:dev.158139. [PMID: 29229770 DOI: 10.1242/dev.158139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022]
Abstract
T lymphocytes are key cellular components of an acquired immune system and play essential roles in cell-mediated immunity. T cell development occurs in the thymus where 95% of immature thymocytes are eliminated via apoptosis. It is known that mutation of Zeb1, one of the retinoblastoma 1 (Rb1) target genes, results in a decrease in the number of immature T cells in mice. E2F1, an RB1-interacting protein, has been shown to regulate mature T cell development by interfering with thymocyte apoptosis. However, whether Rb1 regulates thymocyte development in vivo still needs to be further investigated. Here, we use a zebrafish model to investigate the role of Rb1 in T cell development. We show that Rb1-deficient fish exhibit a significant reduction in T cell number during early development that it is attributed to the accelerated apoptosis of immature T cells in a caspase-dependent manner. We further show that E2F1 overexpression could mimic the reduced T lymphocytes phenotype of Rb1 mutants, and E2F1 knockdown could rescue the phenotype in Rb1-deficient mutants. Collectively, our data indicate that the Rb1-E2F1-caspase axis is crucial for protecting immature T cells from apoptosis during early T lymphocyte maturation.
Collapse
Affiliation(s)
- Zili Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Lingfeng Zhao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhibin Huang
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ning Ma
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Xu
- Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China .,Laboratory of Developmental Biology and Regenerative Medicine, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
4
|
Avior Y, Lezmi E, Yanuka D, Benvenisty N. Modeling Developmental and Tumorigenic Aspects of Trilateral Retinoblastoma via Human Embryonic Stem Cells. Stem Cell Reports 2017; 8:1354-1365. [PMID: 28392220 PMCID: PMC5425613 DOI: 10.1016/j.stemcr.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a platform for studying human development and understanding mechanisms underlying diseases. Retinoblastoma-1 (RB1) is a key regulator of cell cycling, of which biallelic inactivation initiates retinoblastoma, the most common congenital intraocular malignancy. We developed a model to study the role of RB1 in early development and tumor formation by generating RB1-null hESCs using CRISPR/Cas9. RB1−/− hESCs initiated extremely large teratomas, with neural expansions similar to those of trilateral retinoblastoma tumors, in which retinoblastoma is accompanied by intracranial neural tumors. Teratoma analysis further revealed a role for the transcription factor ZEB1 in RB1-mediated ectoderm differentiation. Furthermore, RB1−/− cells displayed mitochondrial dysfunction similar to poorly differentiated retinoblastomas. Screening more than 100 chemotherapies revealed an RB1–/–-specific cell sensitivity to carboplatin, exploiting their mitochondrial dysfunction. Together, our work provides a human pluripotent cell model for retinoblastoma and sheds light on developmental and tumorigenic roles of RB1. RB1-null hESCs were generated using CRISPR/Cas9 RB1−/− hESCs generate large, neural-enriched teratomas, possibly by ZEB1 activation RB1 inactivation triggers aberrant mitochondrial abundance and function Unbiased drug screening found that carboplatin specifically targets RB1-null cells
Collapse
Affiliation(s)
- Yishai Avior
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Dorit Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
5
|
Chen Y, Lu X, Montoya-Durango DE, Liu YH, Dean KC, Darling DS, Kaplan HJ, Dean DC, Gao L, Liu Y. ZEB1 Regulates Multiple Oncogenic Components Involved in Uveal Melanoma Progression. Sci Rep 2017; 7:45. [PMID: 28246385 PMCID: PMC5428321 DOI: 10.1038/s41598-017-00079-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/31/2017] [Indexed: 12/11/2022] Open
Abstract
Human uveal melanoma (UM) is a major ocular malignant tumor with high risk of metastasis and requires multiple oncogenic factors for progression. ZEB1 is a zinc finger E-box binding transcription factor known for participating epithelial-mesenchymal transition (EMT), a critical cellular event for metastasis of malignant tumors of epithelium origin. ZEB1 is also expressed in UM and high expression of ZEB1 correlates with UM advancement, but has little effect on cell morphology. We show that spindle UM cells can become epithelioid but not vice versa; and ZEB1 exerts its tumorigenic effects by promoting cell dedifferentiation, proliferation, invasiveness, and dissemination. We provide evidence that ZEB1 binds not only to repress critical genes involving in pigment synthesis, mitosis, adherent junctions, but also to transactivate genes involving in matrix degradation and cellular locomotion to propel UM progression towards metastasis. We conclude that ZEB1 is a major oncogenic factor required for UM progression and could be a potential therapeutic target for treating UM in the clinic.
Collapse
Affiliation(s)
- Yao Chen
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.,Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Diego E Montoya-Durango
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Yu-Hua Liu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas S Darling
- Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky, USA
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA.,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ling Gao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, USA. .,James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
6
|
Sztukowska MN, Ojo A, Ahmed S, Carenbauer AL, Wang Q, Shumway B, Jenkinson HF, Wang H, Darling DS, Lamont RJ. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol 2016; 18:844-58. [PMID: 26639759 DOI: 10.1111/cmi.12554] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here, we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor, which controls epithelial-mesenchymal transition. P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of microRNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC.
Collapse
Affiliation(s)
- Maryta N Sztukowska
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Akintunde Ojo
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Saira Ahmed
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Brain Shumway
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | | | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Dean KC, Huang L, Chen Y, Lu X, Liu Y. An Rb1-dependent amplification loop between Ets1 and Zeb1 is evident in thymocyte differentiation and invasive lung adenocarcinoma. BMC Mol Biol 2015; 16:8. [PMID: 25880398 PMCID: PMC4364651 DOI: 10.1186/s12867-015-0038-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/26/2015] [Indexed: 01/02/2023] Open
Abstract
Background Ras pathway mutation leads to induction and Erk phosphorylation and activation of the Ets1 transcription factor. Ets1 in turn induces cyclin E and cyclin dependent kinase (cdk) 2 to drive cell cycle progression. Ets1 also induces expression of the epithelial-mesenchymal transition (EMT) transcription factor Zeb1, and thereby links Ras mutation to EMT, which is thought to drive tumor invasion. Ras pathway mutations are detected by the Rb1 tumor suppression pathway, and mutation or inactivation of the Rb1 pathway is required for EMT. Results We examined linkage between Rb1, Ets1 and Zeb1. We found that an Rb1-E2F complex binds the Ets1 promoter and constitutively limits Ets1 expression. But, Rb1 repression of Zeb1 provides the major impact of Rb1 on Ets1 expression. We link Rb1 repression of Zeb1 to induction of miR-200 family members, which in turn target Ets1 mRNA. These findings suggest that Ets1 and Zeb1 comprise an amplification loop that is dependent upon miR-200 and regulated by Rb1. Thus, induction of Ets1 when the Rb1 pathway is lost may contribute to deregulated cell cycle progression through Ets1 induction of cyclin E and cdk2. Consistent with such an amplification loop, we correlate expression of Ets1 and Zeb1 in mouse and human lung adenocarcinoma. In addition we demonstrate that Ets1 expression in thymocytes is also dependent upon Zeb1. Conclusions Taken together, our results provide evidence of an Rb1-dependent Ets1-Zeb1 amplification loop in thymocyte differentiation and tumor invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0038-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA.
| | - Li Huang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,The Second Affiliated Hospital, Central South University Xiangya School of Medicine, Changsha, Hunan Province, 410011, China.
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, 301 E. Muhammad Ali Blvd., Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA. .,Birth Defects Center, University of Louisville Health Sciences Center, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Liu Y, Lu X, Huang L, Wang W, Jiang G, Dean KC, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Darling DS, Postigo A, Dean DC. Different thresholds of ZEB1 are required for Ras-mediated tumour initiation and metastasis. Nat Commun 2014; 5:5660. [PMID: 25434817 DOI: 10.1038/ncomms6660] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/24/2014] [Indexed: 01/28/2023] Open
Abstract
Ras pathway mutation is frequent in carcinomas where it induces expression of the transcriptional repressor ZEB1. Although ZEB1 is classically linked to epithelial-mesenchymal transition and tumour metastasis, it has an emerging second role in generation of cancer-initiating cells. Here we show that Ras induction of ZEB1 is required for tumour initiation in a lung cancer model, and we link this function to repression Pten, whose loss is critical for emergence of cancer-initiating cells. These two roles for ZEB1 in tumour progression can be distinguished by their requirement for different levels of ZEB1. A lower threshold of ZEB1 is sufficient for cancer initiation, whereas further induction is necessary for tumour metastasis.
Collapse
Affiliation(s)
- Yongqing Liu
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Li Huang
- 1] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] College of Agriculture and Biotechnology, Zejiang University, Zejiang 310058, China
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Guomin Jiang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Kevin C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Brian Clem
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Sucheta Telang
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Alfred B Jenson
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Miriam Cuatrecasas
- 1] Department of Pathology, Centro de Diagnóstico Biomédico (CDB) Hospital Clínic, University of Barcelona, Barcelona 08036, Spain [2] Tumor Bank-Biobank, IDIBAPS, Barcelona 08036, Spain
| | - Jason Chesney
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | - Douglas S Darling
- Department of Periodontics, Endodontics, and Dental Hygiene, University of Louisville, Louisville, Kentucky 40202, USA
| | - Antonio Postigo
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Group of Transcriptional Regulation of Gene Expression, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain [3] ICREA, Barcelona 08010, Spain
| | - Douglas C Dean
- 1] Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [2] Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA [3] Birth Defects Center, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| |
Collapse
|
9
|
Rb1 family mutation is sufficient for sarcoma initiation. Nat Commun 2014; 4:2650. [PMID: 24150016 DOI: 10.1038/ncomms3650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022] Open
Abstract
It is thought that genomic instability precipitated by Rb1 pathway loss rapidly triggers additional cancer gene mutations, accounting for rapid tumour onset following Rb1 mutation. However, recent whole-genome sequencing of retinoblastomas demonstrated little genomic instability, but instead suggested rapid epigenetic activation of cancer genes. These results raise the possibility that loss of the Rb1 pathway, which is a hallmark of cancers, might be sufficient for cancer initiation. Yet, mutation of the Rb1 family or inactivation of the Rb1 pathway in primary cells has proven insufficient for tumour initiation. Here we demonstrate that traditional nude mouse assays impose an artificial anoikis and proliferation barrier that prevents Rb1 family mutant fibroblasts from initiating tumours. By circumventing this barrier, we show that primary fibroblasts with only an Rb1 family mutation efficiently form sarcomas in nude mice, and a Ras-ZEB1-Akt pathway then causes transition of these tumours to an invasive phenotype.
Collapse
|
10
|
Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem 2013; 289:4116-25. [PMID: 24371144 DOI: 10.1074/jbc.m113.533505] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras mutations are frequent in cancer cells where they drive proliferation and resistance to apoptosis. However in primary cells, mutant Ras instead can cause oncogene-induced senescence, a tumor suppressor function linked to repression of the polycomb factor Bmi1, which normally regulates cell cycle inhibitory cyclin-dependent kinase inhibitors (cdki). It is unclear how Ras causes repression of Bmi1 in primary cells to suppress tumor formation while inducing the gene in cancer cells to drive tumor progression. Ras also induces the EMT transcription factor ZEB1 to trigger tumor invasion and metastasis. Beyond its well-documented role in EMT, ZEB1 is important for maintaining repression of cdki. Indeed, heterozygous mutation of ZEB1 is sufficient for elevated cdki expression, leading to premature senescence of primary cells. A similar phenotype is evident with Bmi1 mutation. We show that activation of Rb1 in response to mutant Ras causes dominant repression of ZEB1 in primary cells, but loss of the Rb1 pathway is a hallmark of cancer cells and in the absence of such Rb1 repression Ras induces ZEB1 in cancer cells. ZEB1 represses miR-200 in the context of a mutual repression loop. Because miR-200 represses Bmi1, induction of ZEB1 leads to induction of Bmi1. Rb1 pathway status then dictates the opposing effects of mutant Ras on the ZEB1-miR-200 loop in primary versus cancer cells. This loop not only triggers EMT, surprisingly we show it acts downstream of Ras to regulate Bmi1 expression and thus the critical decision between oncogene-induced senescence and tumor initiation.
Collapse
Affiliation(s)
- Yongqing Liu
- From the Molecular Targets Program, James Brown Cancer Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sánchez-Tilló E, Fanlo L, Siles L, Montes-Moreno S, Moros A, Chiva-Blanch G, Estruch R, Martinez A, Colomer D, Győrffy B, Roué G, Postigo A. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ 2013; 21:247-57. [PMID: 24013721 DOI: 10.1038/cdd.2013.123] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a poor response to treatment and prognosis. Constitutive activation of different signaling pathways in subsets of MCLs, through genetic and/or nongenetic alterations, endows tumor cells with enhanced proliferation and reduced apoptosis. The canonical Wnt pathway (β-catenin/TCF-LEF), implicated in the pathogenesis of numerous cancers, is constitutively active in half of MCLs. Here, we show that ZEB1, a transcription factor better known for promoting metastasis in carcinomas, is expressed in primary MCLs with active Wnt signaling. ZEB1 expression in MCL cells depends on Wnt, being downregulated by β-catenin knockdown or blocking of Wnt signaling by salinomycin. Knockdown of ZEB1 reduces in vitro cell viability and proliferation in MCL cells, and, importantly, tumor growth in mouse xenograft models. ZEB1 activates proliferation-associated (HMGB2, UHRF1, CENPF, MYC, MKI67, and CCND1) and anti-apoptotic (MCL1, BCL2, and BIRC5) genes and inhibits pro-apoptotic ones (TP53, BBC3, PMAIP1, and BAX). We show that ZEB1 expression in MCL cells determines differential resistance to chemotherapy drugs and regulates transporters involved in drug influx/efflux. Downregulation of ZEB1 by salinomycin increases the sensitivity of MCL cells to the cytotoxic effect of doxorubicin, cytarabine and gemcitabine. Lastly, salinomycin and doxorubicin display a synergistic effect in established and primary MCL cells. These results identify ZEB1 in MCL where it promotes cell proliferation, enhanced tumor growth and a differential response to chemotherapy drugs. ZEB1 could thus potentially become a predictive biomarker and therapeutic target in this lymphoma.
Collapse
Affiliation(s)
- E Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain
| | - L Fanlo
- 1] Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain [2] Master Program in Biomedical Research, University Pompeu Fabra, Barcelona 08002, Spain
| | - L Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain
| | - S Montes-Moreno
- Department of Pathology and Group of Cancer Genomics, Hospital Marques de Valdecilla, IFIMAV, Santander 39008, Spain
| | - A Moros
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - G Chiva-Blanch
- 1] Department of Internal Medicine, Hospital Clinic, Barcelona 08036, Spain [2] CIBERobn, ISCIII, Santiago de Compostela 15706, Spain
| | - R Estruch
- 1] Department of Internal Medicine, Hospital Clinic, Barcelona 08036, Spain [2] CIBERobn, ISCIII, Santiago de Compostela 15706, Spain
| | - A Martinez
- Department of Pathology, Hospital Clinic, Barcelona 08036, Spain
| | - D Colomer
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - B Győrffy
- Research Lab for Pediatrics and Nephrology, Hungarian Academy of Sciences, Semmelweis University, 1st Department of Pediatrics, Budapest 1083, Hungary
| | - G Roué
- Hematopathology Unit, Hospital Clinic, IDIBAPS, Barcelona 08036, Spain
| | - A Postigo
- 1] Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, CIBERehd, Barcelona 08036, Spain [2] James Graham Brown Cancer Center, Louisville, KY 40202, USA [3] ICREA, Barcelona 08010, Spain
| |
Collapse
|
12
|
Liu Y, Sánchez-Tilló E, Lu X, Huang L, Clem B, Telang S, Jenson AB, Cuatrecasas M, Chesney J, Postigo A, Dean DC. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression. J Biol Chem 2013; 288:11572-80. [PMID: 23443660 DOI: 10.1074/jbc.m112.434951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.
Collapse
Affiliation(s)
- Yongqing Liu
- Molecular Targets Program, University of Louisville Health Sciences Center, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng PH, Rao XM, McMasters KM, Zhou HS. Molecular basis for viral selective replication in cancer cells: activation of CDK2 by adenovirus-induced cyclin E. PLoS One 2013; 8:e57340. [PMID: 23437375 PMCID: PMC3577715 DOI: 10.1371/journal.pone.0057340] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Adenoviruses (Ads) with deletion of E1b55K preferentially replicate in cancer cells and have been used in cancer therapies. We have previously shown that Ad E1B55K protein is involved in induction of cyclin E for Ad replication, but this E1B55K function is not required in cancer cells in which deregulation of cyclin E is frequently observed. In this study, we investigated the interaction of cyclin E and CDK2 in Ad-infected cells. Ad infection significantly increased the large form of cyclin E (cyclin EL), promoted cyclin E/CDK2 complex formation and increased CDK2 phosphorylation at the T160 site. Activated CDK2 caused pRb phosphorylation at the S612 site. Repression of CDK2 activity with the chemical inhibitor roscovitine or with specific small interfering RNAs significantly decreased pRb phosphorylation, with concomitant repression of viral replication. Our results suggest that Ad-induced cyclin E activates CDK2 that targets the transcriptional repressor pRb to generate a cellular environment for viral productive replication. This study reveals a new molecular basis for oncolytic replication of E1b-deleted Ads and will aid in the development of new strategies for Ad oncolytic virotherapies.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Xiao-Mei Rao
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kelly M. McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
14
|
Control of glutamine metabolism by the tumor suppressor Rb. Oncogene 2013; 33:556-66. [PMID: 23353822 PMCID: PMC3918885 DOI: 10.1038/onc.2012.635] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/16/2012] [Accepted: 11/30/2012] [Indexed: 12/15/2022]
Abstract
Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism. We examined glutamine metabolism in mouse embryonic fibroblasts (MEFs) isolated from mice that have triple knock-outs (TKO) of all three Rb family members (Rb-1, Rbl1, and Rbl2) and found that loss of global Rb function caused a marked increase in 13C-glutamine uptake and incorporation into glutamate and TCA cycle intermediates in part via upregulated expression of the glutamine transporter ASCT2 and the activity of glutaminase 1 (GLS1). The Rb-controlled transcription factor E2F-3 altered glutamine uptake by direct regulation of ASCT2 mRNA and protein expression, and E2F-3 was observed to associate with the ASCT2 promoter. We next examined the functional consequences of the observed increase in glutamine uptake and utilization and found that glutamine exposure potently increased oxygen consumption whereas glutamine deprivation selectively decreased ATP concentration in the Rb TKO MEFs but not the WT MEFs. In addition, TKO MEFs exhibited elevated production of glutathione from exogenous glutamine, and had increased expression of gamma-glutamylcysteine ligase relative to WT MEFs. Importantly, this metabolic shift towards glutamine utilization was required for the proliferation of Rb TKO MEFs but not for the proliferation of the WT MEFs. Last, addition of the TCA cycle intermediate α-ketoglutarate to the Rb TKO MEFs reversed the inhibitory effects of glutamine deprivation on ATP, GSH levels, and viability. Taken together, these studies demonstrate that the Rb/E2F cascade directly regulates a major energetic and anabolic pathway that is required for neoplastic growth.
Collapse
|
15
|
Sánchez-Tilló E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A, Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69:3429-56. [PMID: 22945800 PMCID: PMC11115078 DOI: 10.1007/s00018-012-1122-2] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/13/2022]
Abstract
Cancer is a complex multistep process involving genetic and epigenetic changes that eventually result in the activation of oncogenic pathways and/or inactivation of tumor suppressor signals. During cancer progression, cancer cells acquire a number of hallmarks that promote tumor growth and invasion. A crucial mechanism by which carcinoma cells enhance their invasive capacity is the dissolution of intercellular adhesions and the acquisition of a more motile mesenchymal phenotype as part of an epithelial-to-mesenchymal transition (EMT). Although many transcription factors can trigger it, the full molecular reprogramming occurring during an EMT is mainly orchestrated by three major groups of transcription factors: the ZEB, Snail and Twist families. Upregulated expression of these EMT-activating transcription factors (EMT-ATFs) promotes tumor invasiveness in cell lines and xenograft mice models and has been associated with poor clinical prognosis in human cancers. Evidence accumulated in the last few years indicates that EMT-ATFs also regulate an expanding set of cancer cell capabilities beyond tumor invasion. Thus, EMT-ATFs have been shown to cooperate in oncogenic transformation, regulate cancer cell stemness, override safeguard programs against cancer like apoptosis and senescence, determine resistance to chemotherapy and promote tumor angiogenesis. This article reviews the expanding portfolio of functions played by EMT-ATFs in cancer progression.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
| | - Yongqing Liu
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
| | - Lucia Fanlo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- Master Program in Biomedical Research, University Pompeu Fabra, 08003 Barcelona, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Hospital Clinic and IDIBAPS’ Tumor Bank, 08036 Barcelona, Spain
| | - Douglas S. Darling
- Department of Oral Health and Rehabilitation, Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40202 USA
| | - Douglas C. Dean
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- Department of Ophthalmology and Birth Defects Center, Louisville Health Science Center, Louisville, KY 40202 USA
| | - Antoni Castells
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- Institute of Digestive and Metabolic Diseases, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, 08036 Barcelona, Spain
- CIBERehd (Gastrointestinal and Pancreatic Oncology), IDIBAPS, 08036 Barcelona, Spain
- James Graham Brown Cancer Center, Louisville Health Science Center, Louisville, KY 40202 USA
- ICREA, 08010 Barcelona, Spain
| |
Collapse
|
16
|
Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 2012; 132:745-54. [PMID: 22753312 DOI: 10.1002/ijc.27708] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/19/2012] [Indexed: 12/17/2022]
Abstract
Embryonic differentiation programs of epithelial-mesenchymal and mesenchymal-epithelial transition (EMT and MET) represent a mechanistic basis for epithelial cell plasticity implicated in cancer. Transcription factors of the ZEB protein family (ZEB1 and ZEB2) and several microRNA species (predominantly miR-200 family members) form a double negative feedback loop, which controls EMT and MET programs in both development and tumorigenesis. In this article, we review crosstalk between the ZEB/miR-200 axis and several signal transduction pathways activated at different stages of tumor development. The close association of ZEB proteins with these pathways is indirect evidence for the involvement of a ZEB/miR-200 loop in tumor initiation, progression and spread. Additionally, the configuration of signaling pathways involving ZEB/miR-200 loop suggests that ZEB1 and ZEB2 may have different, possibly even opposing, roles in some forms of human cancer.
Collapse
Affiliation(s)
- Louise Hill
- Department of Cancer Studies and Molecular Medicine, University of Leicester, United Kingdom
| | | | | |
Collapse
|
17
|
Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A, Postigo A. Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res 2011; 1:897-912. [PMID: 22016835 PMCID: PMC3196287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023] Open
Abstract
The ZEB family of transcription factors regulates key factors during embryonic development and cell differentiation but their role in cancer biology has only more recently begun to be recognized. Early evidence showed that ZEB proteins induce an epithelial-to-mesenchymal transition linking their expression with increased aggressiveness and metastasis in mice models and a wide range of primary human carcinomas. Reports over the last few years have found that ZEB proteins also play critical roles in the maintenance of cancer cell stemness, control of replicative senescence, tumor angiogenesis, overcoming of oncogenic addiction and resistance to chemotherapy. These expanding roles in tumorigenesis and tumor progression set ZEB proteins as potential diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Ester Sánchez-Tilló
- Group of Transcriptional Regulation of Gene Expression, Dept. of Oncology and Hematology, IDIBAPSBarcelona, Spain
| | - Laura Siles
- Master Program in Molecular Biotechnology, University of BarcelonaSpain
| | | | | | - Eva C Vaquero
- Dept. of Gastroenterology, Hospital Clinic of Barcelona, CIBERehd, IDIBAPSBarcelona, Spain
| | - Antoni Castells
- Dept. of Gastroenterology, Hospital Clinic of Barcelona, CIBERehd, IDIBAPSBarcelona, Spain
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Dept. of Oncology and Hematology, IDIBAPSBarcelona, Spain
- ICREABarcelona, Spain
- James Graham Brown Cancer Center, University of LouisvilleKY, USA
| |
Collapse
|
18
|
miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011; 18:1628-39. [PMID: 21527937 DOI: 10.1038/cdd.2011.42] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We examined the effect of reactive oxygen species (ROS) on MicroRNAs (miRNAs) expression in endothelial cells in vitro, and in mouse skeletal muscle following acute hindlimb ischemia. Human umbilical vein endothelial cells (HUVEC) were exposed to 200 μM hydrogen peroxide (H(2)O(2)) for 8 to 24 h; miRNAs profiling showed that miR-200c and the co-transcribed miR-141 increased more than eightfold. The other miR-200 gene family members were also induced, albeit to a lower level. Furthermore, miR-200c upregulation was not endothelium restricted, and occurred also on exposure to an oxidative stress-inducing drug: 1,3-bis(2 chloroethyl)-1nitrosourea (BCNU). miR-200c overexpression induced HUVEC growth arrest, apoptosis and senescence; these phenomena were also induced by H(2)O(2) and were partially rescued by miR-200c inhibition. Moreover, miR-200c target ZEB1 messenger RNA and protein were downmodulated by H(2)O(2) and by miR-200c overexpression. ZEB1 knockdown recapitulated miR-200c-induced responses, and expression of a ZEB1 allele non-targeted by miR-200c, prevented miR-200c phenotype. The mechanism of H(2)O(2)-mediated miR-200c upregulation involves p53 and retinoblastoma proteins. Acute hindlimb ischemia enhanced miR-200c in wild-type mice skeletal muscle, whereas in p66(ShcA -/-) mice, which display lower levels of oxidative stress after ischemia, upregulation of miR-200c was markedly inhibited. In conclusion, ROS induce miR-200c and other miR-200 family members; the ensuing downmodulation of ZEB1 has a key role in ROS-induced apoptosis and senescence.
Collapse
|
19
|
Anose BM, Sanders MM. Androgen Receptor Regulates Transcription of the ZEB1 Transcription Factor. Int J Endocrinol 2011; 2011:903918. [PMID: 22190929 PMCID: PMC3235469 DOI: 10.1155/2011/903918] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022] Open
Abstract
The zinc finger E-box binding protein 1 (ZEB1) transcription factor belongs to a two-member family of zinc-finger homeodomain proteins involved in physiological and pathological events mostly relating to cell migration and epithelial to mesenchymal transitions (EMTs). ZEB1 (also known as δEF1, zfhx1a, TCF8, and Zfhep) plays a key role in regulating such diverse processes as T-cell development, skeletal patterning, reproduction, and cancer cell metastasis. However, the factors that regulate its expression and consequently the signaling pathways in which ZEB1 participates are poorly defined. Because it is induced by estrogen and progesterone and is high in prostate cancer, we investigated whether tcf8, which encodes ZEB1, is regulated by androgen. Data herein demonstrate that tcf8 is induced by dihydrotestosterone (DHT) in the human PC-3/AR prostate cancer cell line and that this induction is mediated by two androgen response elements (AREs). These results demonstrate that ZEB1 is an intermediary in androgen signaling pathways.
Collapse
Affiliation(s)
- Bynthia M. Anose
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, Bethel University, St. Paul, MN 55112, USA
| | - Michel M. Sanders
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- *Michel M. Sanders:
| |
Collapse
|
20
|
Seetharam A, Bai Y, Stuart GW. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia. BMC Genomics 2010; 11:276. [PMID: 20433734 PMCID: PMC2889900 DOI: 10.1186/1471-2164-11-276] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 04/30/2010] [Indexed: 12/15/2022] Open
Abstract
Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans). Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila.
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
| | | | | |
Collapse
|
21
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 608] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
22
|
Liu Y, Ye F, Li Q, Tamiya S, Darling DS, Kaplan HJ, Dean DC. Zeb1 represses Mitf and regulates pigment synthesis, cell proliferation, and epithelial morphology. Invest Ophthalmol Vis Sci 2009; 50:5080-8. [PMID: 19515996 DOI: 10.1167/iovs.08-2911] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Epithelial-mesenchymal transition (EMT) is important in fibrotic responses, formation of cancer stem cells, and acquisition of a metastatic phenotype. Zeb1 represses epithelial specification genes to enforce epithelial-mesenchymal phenotypic boundaries during development, and it is one of several E-box-binding repressors whose overexpression triggers EMT. The purpose of this study was to investigate the potential role for Zeb1 in EMT leading to the dedifferentiation of retinal pigment epithelial (RPE) cells. METHODS Real-time PCR was used to examine mRNA expression during RPE dedifferentiation in primary cultures of RPE cells from Zeb1(+/-) mice and after knockdown of Zeb1 by lentivirus shRNA. Chromatin immunoprecipitation was used to detect Zeb1 at gene promoters in vivo. RESULTS Zeb1 is overexpressed during RPE dedifferentiation. Heterozygous mutation or shRNA knockdown to prevent this overexpression eliminates the onset of proliferation, loss of epithelial morphology, and pigment, which characterizes RPE dedifferentiation. Zeb1 binds to the Mitf A promoter in vivo, and Zeb1 mutation or shRNA knockdown derepresses the gene. The authors link Zeb1 expression to cell-cell contact and demonstrate that forcing dedifferentiated RPE cells to adopt cell-cell only contacts via sphere formation reverses the overexpression of Zeb1 and reprograms RPE cells back to a pigmented phenotype. CONCLUSIONS Overexpression of the EMT transcription factor Zeb1 has an important role in RPE dedifferentiation via its regulation of Mitf. Expression of Zeb1 and, in turn, RPE dedifferentiation, is linked to cell-cell contact, and these contacts can be used to diminish Zeb1 expression and reprogram dedifferentiated RPE cells.
Collapse
Affiliation(s)
- Yongqing Liu
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu Y, Clem B, Zuba-Surma EK, El-Naggar S, Telang S, Jenson AB, Wang Y, Shao H, Ratajczak MZ, Chesney J, Dean DC. Mouse fibroblasts lacking RB1 function form spheres and undergo reprogramming to a cancer stem cell phenotype. Cell Stem Cell 2009; 4:336-47. [PMID: 19341623 PMCID: PMC2743858 DOI: 10.1016/j.stem.2009.02.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/17/2008] [Accepted: 02/24/2009] [Indexed: 01/16/2023]
Abstract
Activation of the RB1 pathway triggers the cell-cycle arrest that mediates cell-cell contact inhibition. Accordingly, mutation of all three RB1 family members leads to loss of contact inhibition and outgrowth of fibroblasts into spheres where cell-cell contacts predominate. We present evidence that such outgrowth triggers reprogramming to generate cells with properties of cancer stem cells. Fibroblasts with only a single RB1 mutation remain contact inhibited; however, if this contact inhibition is bypassed by forcing the RB1(-/-) cells to form spheres in suspension, cells with properties of cancer stem cells are also generated. These cells not only form tumors in nude mice but also generate differentiated cells. We propose that contact inhibition imposed by the RB1 pathway performs an unexpected tumor suppressor function by preventing cell outgrowth into structures where cells with properties of cancer stem cells can be generated from differentiated somatic cells in advancing cancers.
Collapse
Affiliation(s)
- Yongqing Liu
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Brian Clem
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Ewa K. Zuba-Surma
- Stem Cell Biology Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Shahenda El-Naggar
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Sucheta Telang
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Alfred B. Jenson
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Yali Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Mariusz Z. Ratajczak
- Stem Cell Biology Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Jason Chesney
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | - Douglas C. Dean
- Molecular Targets Program, Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
- Department of Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Tanaka S, Mogushi K, Yasen M, Noguchi N, Kudo A, Kurokawa T, Nakamura N, Inazawa J, Tanaka H, Arii S. Surgical contribution to recurrence-free survival in patients with macrovascular-invasion-negative hepatocellular carcinoma. J Am Coll Surg 2009; 208:368-74. [PMID: 19317998 DOI: 10.1016/j.jamcollsurg.2008.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/09/2008] [Accepted: 10/29/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND Macroscopic vascular invasion (MVI) is a well-known indicator of recurrence of hepatocellular carcinoma (HCC) even after curative hepatectomy, but the clinicopathologic and molecular features of the recurrence remain unclear in MVI-negative HCC. STUDY DESIGN Two hundred seven consecutive patients with confirmed primary MVI-negative HCC were retrospectively assessed after curative resection, with special emphasis on the importance of anatomically systematized hepatectomy. HCC tissues were also analyzed for genome-wide gene expression profile of each tumor using a microarray technique. RESULTS Univariant analysis of HCC recurrence revealed multiple tumors (p < 0.001), moderate to poor differentiation (p = 0.044), Child-Pugh B/C (p = 0.047), alpha-fetoprotein elevation (p = 0.007), and nonanatomic hepatectomy (p = 0.010) as risk factors. According to Cox hazard multivariant analysis, multiple tumors (p = 0.002), alpha-fetoprotein elevation (p < 0.001), and nonanatomic hepatectomy (p = 0.002) were identified as independent factors of the recurrence. In the recurrent cases after anatomic hepatectomy for HCC, local recurrence was significantly infrequent compared with those after nonanatomic hepatectomy (p < 0.001). Network expression analysis using cDNA microarray revealed distinct signaling pathways of epithelial-mesenchymal transitions are associated with recurrence after anatomically systematized hepatectomy. CONCLUSIONS Anatomically systematized hepatectomy might contribute to recurrence-free survival of HCC patients of HCC without MVI. Local recurrence could be mostly averted by anatomic hepatectomy, although specific epithelial-mesenchymal transitions signaling might regulate the biologic aggressiveness of HCC.
Collapse
Affiliation(s)
- Shinji Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Montoya-Durango DE, Liu Y, Teneng I, Kalbfleisch T, Lacy ME, Steffen MC, Ramos KS. Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 2009; 665:20-8. [PMID: 19427507 DOI: 10.1016/j.mrfmmm.2009.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Long interspersed nuclear elements (LINEs or L1 elements) are targeted for epigenetic silencing during early embryonic development and remain inactive in most cells and tissues. Here we show that E2F-Rb family complexes participate in L1 elements epigenetic regulation via nucleosomal histone modifications and recruitment of histone deacetylases (HDACs) HDAC1 and HDAC2. Our experiments demonstrated that (i) Rb and E2F interact with human and mouse L1 elements, (ii) L1 elements are deficient in both heterochromatin-associated histone marks H3 tri methyl K9 and H4 tri methyl K20 in Rb family triple knock out (Rb, p107, and p130) fibroblasts (TKO), (iii) L1 promoter exhibits increased histone H3 acetylation in the absence of HDAC1 and HDAC2 recruitment, (iv) L1 expression in TKO fibroblasts is upregulated compared to wild type counterparts, (v) L1 expression increases in the presence of the HDAC inhibitor TSA. On the basis of these findings we propose a model in which L1 sequences throughout the genome serve as centers for heterochromatin formation in an Rb family-dependent manner. As such, Rb proteins and L1 elements may play key roles in heterochromatin formation beyond pericentromeric chromosomal regions. These findings describe a novel mechanism of L1 reactivation in mammalian cells mediated by failure of corepressor protein recruitment by Rb, loss of histone epigenetic marks, heterochromatin formation, and increased histone H3 acetylation.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Arima Y, Inoue Y, Shibata T, Hayashi H, Nagano O, Saya H, Taya Y. Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition. Cancer Res 2008; 68:5104-12. [PMID: 18593909 DOI: 10.1158/0008-5472.can-07-5680] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma tumor suppressor protein (Rb) is mutated or expressed at very low levels in several tumor types, including retinoblastoma and osteosarcoma, as well as small cell lung, colon, prostate, bladder, and breast carcinomas. Loss or reduction of Rb expression is seen most commonly in high-grade breast adenocarcinomas, suggesting that a relationship may exist between loss of Rb function and a less-differentiated state, increased proliferation, and high metastatic potential. In this study, we found that knockdown of Rb by small interfering RNA in MCF7 breast cancer cells disrupts cell-cell adhesion and induces a mesenchymal-like phenotype. The epithelial-to-mesenchymal transition (EMT), a key event in embryonic morphogenesis, is implicated in the metastasis of primary tumors. Additionally, Rb is decreased during growth factor- and cytokine-induced EMT and overexpression of Rb inhibits the EMT in MCF10A human mammary epithelial cells. Ectopic expression and knockdown of Rb resulted in increased or reduced expression of E-cadherin, which is specifically involved in epithelial cell-cell adhesion. Other EMT-related transcriptional factors, including Slug and Zeb-1, are also induced by Rb depletion. Furthermore, we confirmed that Rb binds to an E-cadherin promoter sequence in association with the transcription factor activator protein-2alpha. Finally, in breast cancer specimens, we observed a concurrent down-regulation of Rb and E-cadherin expression in mesenchymal-like invasive cancers. These findings suggest that Rb inactivation contributes to tumor progression due to not only loss of cell proliferation control but also conversion to an invasive phenotype and that the inhibition of EMT is a novel tumor suppressor function of Rb.
Collapse
Affiliation(s)
- Yoshimi Arima
- Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 2008; 318:89-99. [PMID: 18622689 DOI: 10.1007/s11010-008-9860-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/25/2008] [Indexed: 01/13/2023]
Abstract
The zinc finger E-box binding transcription factor ZEB1 (deltaEF1/Nil-2-a/AREB6/zfhx1a/TCF8/zfhep/BZP) is emerging as an important regulator of the epithelial to mesenchymal transitions (EMT) required for development and cancer metastasis. ZEB1 promotes EMT by repressing genes contributing to the epithelial phenotype while activating those associated with the mesenchymal phenotype. TCF8 (zfhx1a), the gene encoding ZEB1, is induced by several potentially oncogenic ligands including TGF-beta, estrogen, and progesterone. TGF-beta appears to activate EMT, at least in part, by inducing ZEB1. However, our understanding of how ZEB1 contributes to signaling pathways elicited by estrogen and progesterone is quite limited, as is our understanding of its functional roles in normal adult tissues. To begin to address these questions, a human tissue mRNA array analysis was done. In adults, the highest ZEB1 mRNA expression is in bladder and uterus, whereas in the fetus highest expression is in lung, thymus, and heart. To further investigate the regulation of TCF8 by estrogen, ZEB1 mRNA was measured in ten estrogen-responsive cell lines, but it is only induced in the OV266 ovarian carcinoma line. Although high expression of ZEB1 mRNA is estrogen-dependent in normal human ovarian and endometrial biopsies, high expression is estrogen-independent in late stage ovarian and endometrial carcinomas, raising the possibility that deregulated expression promotes cancer progression. In contrast, TCF8 is at least partially deleted in 4 of 5 well-differentiated, grade I endometrial carcinomas, which may contribute to their non-aggressive phenotype. These data support the contention that high ZEB1 encourages gynecologic carcinoma progression.
Collapse
Affiliation(s)
- Elaine M Hurt
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
28
|
Liu Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 2008; 135:579-88. [PMID: 18192284 DOI: 10.1242/dev.007047] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Overexpression of zinc finger E-box binding homeobox transcription factor 1 (Zeb1) in cancer leads to epithelial-to-mesenchymal transition (EMT) and increased metastasis. As opposed to overexpression, we show that mutation of Zeb1 in mice causes a mesenchymal-epithelial transition in gene expression characterized by ectopic expression of epithelial genes such as E-cadherin and loss of expression of mesenchymal genes such as vimentin. In contrast to rapid proliferation in cancer cells where Zeb1 is overexpressed, this mesenchymal-epithelial transition in mutant mice is associated with diminished proliferation of progenitor cells at sites of developmental defects, including the forming palate, skeleton and CNS. Zeb1 dosage-dependent deregulation of epithelial and mesenchymal genes extends to mouse embryonic fibroblasts (MEFs), and mutant MEFs also display diminished replicative capacity in culture, leading to premature senescence. Replicative senescence in MEFs is classically triggered by products of the Ink4a (Cdkn2a) gene. However, this Ink4a pathway is not activated during senescence of Zeb1 mutant MEFs. Instead, there is ectopic expression of two other cell cycle inhibitory cyclin-dependent kinase inhibitors, p15Ink4b (Cdkn2b) and p21Cdkn1a (Cdkn1a). We demonstrate that this ectopic expression of p15Ink4b extends in vivo to sites of diminished progenitor cell proliferation and developmental defects in Zeb1-null mice.
Collapse
Affiliation(s)
- Yongqing Liu
- James Graham Brown Cancer Center, Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
29
|
Adenovirus E1B55K region is required to enhance cyclin E expression for efficient viral DNA replication. J Virol 2008; 82:3415-27. [PMID: 18234796 DOI: 10.1128/jvi.01708-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adenoviruses (Ads) with E1B55K mutations can selectively replicate in and destroy cancer cells. However, the mechanism of Ad-selective replication in tumor cells is not well characterized. We have shown previously that expression of several cell cycle-regulating genes is markedly affected by the Ad E1b gene in WI-38 human lung fibroblast cells (X. Rao, et al., Virology 350:418-428, 2006). In the current study, we show that the Ad E1B55K region is required to enhance cyclin E expression and that the failure to induce cyclin E overexpression due to E1B55K mutations prevents viral DNA from undergoing efficient replication in WI-38 cells, especially when the cells are arrested in the G(0) phase of the cell cycle by serum starvation. In contrast, cyclin E induction is less dependent on the function encoded in the E1B55K region in A549 and other cancer cells that are permissive for replication of E1B55K-mutated viruses, whether the cells are in the S phase or G(0) phase. The small interfering RNA that specifically inhibits cyclin E expression partially decreased viral replication. Our study provides evidence suggesting that E1B55K may be involved in cell cycle regulation that is important for efficient viral DNA replication and that cyclin E overexpression in cancer cells may be associated with the oncolytic replication of E1B55K-mutated viruses.
Collapse
|