1
|
Smirnova EO, Lantsova NV, Hamberg M, Toporkova YY, Grechkin AN. The versatile CYP74 clan enzyme CYP440A19 from the European lancelet Branchiostoma lanceolatum biosynthesizes novel macrolactone, epoxydiene, and related oxylipins. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159507. [PMID: 38740178 DOI: 10.1016/j.bbalip.2024.159507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (Branchiostoma lanceolatum) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11S,12R,13S)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(S)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(S),10(R)-epoxy-11(E)-octadecen-13(S)-olide. In addition, (8Z)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane-water enabled the isolation of the short-lived 9,10-epoxydiene (9S,10R,11E,13E)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8Z)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by 1H-NMR, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC spectroscopy. Macrolactone and cis-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(S),10(R)-epoxy-11(E),15(Z)-octadecadiene-13(S)-olide and a minority of divinyl ethers, particularly (8Z)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.
Collapse
Affiliation(s)
- Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Mats Hamberg
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia.
| |
Collapse
|
2
|
Kurakin G. Lipoxygenase in a Giant Sulfur Bacterium: An Evolutionary Solution for Size and Complexity? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:842-845. [PMID: 37748879 DOI: 10.1134/s0006297923060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 09/27/2023]
Abstract
Discovery of Thiomargarita magnifica - an exceptionally large giant sulfur bacterium - urges us to pay additional attention to the giant sulfur bacteria and to revisit our recent bioinformatic finding of lipoxygenases in the representatives of the genus Beggiatoa. These close relatives of Thiomargarita magnifica meet the similar size requirements by forming multicellular structures. We hypothesize that their lipoxygenases are a part of the oxylipin signaling system that provides high level of cell-to-cell signaling complexity which, in turn, enables them to reach large sizes.
Collapse
Affiliation(s)
- Georgy Kurakin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
3
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
4
|
Characterization of the enzymes involved in the diol synthase metabolic pathway in Pseudomonas aeruginosa. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Aeroterrestrial and Extremophilic Microalgae as Promising Sources for Lipids and Lipid Nanoparticles in Dermal Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microscopic prokaryotic and eukaryotic algae (microalgae), which can be effectively grown in mass cultures, are gaining increasing interest in cosmetics. Up to now, the main attention was on aquatic algae, while species from aeroterrestrial and extreme environments remained underestimated. In these habitats, algae accumulate high amounts of some chemical substances or develop specific compounds, which cause them to thrive in inimical conditions. Among such biologically active molecules is a large family of lipids, which are significant constituents in living organisms and valuable ingredients in cosmetic formulations. Therefore, natural sources of lipids are increasingly in demand in the modern cosmetic industry and its innovative technologies. Among novelties in skin care products is the use of lipid nanoparticles as carriers of dermatologically active ingredients, which enhance their penetration and release in the skin strata. This review is an attempt to comprehensively cover the available literature on the high-value lipids from microalgae, which inhabit aeroterrestrial and extreme habitats (AEM). Data on different compounds of 87 species, subspecies and varieties from 53 genera (represented by more than 141 strains) from five phyla are provided and, despite some gaps in the current knowledge, demonstrate the promising potential of AEM as sources of valuable lipids for novel skin care products.
Collapse
|
6
|
Kurakin GF, Samoukina AM, Potapova NA. Bacterial and Protozoan Lipoxygenases Could be Involved in Cell-to-Cell Signaling and Immune Response Suppression. BIOCHEMISTRY (MOSCOW) 2020; 85:1048-1071. [PMID: 33050851 DOI: 10.1134/s0006297920090059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipoxygenases are found in animals, plants, and fungi, where they are involved in a wide range of cell-to-cell signaling processes. The presence of lipoxygenases in a number of bacteria and protozoa has been also established, but their biological significance remains poorly understood. Several hypothetical functions of lipoxygenases in bacteria and protozoa have been suggested without experimental validation. The objective of our study was evaluating the functions of bacterial and protozoan lipoxygenases by evolutionary and taxonomic analysis using bioinformatics tools. Lipoxygenase sequences were identified and examined using BLAST, followed by analysis of constructed phylogenetic trees and networks. Our results support the theory on the involvement of lipoxygenases in the formation of multicellular structures by microorganisms and their possible evolutionary significance in the emergence of multicellularity. Furthermore, we observed association of lipoxygenases with the suppression of host immune response by parasitic and symbiotic bacteria including dangerous opportunistic pathogens.
Collapse
Affiliation(s)
- G F Kurakin
- Department of Biochemistry and Laboratory Medicine, Tver State Medical University, Ministry of Health of the Russian Federation, Tver, 170100, Russia.
| | - A M Samoukina
- Department of Microbiology, Virology, and Immunology, Tver State Medical University, Ministry of Health of the Russian Federation, Tver, 170100, Russia
| | - N A Potapova
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
7
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
8
|
Rustgi S, Springer A, Kang C, von Wettstein D, Reinbothe C, Reinbothe S, Pollmann S. ALLENE OXIDE SYNTHASE and HYDROPEROXIDE LYASE, Two Non-Canonical Cytochrome P450s in Arabidopsis thaliana and Their Different Roles in Plant Defense. Int J Mol Sci 2019; 20:E3064. [PMID: 31234561 PMCID: PMC6627107 DOI: 10.3390/ijms20123064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2-AOS-AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, 18055 Rostock, Germany.
| | - ChulHee Kang
- Department of Chemistry, Biomolecular Crystallography Center, Washington State University, Pullman, WA 99164, USA.
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEEeSy), Université Grenoble Alpes, BP 53, CEDEX, F-38041 Grenoble, France.
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEEeSy), Université Grenoble Alpes, BP 53, CEDEX, F-38041 Grenoble, France.
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
9
|
Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:823-833. [DOI: 10.1016/j.bbalip.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
|
10
|
An JU, Song YS, Kim KR, Ko YJ, Yoon DY, Oh DK. Biotransformation of polyunsaturated fatty acids to bioactive hepoxilins and trioxilins by microbial enzymes. Nat Commun 2018; 9:128. [PMID: 29317615 PMCID: PMC5760719 DOI: 10.1038/s41467-017-02543-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/08/2017] [Indexed: 12/18/2022] Open
Abstract
Hepoxilins (HXs) and trioxilins (TrXs) are involved in physiological processes such as inflammation, insulin secretion and pain perception in human. They are metabolites of polyunsaturated fatty acids (PUFAs), including arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, formed by 12-lipoxygenase (LOX) and epoxide hydrolase (EH) expressed by mammalian cells. Here, we identify ten types of HXs and TrXs, produced by the prokaryote Myxococcus xanthus, of which six types are new, namely, HXB5, HXD3, HXE3, TrXB5, TrXD3 and TrXE3. We succeed in the biotransformation of PUFAs into eight types of HXs (>35% conversion) and TrXs (>10% conversion) by expressing M. xanthus 12-LOX or 11-LOX with or without EH in Escherichia coli. We determine 11-hydroxy-eicosatetraenoic acid, HXB3, HXB4, HXD3, TrXB3 and TrXD3 as potential peroxisome proliferator-activated receptor-γ partial agonists. These findings may facilitate physiological studies and drug development based on lipid mediators. Hepoxilins (HXs) and trioxilins (TrXs) are lipid metabolites with roles in inflammation and insulin secretion. Here, the authors discover a prokaryotic source of HXs and TrXs, identify the biosynthetic enzymes and heterologously express HXs and TrXs in E. coli.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yong-Seok Song
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kyoung-Rok Kim
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Do-Young Yoon
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Integrative Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
11
|
Kaprakkaden A, Srivastava P, Bisaria VS. In vitro synthesis of 9,10-dihydroxyhexadecanoic acid using recombinant Escherichia coli. Microb Cell Fact 2017; 16:85. [PMID: 28521794 PMCID: PMC5437634 DOI: 10.1186/s12934-017-0696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 05/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Hydroxy fatty acids are widely used in food, chemical and cosmetic industries. A variety of dihydroxy fatty acids have been synthesized so far; however, no studies have been done on the synthesis of 9,10-dihydroxyhexadecanoic acid. In the present study recombinant E. coli has been used for the heterologous expression of fatty acid hydroxylating enzymes and the whole cell lysate of the induced culture was used for in vitro production of 9,10-dihydroxyhexadecanoic acid. Results A first of its kind proof of principle has been successfully demonstrated for the production of 9,10-dihydroxyhexadecanoic acid using three different enzymes viz. fatty acid desaturase (FAD) from Saccharomyces cerevisiae, epoxide hydrolase (EH) from Caenorhabditis elegance and epoxygenase (EPOX) from Stokasia laevis. The genes for these proteins were codon-optimised, synthesised and cloned in pET 28a (+) vector. The culture conditions for induction of these three proteins in E. coli were optimised in shake flask. The induced cell lysates were used both singly and in combination along with the trans-supply of hexadecanoic acid and 9-hexadecenoic acid, followed by product profiling by GC–MS. Formation of 9,10-dihydroxyhexadecanoic acid was successfully achieved when combination of induced cell lysates of recombinant E. coli containing FAD, EH, and EPOX were incubated with 9-hexadecenoic acid. Conclusions The in vitro production of 9,10-dihydroxyhexadecanoic acid synthesis using three fatty acid modification genes from different sources has been successfully demonstrated. The strategy adopted can be used for the production of similar compounds. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0696-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anees Kaprakkaden
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.,Lac Production Division, ICAR-IINRG, Ranchi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Virendra Swarup Bisaria
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
12
|
Teder T, Boeglin WE, Schneider C, Brash AR. A fungal catalase reacts selectively with the 13S fatty acid hydroperoxide products of the adjacent lipoxygenase gene and exhibits 13S-hydroperoxide-dependent peroxidase activity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:706-715. [PMID: 28363790 DOI: 10.1016/j.bbalip.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 11/16/2022]
Abstract
The genome of the fungal plant pathogen Fusarium graminearum harbors six catalases, one of which has the sequence characteristics of a fatty acid peroxide-metabolizing catalase. We cloned and expressed this hemoprotein (designated as Fg-cat) along with its immediate neighbor, a 13S-lipoxygenase (cf. Brodhun et al., PloS One, e64919, 2013) that we considered might supply a fatty acid hydroperoxide substrate. Indeed, Fg-cat reacts abruptly with the 13S-hydroperoxide of linoleic acid (13S-HPODE) with an initial rate of 700-1300s-1. By comparison there was no reaction with 9R- or 9S-HPODEs and extremely weak reaction with 13R-HPODE (~0.5% of the rate with 13S-HPODE). Although we considered Fg-cat as a candidate for the allene oxide synthase of the jasmonate pathway in fungi, the main product formed from 13S-HPODE was identified by UV, MS, and NMR as 9-oxo-10E-12,13-cis-epoxy-octadecenoic acid (with no traces of AOS activity). The corresponding analog is formed from the 13S-hydroperoxide of α-linolenic acid along with novel diepoxy-ketones and two C13 aldehyde derivatives, the reaction mechanisms of which are proposed. In a peroxidase assay monitoring the oxidation of ABTS, Fg-cat exhibited robust activity (kcat 550s-1) using the 13S-hydroperoxy-C18 fatty acids as the oxidizing co-substrate. There was no detectable peroxidase activity using the corresponding 9S-hydroperoxides, nor with t-butyl hydroperoxide, and very weak activity with H2O2 or cumene hydroperoxide at micromolar concentrations of Fg-cat. Fg-cat and the associated lipoxygenase gene are present together in fungal genera Fusarium, Metarhizium and Fonsecaea and appear to constitute a partnership for oxidations in fungal metabolism or defense.
Collapse
Affiliation(s)
- Tarvi Teder
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Claus Schneider
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Barbosa M, Valentão P, Andrade PB. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Mar Drugs 2016; 14:23. [PMID: 26805855 PMCID: PMC4728519 DOI: 10.3390/md14010023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| |
Collapse
|
14
|
Newie J, Andreou A, Neumann P, Einsle O, Feussner I, Ficner R. Crystal structure of a lipoxygenase from Cyanothece sp. may reveal novel features for substrate acquisition. J Lipid Res 2015; 57:276-87. [PMID: 26667668 DOI: 10.1194/jlr.m064980] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes, oxidized PUFAs, so-called oxylipins, are vital signaling molecules. The first step in their biosynthesis may be catalyzed by a lipoxygenase (LOX), which forms hydroperoxides by introducing dioxygen into PUFAs. Here we characterized CspLOX1, a phylogenetically distant LOX family member from Cyanothece sp. PCC 8801 and determined its crystal structure. In addition to the classical two domains found in plant, animal, and coral LOXs, we identified an N-terminal helical extension, reminiscent of the long α-helical insertion in Pseudomonas aeruginosa LOX. In liposome flotation studies, this helical extension, rather than the β-barrel domain, was crucial for a membrane binding function. Additionally, CspLOX1 could oxygenate 1,2-diarachidonyl-sn-glycero-3-phosphocholine, suggesting that the enzyme may act directly on membranes and that fatty acids bind to the active site in a tail-first orientation. This binding mode is further supported by the fact that CspLOX1 catalyzed oxygenation at the n-10 position of both linoleic and arachidonic acid, resulting in 9R- and 11R-hydroperoxides, respectively. Together these results reveal unifying structural features of LOXs and their function. While the core of the active site is important for lipoxygenation and thus highly conserved, peripheral domains functioning in membrane and substrate binding are more variable.
Collapse
Affiliation(s)
- Julia Newie
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Alexandra Andreou
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Piotr Neumann
- Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Oliver Einsle
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ivo Feussner
- Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Georg-August-University Goettingen, 37077 Goettingen, Germany Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Ralf Ficner
- Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Georg-August-University Goettingen, 37077 Goettingen, Germany Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University Goettingen, 37077 Goettingen, Germany
| |
Collapse
|
15
|
ul Hassan MN, Zainal Z, Ismail I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:727-39. [PMID: 25865366 DOI: 10.1111/pbi.12368] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 05/25/2023]
Abstract
Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
Collapse
Affiliation(s)
- Muhammad Naeem ul Hassan
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Zamri Zainal
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| | - Ismanizan Ismail
- Faculty of Science and Technology, School of Bioscience and Biotechnology, University Kebangsaan Malaysia, Bangi, Malaysia
- Institute of Systems Biology (INBIOSIS), University Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
16
|
Stereospecific production of 9R-hydroxy-10E,12Z-octadecadienoic acid from linoleic acid by recombinant Escherichia coli cells expressing 9R-lipoxygenase from Nostoc sp. SAG 25.82. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
de Los Reyes C, Ávila-Román J, Ortega MJ, de la Jara A, García-Mauriño S, Motilva V, Zubía E. Oxylipins from the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana and their activity as TNF-α inhibitors. PHYTOCHEMISTRY 2014; 102:152-161. [PMID: 24703579 DOI: 10.1016/j.phytochem.2014.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
The chemical study of the microalgae Chlamydomonas debaryana and Nannochloropsis gaditana has led to the isolation of oxylipins. The samples of C. debaryana have yielded the compounds (4Z,7Z,9E,11S,13Z)-11-hydroxyhexadeca-4,7,9,13-tetraenoic acid (1), (4Z,7E,9E,13Z)-11-hydroxyhexadeca-4,7,9,13-tetraenoic acid (2), (4Z,6E,10Z,13Z)-8-hydroxyhexadeca-4,6,10,13-tetraenoic acid (3), (4Z,8E,10Z,13Z)-7-hydroxyhexadeca-4,8,10,13-tetraenoic acid (4), and (5E,7Z,10Z,13Z)-4-hydroxyhexadeca-5,7,10,13-tetraenoic acid (5), which are derived from the fatty acid 16:4Δ(4,7,10,13) together with the compound (5Z,9Z,11E,15Z)-13-hydroxyoctadeca-5,9,11,15-tetraenoic acid (7) derived from coniferonic acid (18:4Δ(5,9,12,15)). In addition, the known polyunsaturated hydroxy acids 11-HHT (6), (5Z,9Z,11E)-13-hydroxyoctadeca-5,9,11-trienoic acid (8), (13S)-HOTE (9), (9E,11E,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid (10), 9-HOTE (11), 12-HOTE (12), 16-HOTE (13) and (13S)-HODE (14) have also been obtained. The chemical study of N. gaditana has led to the isolation of the hydroxy acid (15S)-HEPE (15) derived from EPA (20:5Δ(5,8,11,14,17)). The structures of the isolated compounds were established by spectroscopic means. The optical activity displayed by oxylipins 1, 2, 6, 7, 9, 10, 14, and 15 suggests the occurrence of LOX-mediated pathways in C. debaryana and N. gaditana. In anti-inflammatory assays, all the tested compounds inhibited the TNF-α production in LPS-stimulated THP-1 macrophages. The most active oxylipin was the C-16 hydroxy acid 1, which at 25μM caused a 60% decrease of the TNF-α level.
Collapse
Affiliation(s)
- Carolina de Los Reyes
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Javier Ávila-Román
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María J Ortega
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Adelina de la Jara
- Instituto Tecnológico de Canarias, Playa de Pozo Izquierdo, 35119 Santa Lucía-Gran Canaria, Spain
| | - Sofía García-Mauriño
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Virginia Motilva
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Eva Zubía
- Departamento de Química Orgánica, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
18
|
Brash AR, Niraula NP, Boeglin WE, Mashhadi Z. An ancient relative of cyclooxygenase in cyanobacteria is a linoleate 10S-dioxygenase that works in tandem with a catalase-related protein with specific 10S-hydroperoxide lyase activity. J Biol Chem 2014; 289:13101-11. [PMID: 24659780 DOI: 10.1074/jbc.m114.555904] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the course of exploring the scope of catalase-related hemoprotein reactivity toward fatty acid hydroperoxides, we detected a novel candidate in the cyanobacterium Nostoc punctiforme PCC 73102. The immediate neighboring upstream gene, annotated as "cyclooxygenase-2," appeared to be a potential fatty acid heme dioxygenase. We cloned both genes and expressed the cDNAs in Escherichia coli, confirming their hemoprotein character. Oxygen electrode recordings demonstrated a rapid (>100 turnovers/s) reaction of the heme dioxygenase with oleic and linoleic acids. HPLC, including chiral column analysis, UV, and GC-MS of the oxygenated products, identified a novel 10S-dioxygenase activity. The catalase-related hemoprotein reacted rapidly and specifically with linoleate 10S-hydroperoxide (>2,500 turnovers/s) with a hydroperoxide lyase activity specific for the 10S-hydroperoxy enantiomer. The products were identified by NMR as (8E)10-oxo-decenoic acid and the C8 fragments, 1-octen-3-ol and 2Z-octen-1-ol, in ∼3:1 ratio. Chiral HPLC analysis established strict enzymatic control in formation of the 3R alcohol configuration (99% enantiomeric excess) and contrasted with racemic 1-octen-3-ol formed in reaction of linoleate 10S-hydroperoxide with hematin or ferrous ions. The Nostoc linoleate 10S-dioxygenase, the sequence of which contains the signature catalytic sequence of cyclooxygenases and fungal linoleate dioxygenases (YRWH), appears to be a heme dioxygenase ancestor. The novel activity of the lyase expands the known reactions of catalase-related proteins and functions in Nostoc in specific transformation of the 10S-hydroperoxylinoleate.
Collapse
Affiliation(s)
- Alan R Brash
- From the Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | | | | | | |
Collapse
|
19
|
Kim KR, Oh DK. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 2013; 31:1473-85. [PMID: 23860413 DOI: 10.1016/j.biotechadv.2013.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
20
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Hansen J, Garreta A, Benincasa M, Fusté MC, Busquets M, Manresa A. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 2013; 97:4737-47. [PMID: 23624657 DOI: 10.1007/s00253-013-4887-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/30/2022]
Abstract
Lipoxygenases (EC. 1.13.11.12) are a non-heme iron enzymes consisting of one polypeptide chain folded into two domains, the N-terminal domain and the catalytic moiety β-barrel domain. They catalyze the dioxygenation of 1Z,4Z-pentadiene moieties of polyunsaturated fatty acids obtaining hydroperoxy fatty acids. For years, the presence of lipoxygenases was considered a eukaryotic feature, present in mammals, plants, small marine invertebrates, and fungi, but now, some lipoxygenase sequences have been detected on prokaryotic organisms, changing the idea that lipoxygenases are exclusively a eukaryotic affair. Lipoxygenases are involved in different types of reactions on eukaryote organisms where the biological role and the structural characteristics of these enzymes are well studied. However, these aspects of the bacterial lipoxygenases have not yet been elucidated and are unknown. This revision discusses biochemical aspects, biological applications, and some characteristics of these enzymes and tries to determine the existence of a subfamily of bacterial lipoxygenases in the context of the phylogeny of prokaryotic lipoxygenases, supporting the results of phylogenetic analyzes with the comparison and discussion of structural information of the first prokaryotic lipoxygenase crystallized and other eukaryotic lipoxygenases structures.
Collapse
Affiliation(s)
- Jhoanne Hansen
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Joo YC, Oh DK. Lipoxygenases: Potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol Adv 2012; 30:1524-32. [DOI: 10.1016/j.biotechadv.2012.04.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/26/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022]
|
23
|
Extracellular production of lipoxygenase from Anabaena sp. PCC 7120 in Bacillus subtilis and its effect on wheat protein. Appl Microbiol Biotechnol 2012; 94:949-58. [DOI: 10.1007/s00253-012-3895-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
24
|
Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O'Donnell VB, Kuhn H, Walther M. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503:161-74. [PMID: 20801095 DOI: 10.1016/j.abb.2010.08.016] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Lipoxygenases (LOXs) are lipid peroxidizing enzymes, implicated in the pathogenesis of inflammatory and hyperproliferative diseases, which represent potential targets for pharmacological intervention. Although soybean LOX1 was discovered more than 60years ago, the structural biology of these enzymes was not studied until the mid 1990s. In 1993 the first crystal structure for a plant LOX was solved and following this protein biochemistry and molecular enzymology became major fields in LOX research. This review focuses on recent developments in molecular enzymology of LOXs and summarizes our current understanding of the structural basis of LOX catalysis. Various hypotheses explaining the reaction specificity of different isoforms are critically reviewed and their pros and cons briefly discussed. Moreover, we summarize the current knowledge of LOX evolution by profiling the existence of LOX-related genomic sequences in the three kingdoms of life. Such sequences are found in eukaryotes and bacteria but not in archaea. Although the biological role of LOXs in lower organisms is far from clear, sequence data suggests that this enzyme family might have evolved shortly after the appearance of atmospheric oxygen on earth.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, University Medicine Berlin - Charité, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Andreou A, Göbel C, Hamberg M, Feussner I. A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. J Biol Chem 2010; 285:14178-86. [PMID: 20223828 DOI: 10.1074/jbc.m109.094771] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoxygenases are enzymes that are found ubiquitously in higher animals and plants, but have only recently been identified in a number of bacteria. The genome of the diazotrophic unicellular cyanobacterium Cyanothece sp. harbors two genes with homology to lipoxygenases. Here we describe the isolation of one gene, formerly named csplox2. It was cloned, and the protein was expressed in Escherichia coli and purified. The purified enzyme belongs to the group of prokaryotic mini lipoxygenases, because it had a molecular mass of 65 kDa. Interestingly, it catalyzed the conversion of linoleic acid, the only endogenously found polyunsaturated fatty acid, primarily to the bisallylic hydroperoxide 11R-hydroperoxyoctadecadienoic acid. This product had previously only been described for the manganese lipoxygenase from the take all fungus, Gaeumannomyces graminis. By contrast, CspLOX2 was shown to be an iron lipoxygenase. In addition, CspLOX2 formed a mixture of typical conjugated lipoxygenase products, e.g. 9R- and 13S-hydroperoxide. The conversion of linoleic acid took place with a maximum reaction rate of 31 s(-1). Incubation of the enzyme with [(11S)-(2)H]linoleic acid led to the formation of hydroperoxides that had lost the deuterium label, thus suggesting that CspLOX2 catalyzes antarafacial oxygenation as opposed to the mechanism of manganese lipoxygenase. CspLOX2 could also oxidize diarachidonylglycerophosphatidylcholine with similar specificity as the free fatty acid, indicating that binding of the substrate takes place with a "tail-first" orientation. We conclude that CspLOX2 is a novel iron mini-lipoxygenase that catalyzes the formation of bisallylic hydroperoxide as the major product.
Collapse
Affiliation(s)
- Alexandra Andreou
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
26
|
Pakhomova S, Gao B, Boeglin WE, Brash AR, Newcomer ME. The structure and peroxidase activity of a 33-kDa catalase-related protein from Mycobacterium avium ssp. paratuberculosis. Protein Sci 2009; 18:2559-68. [PMID: 19827095 PMCID: PMC2821274 DOI: 10.1002/pro.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
True catalases are tyrosine-liganded, usually tetrameric, hemoproteins with subunit sizes of approximately 55-84 kDa. Recently characterized hemoproteins with a catalase-related structure, yet lacking in catalatic activity, include the 40-43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 A X-ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP-2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide-dependent peroxidase activity. MAP-2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (approximately 300/s) using organic hydroperoxides as co-substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial "minicatalases". Its structural features and the result of the enzyme assays support a role for MAP-2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, Louisiana
| | - Benlian Gao
- Pharmacology Department, Vanderbilt University School of MedicineNashville, Tennessee
| | - William E Boeglin
- Pharmacology Department, Vanderbilt University School of MedicineNashville, Tennessee
| | - Alan R Brash
- Pharmacology Department, Vanderbilt University School of MedicineNashville, Tennessee
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State UniversityBaton Rouge, Louisiana,*Correspondence to: Marcia E. Newcomer, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803. E-mail:
| |
Collapse
|
27
|
Tyurin VA, Tyurina YY, Jung MY, Tungekar MA, Wasserloos KJ, Bayir H, Greenberger JS, Kochanek PM, Shvedova AA, Pitt B, Kagan VE. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2863-72. [PMID: 19328050 PMCID: PMC2723191 DOI: 10.1016/j.jchromb.2009.03.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
Abstract
Oxidation of two anionic phospholipids--cardiolipin (CL) in mitochondria and phosphatidylserine (PS) in extramitochondrial compartments--is important signaling event, particularly during the execution of programmed cell death and clearance of apoptotic cells. Quantitative analysis of CL and PS oxidation products is central to understanding their molecular mechanisms of action. We combined the identification of diverse phospholipid molecular species by ESI-MS with quantitative assessments of lipid hydroperoxides using a fluorescence HPLC-based protocol. We characterized CL and PS oxidation products formed in a model system (cyt c/H(2)O(2)), in apoptotic cells (neurons, pulmonary artery endothelial cells) and mouse lung under inflammatory/oxidative stress conditions (hyperoxia, inhalation of single walled carbon nanotubes). Our results demonstrate the usefulness of this approach for quantitative assessments, identification of individual molecular species and structural characterization of anionic phospholipids that are involved in oxidative modification in cells and tissues.
Collapse
Affiliation(s)
- Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Mi-Yeon Jung
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Muhammad A. Tungekar
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Karla J. Wasserloos
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
- Critical Care Medicine, University of Pittsburgh, Pittsburgh PA
| | | | | | | | - Bruce Pitt
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh PA
- Departments of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
28
|
Andreou A, Feussner I. Lipoxygenases - Structure and reaction mechanism. PHYTOCHEMISTRY 2009; 70:1504-10. [PMID: 19767040 DOI: 10.1016/j.phytochem.2009.05.008] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 05/20/2023]
Abstract
Lipid oxidation is a common metabolic reaction in all biological systems, appearing in developmentally regulated processes and as response to abiotic and biotic stresses. Products derived from lipid oxidation processes are collectively named oxylipins. Initial lipid oxidation may either occur by chemical reactions or is derived from the action of enzymes. In plants this reaction is mainly catalyzed by lipoxygenase (LOXs) enzymes and during recent years analysis of different plant LOXs revealed insights into their enzyme mechanism. This review aims at giving an overview of concepts explaining the catalytic mechanism of LOXs as well as the different regio- and stereo-specificities of these enzymes.
Collapse
Affiliation(s)
- Alexandra Andreou
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Science, Department of Plant Biochemistry, D-37077 Göttingen, Germany
| | | |
Collapse
|
29
|
Niisuke K, Boeglin WE, Murray JJ, Schneider C, Brash AR. Biosynthesis of a linoleic acid allylic epoxide: mechanistic comparison with its chemical synthesis and leukotriene A biosynthesis. J Lipid Res 2009; 50:1448-55. [PMID: 19244216 DOI: 10.1194/jlr.m900025-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of the leukotriene A (LTA) class of epoxide is a lipoxygenase-catalyzed transformation requiring a fatty acid hydroperoxide substrate containing at least three double bonds. Here, we report on biosynthesis of a dienoic analog of LTA epoxides via a different enzymatic mechanism. Beginning with homolytic cleavage of the hydroperoxide moiety, a catalase/peroxidase-related hemoprotein from Anabaena PCC 7120, which occurs in a fusion protein with a linoleic acid 9R-lipoxygenase, dehydrates 9R-hydroperoxylinoleate to a highly unstable epoxide. Using methods we developed for isolating extremely labile compounds, we prepared and purified the epoxide and characterized its structure as 9R,10R-epoxy-octadeca-11E,13E-dienoate. This epoxide hydrolyzes to stable 9,14-diols that were reported before in linoleate autoxidation (Hamberg, M. 1983. Autoxidation of linoleic acid: Isolation and structure of four dihydroxy octadecadienoic acids. Biochim. Biophys. Acta 752: 353-356) and in incubations with the Anabaena enzyme (Lang, I., C. Göbel, A. Porzel, I. Heilmann, and I. Feussner. 2008. A lipoxygenase with linoleate diol synthase activity from Nostoc sp. PCC 7120. Biochem. J. 410: 347-357). We also prepared an equivalent epoxide from 13S-hydroperoxylinoleate using a "biomimetic" chemical method originally described for LTA(4) synthesis and showed that like LTA(4), the C18.2 epoxide conjugates readily with glutathione, a potential metabolic fate in vivo. We compare and contrast the mechanisms of LTA-type allylic epoxide synthesis by lipoxygenase, catalase/peroxidase, and chemical transformations. These findings provide new insights into the reactions of linoleic acid hydroperoxides and extend the known range of catalytic activities of catalase-related hemoproteins.
Collapse
Affiliation(s)
- Katrin Niisuke
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
30
|
Anterola A, Göbel C, Hornung E, Sellhorn G, Feussner I, Grimes H. Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. PHYTOCHEMISTRY 2009; 70:40-52. [PMID: 19131081 DOI: 10.1016/j.phytochem.2008.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/30/2008] [Accepted: 11/16/2008] [Indexed: 05/08/2023]
Abstract
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 alpha-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, alpha-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred alpha-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from alpha-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.
Collapse
Affiliation(s)
- Aldwin Anterola
- Southern Illinois University, Carbondale, IL 62901-6509, USA.
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Gao B, Boeglin WE, Brash AR. Role of the conserved distal heme asparagine of coral allene oxide synthase (Asn137) and human catalase (Asn148): mutations affect the rate but not the essential chemistry of the enzymatic transformations. Arch Biochem Biophys 2008; 477:285-90. [PMID: 18652800 DOI: 10.1016/j.abb.2008.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 11/17/2022]
Abstract
A catalase-related allene oxide synthase (cAOS) and true catalases that metabolize hydrogen peroxide have similar structure around the heme. One of the distal heme residues considered to help control catalysis is a highly conserved asparagine. Here we addressed the role of this residue in metabolism of the natural substrate 8R-hydroperoxyeicosatetraenoic acid by cAOS and in H(2)O(2) breakdown by catalase. In cAOS, the mutations N137A, N137Q, N137S, N137D, and N137H drastically reduced the rate of reaction (to 0.8-4% of wild-type), yet the mutants all formed the allene oxide as product. This is remarkable because there are many potential heme-catalyzed transformations of fatty acid hydroperoxides and special enzymatic control must be required. In human catalase, the N148A, N148S, or N148D mutations only reduced rates to approximately 20% of wild-type. The distal heme Asn is not essential in either catalase or cAOS. Its conservation throughout evolution may relate to a role in optimizing catalysis.
Collapse
Affiliation(s)
- Benlian Gao
- Department of Pharmacology and Vanderbilt Institute of Chemical Biology, Vanderbilt University, 23rd Avenue at Pierce, Nashville, TN 37232-6602, USA
| | | | | |
Collapse
|
33
|
Andreou AZ, Vanko M, Bezakova L, Feussner I. Properties of a mini 9R-lipoxygenase from Nostoc sp. PCC 7120 and its mutant forms. PHYTOCHEMISTRY 2008; 69:1832-1837. [PMID: 18439634 DOI: 10.1016/j.phytochem.2008.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/06/2008] [Accepted: 03/06/2008] [Indexed: 05/26/2023]
Abstract
Lipoxygenases (LOXs) consist of a class of enzymes that catalyze the regio- and stereospecific dioxygenation of polyunsaturated fatty acids. Current reports propose that a conserved glycine residue in the active site of R-lipoxygenases and an alanine residue at the corresponding position in S-lipoxygenases play a crucial role in determining the stereochemistry of the product. Recently, a bifunctional lipoxygenase with a linoleate diol synthase activity from Nostoc sp. PCC7120 with R stereospecificity and the so far unique feature of carrying an alanine instead of the conserved glycine in the position of the sequence determinant for chiral specificity was identified. The recombinant carboxy-terminal domain was purified after expression in Escherichia coli. The ability of the enzyme to use linoleic acid esterified to a bulky phosphatidylcholine molecule as a substrate suggested a tail-fist binding orientation of the substrate. Site directed mutagenesis of the alanine to glycine did not cause alterations in the stereospecificity of the products, while mutation of the alanine to valine or isoleucine modified both regio- and enantioselectivity of the enzyme. Kinetic measurements revealed that substitution of Ala by Gly or Val did not significantly influence the reaction characteristics, while the A162I mutant showed a reduced vmax. Based on the mutagenesis data obtained, we suggest that the existing model for stereocontrol of the lipoxygenase reaction may be expanded to include enzymes that seem to have in general a smaller amino acid in R and a bulkier one in S lipoxygenases at the position that controls stereospecificity.
Collapse
Affiliation(s)
- Alexandra-Zoi Andreou
- Georg-August-University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37085 Göttingen, Germany
| | | | | | | |
Collapse
|