1
|
Rekik H, Frikha F, Zaraî Jaouadi N, Gargouri F, Jmal N, Bejar S, Jaouadi B. Gene cloning, expression, molecular modeling and docking study of the protease SAPRH from Bacillus safensis strain RH12. Int J Biol Macromol 2018; 125:876-891. [PMID: 30557638 DOI: 10.1016/j.ijbiomac.2018.12.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
The sapRH gene, which encodes the serine alkaline protease SAPRH, from Bacillus safensis RH12, was isolated and its DNA sequence was determined. The deduced amino-acid sequence showed strong homology with other Bacillus proteases. The highest sequence identity value (97%) was obtained with SAPB from B. pumilus CBS, with only 9 amino-acids of difference. The region, encoding SAPRH was heterologously expressed in E. coli BL21-AI™ cells using GATEWAY™ pDEST™17 expression-vector. The recombinant (His)6-tag enzyme (His6-rSAPRH) was purified in a single affinity chromatography step and its biochemical properties were determined and compared to those of SAPRH and rSAPB. Interestingly, His6-rSAPRH showed improved thermostability compared to SAPRH and rSAPB. The molecular dynamics of SAPRH compared to SAPB revealed a more thermostable structure, thus confirming the in vitro results showing that His6-rSAPRH has a t1/2 of 120 min against 90 and 30 min for SAPRH and rSAPB, respectively, at 70 °C and different kinetic parameters to synthetic peptides. The docking simulations data allow in getting an insight into the involvement of some key amino-acids in substrate binding and account for the selectivity. Overall, this is the first report of a sapRH gene cloned from B. safensis which can be a promising potential candidate for future applications in detergent formulations.
Collapse
Affiliation(s)
- Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; STE JMAL (EJM)-Laundry Detergent Industry, Z.I. Avenue August 13, Z.I. Poudriere 1, P.O. Box 407, Boustene, Sfax 3000, Tunisia
| | - Fakher Frikha
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Fares Gargouri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Najah Jmal
- STE JMAL (EJM)-Laundry Detergent Industry, Z.I. Avenue August 13, Z.I. Poudriere 1, P.O. Box 407, Boustene, Sfax 3000, Tunisia
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour, Km 6, P.O. Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
2
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
3
|
Antalis TM. DESC1 and HAT Peptidases. HANDBOOK OF PROTEOLYTIC ENZYMES 2013. [PMCID: PMC7150303 DOI: 10.1016/b978-0-12-382219-2.00654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Sales KU, Hobson JP, Wagenaar-Miller R, Szabo R, Rasmussen AL, Bey A, Shah MF, Molinolo AA, Bugge TH. Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS One 2011; 6:e23261. [PMID: 21853097 PMCID: PMC3154331 DOI: 10.1371/journal.pone.0023261] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/09/2011] [Indexed: 11/18/2022] Open
Abstract
Genome mining at the turn of the millennium uncovered a new family of type II transmembrane serine proteases (TTSPs) that comprises 17 members in humans and 19 in mice. TTSPs phylogenetically belong to one of four subfamilies: matriptase, hepsin/TMPRSS, corin and HAT/DESC. Whereas a wealth of information now has been gathered as to the physiological functions of members of the hepsin/TMPRSS, matriptase, and corin subfamilies of TTSPs, comparatively little is known about the functions of the HAT/DESC subfamily of proteases. Here we perform a combined expression and functional analysis of this TTSP subfamily. We show that the five human and seven murine HAT/DESC proteases are coordinately expressed, suggesting a level of functional redundancy. We also perform a comprehensive phenotypic analysis of mice deficient in two of the most widely expressed HAT/DESC proteases, TMPRSS11A and HAT, and show that the two proteases are dispensable for development, health, and long-term survival in the absence of external challenges or additional genetic deficits. Our comprehensive expression analysis and generation of TMPRSS11A- and HAT-deficient mutant mouse strains provide a valuable resource for the scientific community for further exploration of the HAT/DESC subfamily proteases in physiological and pathological processes.
Collapse
Affiliation(s)
- Katiuchia Uzzun Sales
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John P. Hobson
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rebecca Wagenaar-Miller
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Extramural Activities, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amber L. Rasmussen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexandra Bey
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Maham F. Shah
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alfredo A. Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
5
|
Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:1-50. [PMID: 21238933 PMCID: PMC3697097 DOI: 10.1016/b978-0-12-385504-6.00001-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Serine proteases of the trypsin-like family have long been recognized to be critical effectors of biological processes as diverse as digestion, blood coagulation, fibrinolysis, and immunity. In recent years, a subgroup of these enzymes has been identified that are anchored directly to plasma membranes, either by a carboxy-terminal transmembrane domain (Type I), an amino-terminal transmembrane domain with a cytoplasmic extension (Type II or TTSP), or through a glycosylphosphatidylinositol (GPI) linkage. Recent biochemical, cellular, and in vivo analyses have now established that membrane-anchored serine proteases are key pericellular contributors to processes vital for development and the maintenance of homeostasis. This chapter reviews our current knowledge of the biological and physiological functions of these proteases, their molecular substrates, and their contributions to disease.
Collapse
Affiliation(s)
- Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
6
|
Fang JD, Chou HC, Tung HH, Huang PY, Lee SL. Endogenous expression of matriptase in neural progenitor cells promotes cell migration and neuron differentiation. J Biol Chem 2010; 286:5667-79. [PMID: 21149451 DOI: 10.1074/jbc.m110.153866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies show that type II transmembrane serine proteases play important roles in diverse cellular activities and pathological processes. Their expression and functions in the central nervous system, however, are largely unexplored. In this study, we show that the expression of one such member, matriptase (MTP), was cell type-restricted and primarily expressed in neural progenitor (NP) cells and neurons. Blocking MTP expression or MTP activity prevented NP cell traverse of reconstituted basement membrane, whereas overexpression of MTP promoted it. The NP cell mobilization induced by either vascular endothelial growth factor or hepatocyte growth factor was also impaired by knocking down MTP expression. MTP acts upstream of matrix metalloproteinase 2 in promoting NP cell mobility. In embryonic stem cell differentiation to neural cells, MTP knockdown had no effect on entry of embryonic stem cells into the neural lineage. High MTP expression or activity, however, shifts the population dynamics from NP cells toward neurons to favor neuronal differentiation. This is the first report to demonstrate the direct involvement of type II transmembrane serine protease in NP cell function.
Collapse
Affiliation(s)
- Jung-Da Fang
- Institute of Cellular and Systems Medicine, National Health Research Institution, 35 Keyan Rd, Zhunan Town, Miaoli County 35053, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J 2010; 428:325-46. [PMID: 20507279 DOI: 10.1042/bj20100046] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The serine proteases of the trypsin-like (S1) family play critical roles in many key biological processes including digestion, blood coagulation, and immunity. Members of this family contain N- or C-terminal domains that serve to tether the serine protease catalytic domain directly to the plasma membrane. These membrane-anchored serine proteases are proving to be key components of the cell machinery for activation of precursor molecules in the pericellular microenvironment, playing vital functions in the maintenance of homoeostasis. Substrates activated by membrane-anchored serine proteases include peptide hormones, growth and differentiation factors, receptors, enzymes, adhesion molecules and viral coat proteins. In addition, new insights into our understanding of the physiological functions of these proteases and their involvement in human pathology have come from animal models and patient studies. The present review discusses emerging evidence for the diversity of this fascinating group of membrane serine proteases as potent modifiers of the pericellular microenvironment through proteolytic processing of diverse substrates. We also discuss the functional consequences of the activities of these proteases on mammalian physiology and disease.
Collapse
|
8
|
Abstract
Analysis of genome and expressed sequence tag data bases at the turn of the millennium unveiled a new protease family named the type II transmembrane serine proteases (TTSPs) in a Journal of Biological Chemistry minireview (Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem. 276, 857-860). Since then, the number of known TTSPs has more than doubled, and more importantly, our understanding of the physiological functions of individual TTSPs and their contribution to human disease has greatly increased. Progress has also been made in identifying molecular substrates and endogenous inhibitors. This minireview summarizes the current knowledge of the rapidly advancing TTSP field.
Collapse
Affiliation(s)
- Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
9
|
Totta P, De Cristofaro R, Giampietri C, Aguzzi MS, Faraone D, Capogrossi MC, Facchiano A. Thrombin-mediated impairment of fibroblast growth factor-2 activity. FEBS J 2009; 276:3277-89. [PMID: 19438723 DOI: 10.1111/j.1742-4658.2009.07042.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thrombin generation increases in several pathological conditions, including cancer, thromboembolism, diabetes and myeloproliferative syndromes. During tumor development, thrombin levels increase along with several other molecules, including cytokines and angiogenic factors. Under such conditions, it is reasonable to predict that thrombin may recognize new low-affinity substrates that usually are not recognized under low-expression levels conditions. In the present study, we hypothesized that fibroblast growth factor (FGF)-2 may be cleaved by thrombin and that such action may lead to an impairment of its biological activity. The evidence collected in the present study indicates that FGF-2-induced proliferation and chemotaxis/invasion of SK-MEL-110 human melanoma cells were significantly reduced when FGF-2 was pre-incubated with active thrombin. The inhibition of proliferation was not influenced by heparin. Phe-Pro-Arg-chloromethyl ketone, a specific inhibitor of the enzymatic activity of thrombin, abolished the thrombin-induced observed effects. Accordingly, both FGF-2-binding to cell membranes as well as FGF-2-induced extracellular signal-regulated kinase phosphorylation were decreased in the presence of thrombin. Finally, HPLC analyses demonstrated that FGF-2 is cleaved by thrombin at the peptide bond between residues Arg42 and Ile43 of the mature human FGF-2 sequence. The apparent k(cat)/K(m) of FGF-2 hydrolysis was 1.1 x 10(4) M(-1) x s(-1), which is comparable to other known low-affinity thrombin substrates. Taken together, these results demonstrate that thrombin digests FGF-2 at the site Arg42-Ile43 and impairs FGF-2 activity in vitro, indicating that FGF-2 is a novel thrombin substrate.
Collapse
Affiliation(s)
- Pierangela Totta
- Laboratorio di Patologia Vascolare, IDI-IRCCS, Istituto Dermopatico dell'Immacolata-Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|