1
|
Lowder FC, Simmons LA. Bacillus subtilis encodes a discrete flap endonuclease that cleaves RNA-DNA hybrids. PLoS Genet 2023; 19:e1010585. [PMID: 37146086 PMCID: PMC10191290 DOI: 10.1371/journal.pgen.1010585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/17/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
The current model for Okazaki fragment maturation in bacteria invokes RNA cleavage by RNase H, followed by strand displacement synthesis and 5' RNA flap removal by DNA polymerase I (Pol I). RNA removal by Pol I is thought to occur through the 5'-3' flap endo/exonuclease (FEN) domain, located in the N-terminus of the protein. In addition to Pol I, many bacteria encode a second, Pol I-independent FEN. The contribution of Pol I and Pol I-independent FENs to DNA replication and genome stability remains unclear. In this work we purified Bacillus subtilis Pol I and FEN, then assayed these proteins on a variety of RNA-DNA hybrid and DNA-only substrates. We found that FEN is far more active than Pol I on nicked double-flap, 5' single flap, and nicked RNA-DNA hybrid substrates. We show that the 5' nuclease activity of B. subtilis Pol I is feeble, even during DNA synthesis when a 5' flapped substrate is formed modeling an Okazaki fragment intermediate. Examination of Pol I and FEN on DNA-only substrates shows that FEN is more active than Pol I on most substrates tested. Further experiments show that ΔpolA phenotypes are completely rescued by expressing the C-terminal polymerase domain while expression of the N-terminal 5' nuclease domain fails to complement ΔpolA. Cells lacking FEN (ΔfenA) show a phenotype in conjunction with an RNase HIII defect, providing genetic evidence for the involvement of FEN in Okazaki fragment processing. With these results, we propose a model where cells remove RNA primers using FEN while upstream Okazaki fragments are extended through synthesis by Pol I. Our model resembles Okazaki fragment processing in eukaryotes, where Pol δ catalyzes strand displacement synthesis followed by 5' flap cleavage using FEN-1. Together our work highlights the conservation of ordered steps for Okazaki fragment processing in cells ranging from bacteria to human.
Collapse
Affiliation(s)
- Frances Caroline Lowder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
McLean EK, Nye TM, Lowder FC, Simmons LA. The Impact of RNA-DNA Hybrids on Genome Integrity in Bacteria. Annu Rev Microbiol 2022; 76:461-480. [PMID: 35655343 PMCID: PMC9527769 DOI: 10.1146/annurev-micro-102521-014450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Collapse
Affiliation(s)
- Emma K McLean
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Taylor M Nye
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
- Current affiliation: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Frances C Lowder
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| | - Lyle A Simmons
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
3
|
Muzzamal H, Ul Ain Q, Saeed MS, Rashid N. Gene cloning and characterization of Tk1281, a flap endonuclease 1 from Thermococcus kodakarensis. Folia Microbiol (Praha) 2019; 65:407-415. [PMID: 31401764 DOI: 10.1007/s12223-019-00745-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/29/2019] [Indexed: 11/25/2022]
Abstract
Flap endonuclease is a structure-specific nuclease which cleaves 5'-flap of bifurcated DNA substrates. Genome sequence of Thermococcus kodakarensis harbors an open reading frame, Tk1281, exhibiting high homology with archaeal flap endonucleases 1. The corresponding gene was cloned and expressed in Escherichia coli, and the gene product was purified to apparent homogeneity. Tk1281 was a monomer of 38 kDa and catalyzed the cleavage of 5'-flap from double-stranded DNA substrate containing single-stranded DNA flap. The highest cleavage activity was observed at 80 °C and pH 7.5. Under optimal conditions, Tk1281 exhibited apparent Vmax and Km values of 278 nmol/min/mg and 37 μM, respectively, against a 54-nucleotide double-stranded substrate containing a single-stranded 5'-flap of 27 nucleotides. A unique feature of Tk1281 is its highest activation in the presence of Co2+ and no activation with Mn2+. To the best of our knowledge, this is the first cloning and characterization of a flap endonuclease from the genus Thermococcus.
Collapse
Affiliation(s)
- Hira Muzzamal
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Qurat Ul Ain
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
4
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
5
|
Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 2017; 8:15855. [PMID: 28653660 PMCID: PMC5490271 DOI: 10.1038/ncomms15855] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. Flap Endonuclease 1 is a DNA replication and repair enzyme indispensable for maintaining genomic stability. Here the authors provide mechanistic details on how FEN1 selects for 5′-flaps and promotes catalysis to avoid large-scale repeat expansion by a process termed ‘phosphate steering’.
Collapse
|
6
|
Direct observation of DNA threading in flap endonuclease complexes. Nat Struct Mol Biol 2016; 23:640-6. [PMID: 27273516 PMCID: PMC4939078 DOI: 10.1038/nsmb.3241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Maintenance of genome integrity requires that branched nucleic acid
molecules are accurately processed to produce double-helical DNA. Flap
endonucleases are essential enzymes that trim such branched molecules generated
by Okazaki fragment synthesis during replication. Here, we report crystal
structures of bacteriophage T5 flap endonuclease in complexes with intact DNA
substrates, and products, at resolutions of 1.9–2.2 Å. They reveal
single-stranded DNA threading through a hole in the enzyme enclosed by an
inverted V-shaped helical arch straddling the active site. Residues lining the
hole induce an unusual barb-like conformation in the DNA substrate juxtaposing
the scissile phosphate and essential catalytic metal ions. A series of complexes
and biochemical analyses show how the substrate’s single-stranded branch
approaches, threads through, and finally emerges on the far side of the enzyme.
Our studies suggest that substrate recognition involves an unusual
“fly-casting, thread, bend and barb” mechanism.
Collapse
|
7
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
8
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
9
|
Chan YW, Millard AD, Wheatley PJ, Holmes AB, Mohr R, Whitworth AL, Mann NH, Larkum AWD, Hess WR, Scanlan DJ, Clokie MRJ. Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina. Environ Microbiol 2015; 17:4239-52. [PMID: 25472545 DOI: 10.1111/1462-2920.12735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/26/2014] [Accepted: 11/27/2003] [Indexed: 11/28/2022]
Abstract
Acaryochloris marina is a symbiotic species of cyanobacteria that is capable of utilizing far-red light. We report the characterization of the phages A-HIS1 and A-HIS2, capable of infecting Acaryochloris. Morphological characterization of these phages places them in the family Siphoviridae. However, molecular characterization reveals that they do not show genetic similarity with any known siphoviruses. While the phages do show synteny between each other, the nucleotide identity between the phages is low at 45-67%, suggesting they diverged from each other some time ago. The greatest number of genes shared with another phage (a myovirus infecting marine Synechococcus) was four. Unlike most other cyanophages and in common with the Siphoviridae infecting Synechococcus, no photosynthesis-related genes were found in the genome. CRISPR (clustered regularly interspaced short palindromic repeats) spacers from the host Acaryochloris had partial matches to sequences found within the phages, which is the first time CRISPRs have been reported in a cyanobacterial/cyanophage system. The phages also encode a homologue of the proteobacterial RNase T. The potential function of RNase T in the mark-up or digestion of crRNA hints at a novel mechanism for evading the host CRISPR system.
Collapse
Affiliation(s)
- Yi-Wah Chan
- Warwick Systems Biology Centre, Coventry, UK
| | | | | | - Antony B Holmes
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Remus Mohr
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Nicholas H Mann
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Anthony W D Larkum
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | - Wolfgang R Hess
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martha R J Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, LE19HN, UK
| |
Collapse
|
10
|
Vaisman A, McDonald JP, Noll S, Huston D, Loeb G, Goodman MF, Woodgate R. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutat Res 2014; 761:21-33. [PMID: 24495324 DOI: 10.1016/j.mrfmmm.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/21/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
Low fidelity Escherichia coli DNA polymerase V (pol V/UmuD'2C) is best characterized for its ability to perform translesion synthesis (TLS). However, in recA730 lexA(Def) strains, the enzyme is expressed under optimal conditions allowing it to compete with the cell's replicase for access to undamaged chromosomal DNA and leads to a substantial increase in spontaneous mutagenesis. We have recently shown that a Y11A substitution in the "steric gate" residue of UmuC reduces both base and sugar selectivity of pol V, but instead of generating an increased number of spontaneous mutations, strains expressing umuC_Y11A are poorly mutable in vivo. This phenotype is attributed to efficient RNase HII-initiated repair of the misincorporated ribonucleotides that concomitantly removes adjacent misincorporated deoxyribonucleotides. We have utilized the ability of the pol V steric gate mutant to promote incorporation of large numbers of errant ribonucleotides into the E. coli genome to investigate the fundamental mechanisms underlying ribonucleotide excision repair (RER). Here, we demonstrate that RER is normally facilitated by DNA polymerase I (pol I) via classical "nick translation". In vitro, pol I displaces 1-3 nucleotides of the RNA/DNA hybrid and through its 5'→3' (exo/endo) nuclease activity releases ribo- and deoxyribonucleotides from DNA. In vivo, umuC_Y11A-dependent mutagenesis changes significantly in polymerase-deficient, or proofreading-deficient polA strains, indicating a pivotal role for pol I in ribonucleotide excision repair (RER). However, there is also considerable redundancy in the RER pathway in E. coli. Pol I's strand displacement and FLAP-exo/endonuclease activities can be facilitated by alternate enzymes, while the DNA polymerization step can be assumed by high-fidelity pol III. We conclude that RNase HII and pol I normally act to minimize the genomic instability that is generated through errant ribonucleotide incorporation, but that the "nick-translation" activities encoded by the single pol I polypeptide can be undertaken by a variety of back-up enzymes.
Collapse
Affiliation(s)
- Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - John P McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Stephan Noll
- Gene Bridges GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Donald Huston
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Gregory Loeb
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| | - Myron F Goodman
- Department of Biological Sciences and Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-2910, USA
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA.
| |
Collapse
|
11
|
Anstey-Gilbert CS, Hemsworth GR, Flemming CS, Hodskinson MRG, Zhang J, Sedelnikova SE, Stillman TJ, Sayers JR, Artymiuk PJ. The structure of Escherichia coli ExoIX--implications for DNA binding and catalysis in flap endonucleases. Nucleic Acids Res 2013; 41:8357-67. [PMID: 23821668 PMCID: PMC3783174 DOI: 10.1093/nar/gkt591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli Exonuclease IX (ExoIX), encoded by the xni gene, was the first identified member of a novel subfamily of ubiquitous flap endonucleases (FENs), which possess only one of the two catalytic metal-binding sites characteristic of other FENs. We have solved the first structure of one of these enzymes, that of ExoIX itself, at high resolution in DNA-bound and DNA-free forms. In the enzyme-DNA cocrystal, the single catalytic site binds two magnesium ions. The structures also reveal a binding site in the C-terminal domain where a potassium ion is directly coordinated by five main chain carbonyl groups, and we show this site is essential for DNA binding. This site resembles structurally and functionally the potassium sites in the human FEN1 and exonuclease 1 enzymes. Fluorescence anisotropy measurements and the crystal structures of the ExoIX:DNA complexes show that this potassium ion interacts directly with a phosphate diester in the substrate DNA.
Collapse
Affiliation(s)
- Christopher S. Anstey-Gilbert
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Glyn R. Hemsworth
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Claudia S. Flemming
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Michael R. G. Hodskinson
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jing Zhang
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Svetlana E. Sedelnikova
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Timothy J. Stillman
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jon R. Sayers
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Peter J. Artymiuk
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK and Department of Infection & Immunity, Krebs Institute, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
12
|
Li XT, Thomason LC, Sawitzke JA, Costantino N, Court DL. Bacterial DNA polymerases participate in oligonucleotide recombination. Mol Microbiol 2013; 88:906-20. [PMID: 23634873 PMCID: PMC7523544 DOI: 10.1111/mmi.12231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2013] [Indexed: 02/01/2023]
Abstract
Synthetic single-strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red-mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.
Collapse
Affiliation(s)
- Xin-tian Li
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Lynn C. Thomason
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Basic Science Program, SAIC-Frederick, Inc., Frederick, MD 21702, USA
| | - James A. Sawitzke
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nina Costantino
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Donald L. Court
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Wong IN, Sayers JR, Sanders CM. Characterization of an unusual bipolar helicase encoded by bacteriophage T5. Nucleic Acids Res 2013; 41:4587-600. [PMID: 23435232 PMCID: PMC3632103 DOI: 10.1093/nar/gkt105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T5 has a 120 kb double-stranded linear DNA genome encoding most of the genes required for its own replication. This lytic bacteriophage has a burst size of ∼500 new phage particles per infected cell, demonstrating that it is able to turn each infected bacterium into a highly efficient DNA manufacturing machine. To begin to understand DNA replication in this prodigious bacteriophage, we have characterized a putative helicase encoded by gene D2. We show that bacteriophage T5 D2 protein is the first viral helicase to be described with bipolar DNA unwinding activities that require the same core catalytic residues for unwinding in either direction. However, unwinding of partially single- and double-stranded DNA test substrates in the 3′–5′ direction is more robust and can be distinguished from the 5′–3′ activity by a number of features including helicase complex stability, salt sensitivity and the length of single-stranded DNA overhang required for initiation of helicase action. The presence of D2 in an early gene cluster, the identification of a putative helix-turn-helix DNA-binding motif outside the helicase core and homology with known eukaryotic and prokaryotic replication initiators suggest an involvement for this unusual helicase in DNA replication initiation.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of Oncology, Institute for Cancer Studies
| | | | | |
Collapse
|
14
|
Grasby JA, Finger LD, Tsutakawa SE, Atack JM, Tainer JA. Unpairing and gating: sequence-independent substrate recognition by FEN superfamily nucleases. Trends Biochem Sci 2011; 37:74-84. [PMID: 22118811 DOI: 10.1016/j.tibs.2011.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/07/2011] [Accepted: 10/14/2011] [Indexed: 01/13/2023]
Abstract
Structure-specific 5'-nucleases form a superfamily of evolutionarily conserved phosphodiesterases that catalyse a precise incision of a diverse range of DNA and RNA substrates in a sequence-independent manner. Superfamily members, such as flap endonucleases, exonuclease 1, DNA repair protein XPG, endonuclease GEN1 and the 5'-3'-exoribonucleases, play key roles in many cellular processes such as DNA replication and repair, recombination, transcription, RNA turnover and RNA interference. In this review, we discuss recent results that highlight the conserved architectures and active sites of the structure-specific 5'-nucleases. Despite substrate diversity, a common gating mechanism for sequence-independent substrate recognition and incision emerges, whereby double nucleotide unpairing of substrates is required to access the active site.
Collapse
Affiliation(s)
- Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK.
| | | | | | | | | |
Collapse
|
15
|
Tomlinson CG, Syson K, Sengerová B, Atack JM, Sayers JR, Swanson L, Tainer JA, Williams NH, Grasby JA. Neutralizing mutations of carboxylates that bind metal 2 in T5 flap endonuclease result in an enzyme that still requires two metal ions. J Biol Chem 2011; 286:30878-30887. [PMID: 21734257 DOI: 10.1074/jbc.m111.230391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Flap endonucleases (FENs) are divalent metal ion-dependent phosphodiesterases. Metallonucleases are often assigned a "two-metal ion mechanism" where both metals contact the scissile phosphate diester. The spacing of the two metal ions observed in T5FEN structures appears to preclude this mechanism. However, the overall reaction catalyzed by wild type (WT) T5FEN requires three Mg(2+) ions, implying that a third ion is needed during catalysis, and so a two-metal ion mechanism remains possible. To investigate the positions of the ions required for chemistry, a mutant T5FEN was studied where metal 2 (M2) ligands are altered to eliminate this binding site. In contrast to WT T5FEN, the overall reaction catalyzed by D201I/D204S required two ions, but over the concentration range of Mg(2+) tested, maximal rate data were fitted to a single binding isotherm. Calcium ions do not support FEN catalysis and inhibit the reactions supported by viable metal cofactors. To establish participation of ions in stabilization of enzyme-substrate complexes, dissociation constants of WT and D201I/D204S-substrate complexes were studied as a function of [Ca(2+)]. At pH 9.3 (maximal rate conditions), Ca(2+) substantially stabilized both complexes. Inhibition of viable cofactor supported reactions of WT, and D201I/D204S T5FENs was biphasic with respect to Ca(2+) and ultimately dependent on 1/[Ca(2+)](2). By varying the concentration of viable metal cofactor, Ca(2+) ions were shown to inhibit competitively displacing two catalytic ions. Combined analyses imply that M2 is not involved in chemical catalysis but plays a role in substrate binding, and thus a two-metal ion mechanism is plausible.
Collapse
Affiliation(s)
- Christopher G Tomlinson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Karl Syson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Blanka Sengerová
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - John M Atack
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Jon R Sayers
- Henry Wellcome Laboratories for Medical Research, University of Sheffield School of Medicine and Biomedical Science, Beech Hill Road, Sheffield S10 2RX, United Kingdom
| | - Linda Swanson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - John A Tainer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Nicholas H Williams
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom.
| |
Collapse
|
16
|
Xie P, Sayers JR. A model for transition of 5'-nuclease domain of DNA polymerase I from inert to active modes. PLoS One 2011; 6:e16213. [PMID: 21264264 PMCID: PMC3021548 DOI: 10.1371/journal.pone.0016213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/15/2010] [Indexed: 12/27/2022] Open
Abstract
Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of ∼930 residues, possessing DNA-dependent DNA polymerase, 3′-5′ proofreading and 5′-3′ exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5′-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5′-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5′-nuclease domain can transit from the inactive mode, with the 5′-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5′-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5′-3′ exonuclease activities. Moreover, predicted results for the latter model are presented.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jon R. Sayers
- Department of Infection and Immunity, Krebs Institute, University of Sheffield Medical School, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Predicted poxvirus FEN1-like nuclease required for homologous recombination, double-strand break repair and full-size genome formation. Proc Natl Acad Sci U S A 2009; 106:17921-6. [PMID: 19805122 DOI: 10.1073/pnas.0909529106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poxviruses encode many if not all of the proteins required for viral genome replication in the cytoplasm of the host cell. In this context, we investigated the function of the vaccinia virus G5 protein because it belongs to the FEN1-like family of nucleases and is conserved in all poxviruses. A vaccinia virus G5 deletion mutant was severely impaired, as the yield of infectious virus was reduced by approximately two orders of magnitude. The mutant virions contained an apparently normal complement of proteins but appeared spherical rather than brick-shaped and contained no detectable DNA. The inability of G5 with substitutions of the predicted catalytic aspartates to complement the deletion mutant suggested that G5 functions as a nuclease during viral DNA replication. Although the amount of viral DNA produced in the absence of G5 was similar to that made by wild-type virus, the mean size was approximately one-fourth of the genome length. Experiments with transfected plasmids showed that G5 was required for double-strand break repair by homologous recombination, suggesting a similar role during vaccinia virus genome replication.
Collapse
|