1
|
Zinc and Copper Ions Induce Aggregation of Human β-Crystallins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092970. [PMID: 35566320 PMCID: PMC9105653 DOI: 10.3390/molecules27092970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 11/16/2022]
Abstract
Cataracts are defined as the clouding of the lens due to the formation of insoluble protein aggregates. Metal ions exposure has been recognized as a risk factor in the cataract formation process. The γ and β crystallins are members of a larger family and share several structural features. Several studies have shown that copper and zinc ions induce the formation of γ-crystallins aggregates. However, the interaction of metal ions with β-crystallins, some of the most abundant crystallins in the lens, has not been explored until now. Here, we evaluate the effect of Cu(II) and Zn(II) ions on the aggregation of HβA1, as a representative of the acidic form, and HβB2, as a representative of the basic β-crystallins. We used several biophysical techniques and computational methods to show that Cu(II) and Zn(II) induce aggregation following different pathways. Both metal ions destabilize the proteins and impact protein folding. Copper induced a small conformational change in HβA1, leading to high-molecular-weight light-scattering aggregates, while zinc is more aggressive towards HβB2 and induces a larger conformational change. Our work provides information on the mechanisms of metal-induced aggregation of β-crystallins.
Collapse
|
2
|
Avelange-Macherel MH, Rolland A, Hinault MP, Tolleter D, Macherel D. The Mitochondrial Small Heat Shock Protein HSP22 from Pea is a Thermosoluble Chaperone Prone to Co-Precipitate with Unfolding Client Proteins. Int J Mol Sci 2019; 21:E97. [PMID: 31877784 PMCID: PMC6981728 DOI: 10.3390/ijms21010097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
The small heat shock proteins (sHSPs) are molecular chaperones that share an alpha-crystallin domain but display a high diversity of sequence, expression, and localization. They are especially prominent in plants, populating most cellular compartments. In pea, mitochondrial HSP22 is induced by heat or oxidative stress in leaves but also strongly accumulates during seed development. The molecular function of HSP22 was addressed by studying the effect of temperature on its structural properties and chaperone effects using a recombinant or native protein. Overexpression of HSP22 significantly increased bacterial thermotolerance. The secondary structure of the recombinant protein was not affected by temperature in contrast with its quaternary structure. The purified protein formed large polydisperse oligomers that dissociated upon heating (42 °C) into smaller species (mainly monomers). The recombinant protein appeared thermosoluble but precipitated with thermosensitive proteins upon heat stress in assays either with single protein clients or within complex extracts. As shown by in vitro protection assays, HSP22 at high molar ratio could partly prevent the heat aggregation of rhodanese but not of malate dehydrogenase. HSP22 appears as a holdase that could possibly prevent the aggregation of some proteins while co-precipitating with others to facilitate their subsequent refolding by disaggregases or clearance by proteases.
Collapse
Affiliation(s)
| | | | | | | | - David Macherel
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 Quasav, 42 rue George Morel, 49071 Beaucouzé, France; (M.-H.A.-M.)
| |
Collapse
|
3
|
The additive mutational effects from surface charge engineering: A compromise between enzyme activity, thermostability and ionic liquid tolerance. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Li W, Ji Q, Wei Z, Chen YL, Zhang Z, Yin X, Aghmiuni SK, Liu M, Chen W, Shi L, Chen Q, Du X, Yu L, Cao MJ, Wang Z, Huang S, Jin T, Wang Q. Biochemical characterization of G64W mutant of acidic beta-crystallin 4. Exp Eye Res 2019; 186:107712. [PMID: 31254514 DOI: 10.1016/j.exer.2019.107712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/14/2023]
Abstract
Crystallins are structural proteins in the lens that last a lifetime with little turnover. Deviant in crystallins can cause rare but severe visual impairment, namely, congenital cataracts. It is reported that several mutations in the acidic β-crystallin 4 (CRYBA4) are related to congenital cataracts. However, the pathogenesis of these mutants is not well understood at molecular level. Here we evaluate the biochemical properties of wild type CRYBA4 (CRYBA4WT) and a pathogenic G64W mutant (CRYBA4G64W) including protein folding, polymerization state and protein stability. Furthermore, we explore the differences in their interactions with α-crystallin A (CRYAA) and basic β-crystallin 1 (CRYBB1) via yeast two-hybrid and pull-down assay in vitro, through which we find that G64W mutation leads to protein misfolding, decreases protein stability, blocks its interaction with CRYBB1 but maintains its interaction with CRYAA. Our results deepen our understanding of the pathogenesis of congenital cataracts.
Collapse
Affiliation(s)
- Wenqian Li
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Qingshan Ji
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhongjie Wei
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lei Chen
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhiyong Zhang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xueying Yin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Samaneh Khodi Aghmiuni
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Muziying Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weirong Chen
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China
| | - Lei Shi
- Department of Ophthalmology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinzheng Du
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Yu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian, China
| | - Zhulou Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shaohui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Biological Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tengchuan Jin
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Science, Shanghai, China.
| | - Qiwei Wang
- Zhongshan Ophthalmic Center, Xian Lie South Road #54, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Takata T, Murakami K, Toyama A, Fujii N. Identification of Isomeric Aspartate residues in βB2-crystallin from Aged Human Lens. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:767-774. [DOI: 10.1016/j.bbapap.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
|
6
|
Serebryany E, King JA. The βγ-crystallins: native state stability and pathways to aggregation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:32-41. [PMID: 24835736 DOI: 10.1016/j.pbiomolbio.2014.05.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/26/2023]
Abstract
The βγ-crystallins are among the most stable and long-lived proteins in the human body. With increasing age, however, they transform to high molecular weight light-scattering aggregates, resulting in cataracts. This occurs despite the presence in the lens of high concentrations of the a-crystallin chaperones. Aggregation of crystallins can be induced in vitro by a variety of stresses, including acidic pH, ultraviolet light, oxidative damage, heating or freezing, and specific amino acid substitutions. Accumulating evidence points to the existence of specific biochemical pathways of protein: protein interaction and polymerization. We review the methods used for studying crystallin stability and aggregation and discuss the sometimes counterintuitive relationships between factors that favor native state stability and those that favor non-native aggregation. We discuss the behavior of βγ-crystallins in mixtures and their chaperone ability; the consequences of missense mutations and covalent damage to the side-chains; and the evolutionary strategies that have shaped these proteins. Efforts are ongoing to reveal the nature of cataractous crystallin aggregates and understand the mechanisms of aggregation in the context of key models of protein polymerization: amyloid, native-state, and domain-swapped. Such mechanistic understanding is likely to be of value for the development of therapeutic interventions and draw attention to unanswered questions about the relationship between a protein's native state stability and its transformation to an aggregated state.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
7
|
Lampi KJ, Wilmarth PA, Murray MR, David LL. Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:21-31. [PMID: 24613629 DOI: 10.1016/j.pbiomolbio.2014.02.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 11/26/2022]
Abstract
Crystallins are the major proteins in the lens of the eye and function to maintain transparency of the lens. Of the human crystallins, α, β, and γ, the β-crystallins remain the most elusive in their structural significance due to their greater number of subunits and possible oligomer formations. The β-crystallins are also heavily modified during aging. This review focuses on the functional significance of deamidation and the related modifications of racemization and isomerization, the major modifications in β-crystallins of the aged human lens. Elucidating the role of these modifications in cataract formation has been slow, because they are analytically among the most difficult post-translational modifications to study. Recent results suggest that many amides deamidate to similar extent in normal aged and cataractous lenses, while others may undergo greater deamidation in cataract. Mimicking deamidation at critical structural regions induces structural changes that disrupt the stability of the β-crystallins and lead to their aggregation in vitro. Deamidations at the surface disrupt interactions with other crystallins. Additionally, the α-crystallin chaperone is unable to completely prevent deamidated β-crystallins from insolubilization. Therefore, deamidation of β-crystallins may enhance their precipitation and light scattering in vivo contributing to cataract formation. Future experiments are needed to quantify differences in deamidation rates at all Asn and Gln residues within crystallins from aged and cataractous lenses, as well as racemization and isomerization which potentially perturb protein structure greater than deamidation alone. Quantitative data is greatly needed to investigate the importance of these major age-related modifications in cataract formation.
Collapse
Affiliation(s)
- Kirsten J Lampi
- Oregon Health & Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA.
| | - Phillip A Wilmarth
- Oregon Health & Science University, Biochemistry and Molecular Biology, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Matthew R Murray
- Oregon Health & Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA
| | - Larry L David
- Oregon Health & Science University, Biochemistry and Molecular Biology, 3181 Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
8
|
Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys. PLoS One 2013; 8:e74439. [PMID: 24040246 PMCID: PMC3764107 DOI: 10.1371/journal.pone.0074439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/01/2013] [Indexed: 11/27/2022] Open
Abstract
Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to underlie neuronal death in the Parkinson’s diseased brain and neurodegenerative diseases of the retina proper.
Collapse
|
9
|
Schafheimer N, King J. Tryptophan cluster protects human γD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol 2013; 89:1106-15. [PMID: 23683003 PMCID: PMC3823069 DOI: 10.1111/php.12096] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/12/2013] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet radiation (UVR) is a significant risk factor for age-related cataract, a disease of the human lens and the most prevalent cause of blindness in the world. Cataract pathology involves protein misfolding and aggregation of the primary proteins of the lens, the crystallins. Human γD-crystallin (HγD-Crys) is a major γ-crystallin in the nucleus of the human lens. We report here analysis of UVR-induced damage to HγD-Crys in vitro. Irradiation of solutions of recombinant HγD-Crys with UVA/UVB light produced a rise in solution turbidity due to polymerization of the monomeric crystallins into higher molecular weight aggregates. A significant fraction of this polymerized protein was covalently linked. Photoaggregation of HγD-Crys required oxygen and its rate was protein concentration and UVR dose dependent. To investigate the potential roles of individual tryptophan residues in photoaggregation, triple W:F mutants of HγD-Crys were irradiated. Surprisingly, despite reducing UVR absorbing capacity, multiple W:F HγD-Crys mutant proteins photoaggregated more quickly and extensively than wild type. The results reported here are consistent with previous studies that postulated that an energy transfer mechanism between the highly conserved pairs of tryptophan residues in HγD-Crys could be protective against UVR-induced photodamage.
Collapse
|
10
|
Georgalis Y, Braun N, Peschek J, Appavou MS. RETRACTED ARTICLE: Human recombinant α-crystallins: temperature dependence of diffusion coefficients. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2013; 42:417. [PMID: 23306588 DOI: 10.1007/s00249-012-0882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 06/01/2023]
|
11
|
Knee KM, Sergeeva OA, King JA. Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. Cell Stress Chaperones 2013; 18:137-44. [PMID: 23011926 PMCID: PMC3581623 DOI: 10.1007/s12192-012-0357-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022] Open
Abstract
Archaeal and eukaryotic cytosols contain group II chaperonins, which have a double-barrel structure and fold proteins inside a cavity in an ATP-dependent manner. The most complex of the chaperonins, the eukaryotic TCP-1 ring complex (TRiC), has eight different subunits, chaperone containing TCP-1 (CCT1-8), that are arranged so that there is one of each subunit per ring. Aspects of the structure and function of the bovine and yeast TRiC have been characterized, but studies of human TRiC have been limited. We have isolated and purified endogenous human TRiC from HeLa suspension cells. This purified human TRiC contained all eight CCT subunits organized into double-barrel rings, consistent with what has been found for bovine and yeast TRiC. The purified human TRiC is active as demonstrated by the luciferase refolding assay. As a more stringent test, the ability of human TRiC to suppress the aggregation of human γD-crystallin was examined. In addition to suppressing off-pathway aggregation, TRiC was able to assist the refolding of the crystallin molecules, an activity not found with the lens chaperone, α-crystallin. Additionally, we show that human TRiC from HeLa cell lysate is associated with the heat shock protein 70 and heat shock protein 90 chaperones. Purification of human endogenous TRiC from HeLa cells will enable further characterization of this key chaperonin, required for the reproduction of all human cells.
Collapse
Affiliation(s)
- Kelly M. Knee
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., 68-330, Cambridge, MA 02139 USA
| | - Oksana A. Sergeeva
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., 68-330, Cambridge, MA 02139 USA
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., 68-330, Cambridge, MA 02139 USA
| |
Collapse
|
12
|
Lampi KJ, Fox CB, David LL. Changes in solvent accessibility of wild-type and deamidated βB2-crystallin following complex formation with αA-crystallin. Exp Eye Res 2012; 104:48-58. [PMID: 22982024 DOI: 10.1016/j.exer.2012.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/01/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
Aberrant protein interactions can lead to aggregation and insolubilization, such as occurs during cataract formation. Deamidation, a prevalent age-related modification in the lens of the eye, decreases stability of the major lens proteins, crystallins. The mechanism of deamidation altering interactions between αA-crystallin and βB2-crystallin was investigated by detecting changes in solvent accessibility upon complex formation during heating. Solvent accessibility was determined by measuring hydrogen/deuterium exchange levels of backbone amides by high-resolution mass spectrometry. Deuterium levels in wild type βB2-crystallin increased 50-60% in both domains following complex formation with αA-crystallin. This increased solvent accessibility indicated a general loosening along the backbone amides. Peptides with the greatest deuterium increases were located at the buried monomer-monomer interface, suggesting that the βB2 dimer was disrupted. The only region where the deuterium levels decreased was in βB2 peptide 123-139, containing an outside loop, and may be a potential site of interaction with αA. Mimicking deamidation at the βB2 dimer interface prevented complex formation with αA. When temperatures were lowered, an αA/βB2 Q70E/Q162E complex formed with similar solvent accessibilities as αA/WT βB2. Deamidation did not disrupt specific αA/βB2 interactions but favored aggregation before complex formation with αA. We conclude that deamidation contributes to cataract formation through destabilization of crystallins before they can be rescued by α-crystallin.
Collapse
Affiliation(s)
- Kirsten J Lampi
- Oregon Health and Science University, Integrative Biosciences, 611 SW Campus Dr., Portland, OR 97239, USA.
| | | | | |
Collapse
|
13
|
Takata T, Smith JP, Arbogast B, David LL, Lampi KJ. Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. Exp Eye Res 2010; 91:336-46. [PMID: 20639133 PMCID: PMC2926248 DOI: 10.1016/j.exer.2010.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
In the lens of the eye the ordered arrangement of the major proteins, the crystallins, contributes to lens transparency. Members of the beta/gamma-crystallin family share common beta-sheet rich domains and hydrophobic regions at the monomer-monomer or domain-domain interfaces. Disruption of these interfaces, due to post-translational modifications, such as deamidation, decreases the stability of the crystallins. Previous experiments have failed to define the structural changes associated with this decreased stability. Using hydrogen/deuterium exchange with mass spectrometry (HDMS), deamidation-induced local structural changes in betaB2-crystallin were identified. Deamidation was mimicked by replacing glutamines with glutamic acids at homologous residues 70 and 162 in the monomer-monomer interface of the betaB2-crystallin dimer. The exchange-in of deuterium was determined from 15 s to 24 h and the global and local changes in solvent accessibility were measured. In the wild type betaB2-crystallin (WT), only about 20% of the backbone amide hydrogen was exchanged, suggesting an overall low accessibility of betaB2-crystallin in solution. This is consistent with a tightly packed domain structure observed in the crystal structure. Deuterium levels were initially greater in N-terminal domain (N-td) peptides than in homologous peptides in the C-terminal domain (C-td). The more rapid incorporation suggests a greater solvent accessibility of the N-td. In the betaB2-crystallin crystal structure, interface Gln are oriented towards their opposite domain. When deamidation was mimicked at Gln70 in the N-td, deuterium levels increased at the interface peptide in the C-td. A similar effect in the N-td was not observed when deamidation was mimicked at the homologous residue, Gln162, in the C-td. This difference in the mutants can be explained by deamidation at Gln70 disrupting the more compact C-td and increasing the solvent accessibility in the C-td interface peptides. When deamidation was mimicked at both interface Gln, deuterium incorporation increased in the C-td, similar to deamidation at Gln70 alone. In addition, deuterium incorporation was decreased in the N-td in an outside loop peptide adjacent to the mutation site. This decreased accessibility may be due to newly exposed charge groups facilitating ionic interactions or to peptides becoming more buried when other regions became more exposed. The highly sensitive HDMS methods used here detected local structural changes in solution that had not been previously identified and provide a mechanism for the associated decrease in stability due to deamidation. Changes in accessibility due to deamidation at the interface led to structural perturbations elsewhere in the protein. The cumulative effects of multiple deamidation sites perturbing the structure both locally and distant from the site of deamidation may contribute to aggregation and precipitation during aging and cataractogenesis in the lens.
Collapse
Affiliation(s)
- Takumi Takata
- Oregon Health and Science University, Integrative Biosciences, 611 SW Campus Drive, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
14
|
Acosta-Sampson L, King J. Partially folded aggregation intermediates of human gammaD-, gammaC-, and gammaS-crystallin are recognized and bound by human alphaB-crystallin chaperone. J Mol Biol 2010; 401:134-52. [PMID: 20621668 DOI: 10.1016/j.jmb.2010.05.067] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 11/16/2022]
Abstract
Human gamma-crystallins are long-lived, unusually stable proteins of the eye lens exhibiting duplicated, double Greek key domains. The lens also contains high concentrations of the small heat shock chaperone alpha-crystallin, which suppresses aggregation of model substrates in vitro. Mature-onset cataract is believed to represent an aggregated state of partially unfolded and covalently damaged crystallins. Nonetheless, the lack of cell or tissue culture for anucleate lens fibers and the insoluble state of cataract proteins have made it difficult to identify the conformation of the human gamma-crystallin substrate species recognized by human alpha-crystallin. The three major human lens monomeric gamma-crystallins, gammaD, gammaC, and gammaS, all refold in vitro in the absence of chaperones, on dilution from denaturant into buffer. However, off-pathway aggregation of the partially folded intermediates competes with productive refolding. Incubation with human alphaB-crystallin chaperone during refolding suppressed the aggregation pathways of the three human gamma-crystallin proteins. The chaperone did not dissociate or refold the aggregated chains under these conditions. The alphaB-crystallin oligomers formed long-lived stable complexes with their gammaD-crystallin substrates. Using alpha-crystallin chaperone variants lacking tryptophans, we obtained fluorescence spectra of the chaperone-substrate complex. Binding of substrate gamma-crystallins with two or three of the four buried tryptophans replaced by phenylalanines showed that the bound substrate remained in a partially folded state with neither domain native-like. These in vitro results provide support for protein unfolding/protein aggregation models for cataract, with alpha-crystallin suppressing aggregation of damaged or unfolded proteins through early adulthood but becoming saturated with advancing age.
Collapse
Affiliation(s)
- Ligia Acosta-Sampson
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-330, Cambridge, MA 02139, USA
| | | |
Collapse
|
15
|
Michiel M, Duprat E, Skouri-Panet F, Lampi JA, Tardieu A, Lampi KJ, Finet S. Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Exp Eye Res 2010; 90:688-98. [PMID: 20188088 DOI: 10.1016/j.exer.2010.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/02/2010] [Accepted: 02/16/2010] [Indexed: 11/16/2022]
Abstract
Aging of the lens is accompanied by extensive deamidation of the lens specific proteins, the crystallins. Deamidated crystallins are increased in the insoluble proteins and may contribute to cataracts. Deamidation has been shown in vitro to alter the structure and decrease the stability of human lens betaB1, betaB2 and betaA3-crystallin. Of particular interest, betaB2 mutants were constructed to mimic the effect of in vivo deamidations at the interacting interface between domains, at Q70 in the N terminal domain and at Q162, its C-terminal homologue. The double mutant was also constructed. We previously reported that deamidation at the critical interface sites decreased stability, while preserving the dimeric 3D structure. In the present study, dynamic light scattering, differential scanning calorimetry and small angle X-ray scattering were used to investigate the effect of deamidation on stability, thermal unfolding and aggregation. The bovine betaLb fraction was used for comparative analysis. The chaperone requirements of the various samples were determined using bovine alpha-crystallins as the chaperone. Deamidation at both interface Gln residues or at Q70, but not Q162, significantly lowered the temperature for unfolding and aggregation, which was rapidly followed by precipitation. This deamidation-induced aggregation and precipitation was not completely prevented by alpha-crystallin chaperone. A potential mechanism for cataract formation in vivo involving accumulation of deamidated beta-crystallin aggregates is discussed.
Collapse
Affiliation(s)
- Magalie Michiel
- Protéines, Biochimie Structurale et Fonctionnelle, CNRS-UPMC, case 29, 7 quai St Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
16
|
den Engelsman J, Boros S, Dankers PY, Kamps B, Vree Egberts WT, Böde CS, Lane LA, Aquilina JA, Benesch JL, Robinson CV, de Jong WW, Boelens WC. The Small Heat-Shock Proteins HSPB2 and HSPB3 Form Well-defined Heterooligomers in a Unique 3 to 1 Subunit Ratio. J Mol Biol 2009; 393:1022-32. [DOI: 10.1016/j.jmb.2009.08.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
|
17
|
Robinson PJ, Pinheiro TJT. The unfolding of the prion protein sheds light on the mechanisms of prion susceptibility and species barrier. Biochemistry 2009; 48:8551-8. [PMID: 19655812 DOI: 10.1021/bi901070t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prion diseases are a group of fatal neurodegenerative disorders that manifest as infectious, sporadic, or familial and are all associated with the misfolding of the prion protein (PrP). Disease-modulating polymorphisms in the PrP amino acid sequence can make an individual more or less susceptible to infection. One example is the presence of arginine in place of glutamine at position 171 in sheep, which confers resistance to scrapie. To investigate whether the physical folding properties of PrP are influenced by the presence of arginine at codon 171, we have introduced the mutation at the equivalent position (codon 167) in recombinant mouse PrP. We have then compared the unfolding properties of wild-type PrP and the Q167R mutant by monitoring the fluorescence and circular dichroism of folding-sensitive tryptophan mutants. For both wild-type PrP and the Q167R mutant the formation of secondary structure and tertiary structure is concurrent, which indicates that unfolding proceeds without the accumulation of an equilibrium intermediate. The major effect of the mutation is the destabilization of the protein as shown by the shift of the unfolding transition, which can be rationalized from high-resolution structures of PrP. Comparison of the unfolding pathways of mouse and hamster PrP highlights dramatic differences in the mechanisms of folding, which may contribute to the species barrier effect that is observed in the transmission of prion disease.
Collapse
Affiliation(s)
- Philip J Robinson
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | |
Collapse
|
18
|
Charalambous K, O'Reilly A, Bullough PA, Wallace B. Thermal and chemical unfolding and refolding of a eukaryotic sodium channel. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1788:1279-86. [PMID: 19232514 PMCID: PMC2688679 DOI: 10.1016/j.bbamem.2009.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/28/2009] [Accepted: 02/03/2009] [Indexed: 11/23/2022]
Abstract
Voltage-gated sodium channels are dynamic membrane proteins essential for signaling in nervous and muscular systems. They undergo substantial conformational changes associated with the closed, open and inactivated states. However, little information is available regarding their conformational stability. In this study circular dichroism spectroscopy was used to investigate the changes in secondary structure accompanying chemical and thermal denaturation of detergent-solubilised sodium channels isolated from Electrophorus electricus electroplax. The proteins appear to be remarkably resistant to either type of treatment, with "denatured" channels, retaining significant helical secondary structure even at 77 degrees C or in 10% SDS. Further retention of helical secondary structure at high temperature was observed in the presence of the channel-blocking tetrodotoxin. It was possible to refold the thermally-denatured (but not chemically-denatured) channels in vitro. The correctly refolded channels were capable of undergoing the toxin-induced conformational change indicative of ligand binding. In addition, flux measurements in liposomes showed that the thermally-denatured (but not chemically-denatured) proteins were able to re-adopt native, active conformations. These studies suggest that whilst sodium channels must be sufficiently flexible to undergo major conformational changes during their functional cycle, the proteins are highly resistant to unfolding, a feature that is important for maintaining structural integrity during dynamic processes.
Collapse
Affiliation(s)
- Kalypso Charalambous
- Department of Crystallography, Birkbeck College, University of London, London WC1E 7HX, UK
| | - A.O. O'Reilly
- Department of Crystallography, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Per A. Bullough
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - B.A. Wallace
- Department of Crystallography, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|
19
|
Markossian KA, Golub NV, Kleymenov SY, Muranov KO, Sholukh MV, Kurganov BI. Effect of α-crystallin on thermostability of mitochondrial aspartate aminotransferase. Int J Biol Macromol 2009; 44:441-6. [DOI: 10.1016/j.ijbiomac.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
20
|
Markossian KA, Yudin IK, Kurganov BI. Mechanism of suppression of protein aggregation by α-crystallin. Int J Mol Sci 2009; 10:1314-1345. [PMID: 19399251 PMCID: PMC2672032 DOI: 10.3390/ijms10031314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022] Open
Abstract
This review summarizes experimental data illuminating the mechanism of suppression of heat-induced protein aggregation by alpha-crystallin, one of the small heat shock proteins. The dynamic light scattering data show that the initial stage of thermal aggregation of proteins is the formation of the initial aggregates involving hundreds of molecules of the denatured protein. Further sticking of the starting aggregates proceeds in a regime of diffusion-limited cluster-cluster aggregation. The protective effect of alpha-crystallin is due to transition of the aggregation process to the regime of reaction-limited cluster-cluster aggregation, wherein the sticking probability for the colliding particles becomes lower than unity.
Collapse
Affiliation(s)
- Kira A. Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
- Author to whom correspondence should be addressed; E-Mail:
; Fax: +7 495 954 2732
| | - Igor K. Yudin
- Oil and Gas Research Institute, Russian Academy of Sciences, Gubkina st. 3, 117971, Moscow, Russia
| | - Boris I. Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
| |
Collapse
|