1
|
Wisniewski P, Gangnus T, Burckhardt BB. Recent advances in the discovery and development of drugs targeting the kallikrein-kinin system. J Transl Med 2024; 22:388. [PMID: 38671481 PMCID: PMC11046790 DOI: 10.1186/s12967-024-05216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.
Collapse
Affiliation(s)
- Petra Wisniewski
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
2
|
Huang M, Rueda-Garcia M, Harthorn A, Hackel BJ, Van Deventer JA. Systematic Evaluation of Protein-Small Molecule Hybrids on the Yeast Surface. ACS Chem Biol 2024; 19:325-335. [PMID: 38230650 PMCID: PMC11146673 DOI: 10.1021/acschembio.3c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Protein-small molecule hybrids are structures that have the potential to combine the inhibitory properties of small molecules and the specificities of binding proteins. However, achieving such synergies is a substantial engineering challenge with fundamental principles yet to be elucidated. Recent work has demonstrated the power of the yeast display-based discovery of hybrids using a combination of fibronectin-binding domains and thiol-mediated conjugations to introduce small-molecule warheads. Here, we systematically study the effects of expanding the chemical diversity of these hybrids on the yeast surface by investigating a combinatorial set of fibronectins, noncanonical amino acid (ncAA) substitutions, and small-molecule pharmacophores. Our results show that previously discovered thiol-fibronectin hybrids are generally tolerant of a range of ncAA substitutions and retain binding functions to carbonic anhydrases following click chemistry-mediated assembly of hybrids with diverse linker structures. Most surprisingly, we identified several cases where replacement of a potent acetazolamide warhead with a substantially weaker benzenesulfonamide warhead still resulted in the assembly of multiple functional hybrids. In addition to these unexpected findings, we expanded the throughput of our system by validating a 96-well plate-based format to produce yeast-displayed hybrid conjugates in parallel. These efficient explorations of hybrid chemical diversity demonstrate that there are abundant opportunities to expand the functions of protein-small molecule hybrids and elucidate principles that dictate their efficient discovery and design.
Collapse
Affiliation(s)
- Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Marina Rueda-Garcia
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Abbigael Harthorn
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Benjamin J. Hackel
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
- Chemical Engineering and Materials Science Department, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
3
|
Bedian V, Biris N, Omer C, Chung JK, Fuller J, Dagher R, Chandran S, Harwin P, Kiselak T, Violin J, Nichols A, Bista P. STAR-0215 is a Novel, Long-Acting Monoclonal Antibody Inhibitor of Plasma Kallikrein for the Potential Treatment of Hereditary Angioedema. J Pharmacol Exp Ther 2023; 387:214-225. [PMID: 37643795 DOI: 10.1124/jpet.123.001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare autosomal dominant disorder caused by a deficiency in functional C1 esterase inhibitor, a serpin family protein that blocks the activity of plasma kallikrein. Insufficient inhibition of plasma kallikrein results in the overproduction of bradykinin, a vasoactive inflammatory mediator that produces both pain and unpredictable swelling during HAE attacks, with potentially life-threatening consequences. We describe the generation of STAR-0215, a humanized IgG1 antibody with a long circulating half-life (t1/2) that potently inhibits plasma kallikrein activity, with a >1000-fold lower affinity for prekallikrein and no measurable inhibitory activity against other serine proteases. The high specificity and inhibitory effect of STAR-0215 is demonstrated through a unique allosteric mechanism involving N-terminal catalytic domain binding, destabilization of the activation domain, and reversion of the active site to the inactive zymogen state. The YTE (M252Y/S254T/T256E) modified fragment crystallizable (Fc) domain of STAR-0215 enhances pH-dependent neonatal Fc receptor binding, resulting in a prolonged t1/2 in vivo (∼34 days in cynomolgus monkeys) compared with antibodies without this modification. A single subcutaneous dose of STAR-0215 (≥100 mg) was predicted to be active in patients for 3 months or longer, based on simulations using a minimal physiologically based pharmacokinetic model. These data indicate that STAR-0215, a highly potent and specific antibody against plasma kallikrein with extended t1/2, is a potential agent for long-term preventative HAE therapy administered every 3 months or less frequently. SIGNIFICANCE STATEMENT: STAR-0215 is a YTE-modified immunoglobulin G1 monoclonal antibody with a novel binding mechanism that specifically and potently inhibits the enzymatic activity of plasma kallikrein and prevents the generation of bradykinin. It has been designed to be a long-lasting prophylactic treatment to prevent attacks of HAE and to decrease the burden of disease and the burden of treatment for people with HAE.
Collapse
Affiliation(s)
- Vahe Bedian
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Nikolaos Biris
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Charles Omer
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Jou-Ku Chung
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - James Fuller
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Rafif Dagher
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Sachin Chandran
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Peter Harwin
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Tomas Kiselak
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Jonathan Violin
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Andrew Nichols
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| | - Pradeep Bista
- Quellis Biosciences, Waltham, Massachusetts (V.B., C.O., P.H., T.K., J.V.); Astria Therapeutics, Inc., Boston, Massachusetts (N.B., C.O., J.K.C., R.D., S.C., J.V., A.N., P.B.); and Helix Biostructures, Indianapolis, Indiana (J.F.)
| |
Collapse
|
4
|
Pampalakis G, Zingkou E, Panagiotidis C, Sotiropoulou G. Kallikreins emerge as new regulators of viral infections. Cell Mol Life Sci 2021; 78:6735-6744. [PMID: 34459952 PMCID: PMC8404027 DOI: 10.1007/s00018-021-03922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| | - Christos Panagiotidis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| |
Collapse
|
5
|
Baldassi D, Gabold B, Merkel O. Air-liquid interface cultures of the healthy and diseased human respiratory tract: promises, challenges and future directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000111. [PMID: 34345878 PMCID: PMC7611446 DOI: 10.1002/anbr.202000111] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Air-liquid interface (ALI) culture models currently represent a valid instrument to recreate the typical aspects of the respiratory tract in vitro in both healthy and diseased state. They can help reducing the number of animal experiments, therefore, supporting the 3R principle. This review discusses ALI cultures and co-cultures derived from immortalized as well as primary cells, which are used to study the most common disorders of the respiratory tract, in terms of both pathophysiology and drug screening. The article displays ALI models used to simulate inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, cystic fibrosis, lung cancer, and viral infections. It also includes a focus on ALI cultures described in literature studying respiratory viruses such as SARS-CoV-2 causing the global Covid-19 pandemic at the time of writing this review. Additionally, commercially available models of ALI cultures are presented. Ultimately, the aim of this review is to provide a detailed overview of ALI models currently available and to critically discuss them in the context of the most prevalent diseases of the respiratory tract.
Collapse
Affiliation(s)
- Domizia Baldassi
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia Merkel
- Pharmaceutical Technology and Biopharmacy, LMU Munich Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
6
|
El Amri C. Serine Protease Inhibitors to Treat Lung Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:215-226. [PMID: 34019272 DOI: 10.1007/978-3-030-68748-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lung is a vital organ that ensures breathing function. It provides the essential interface of air filtering providing oxygen to the whole body and eliminating carbon dioxide in the blood; because of its exposure to the external environment, it is fall prey to many exogenous elements, such as pathogens, especially viral infections or environmental toxins and chemicals. These exogenous actors in addition to intrinsic disorders lead to important inflammatory responses that compromise lung tissue and normal functioning. Serine proteases regulating inflammation responses are versatile enzymes, usually involved in pro-inflammatory cytokines or other molecular mediator's production and activation of immune cells. In this chapter, an overview on major serine proteases in airway inflammation as therapeutic targets and their clinically relevant inhibitors is provided. Recent updates on serine protease inhibitors in the context of the COVID-19 pandemic are summarized.
Collapse
Affiliation(s)
- Chahrazade El Amri
- Sorbonne Université, Faculty of Sciences and Engineering, IBPS, UMR 8256 CNRS-UPMC, ERL INSERM U1164, Biological Adaptation and Ageing, Paris, France.
| |
Collapse
|
7
|
Petrova E, Hovnanian A. Advances in understanding of Netherton syndrome and therapeutic implications. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1857724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Evgeniya Petrova
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
| | - Alain Hovnanian
- Laboratory of genetic skin diseases, Université de Paris, Imagine Institute, INSERM UMR1163, Paris, France
- Departement of Genetics, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
8
|
Marceau F, Bachelard H, Charest-Morin X, Hébert J, Rivard GE. In Vitro Modeling of Bradykinin-Mediated Angioedema States. Pharmaceuticals (Basel) 2020; 13:ph13090201. [PMID: 32824891 PMCID: PMC7559923 DOI: 10.3390/ph13090201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Kinins (peptides related to bradykinin, BK) are formed from circulating substrates, the kininogens, by the action of two proteases, the kallikreins. The only clinical application of a BK receptor ligand, the B2 receptor antagonist icatibant, is the treatment of the rare hereditary angioedema (HAE) caused by the deficiency of C1-esterase inhibitor (C1-INH). Less common forms of HAE (genetic variants of factor XII, plasminogen, kininogen) are presumably mediated by increased BK formation. Acquired forms of BK-mediated angioedema, such as that associated with angiotensin-I converting enzyme (ACE) inhibition, are also known. Antibody-based analytical techniques are briefly reviewed, and support that kinins are extremely short-lived, prominently cleared by ACE. Despite evidence of continuous activation of the kallikrein–kinin system in HAE, patients are not symptomatic most of the time and their blood or plasma obtained during remission does not generate excessive immunoreactive BK (iBK), suggesting effective homeostatic mechanisms. HAE-C1-INH and HAE-FXII plasmas are both hyperresponsive to fibrinolysis activation. On another hand, we suggested a role for the alternate tissue kallikrein–kinin system in patients with a plasminogen mutation. The role of the BK B1 receptor is still uncertain in angioedema states. iBK profiles under in vitro stimulation provide fresh insight into the physiopathology of angioedema.
Collapse
Affiliation(s)
- François Marceau
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; (H.B.); (X.C.-M.)
- Correspondence:
| | - Hélène Bachelard
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; (H.B.); (X.C.-M.)
| | - Xavier Charest-Morin
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada; (H.B.); (X.C.-M.)
| | - Jacques Hébert
- Service D’allergie, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada;
| | - Georges E. Rivard
- CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada;
| |
Collapse
|
9
|
Marceau F, Rivard GE, Gauthier JM, Binkley KE, Bonnefoy A, Boccon-Gibod I, Bouillet L, Picard M, Levesque G, Elfassy HL, Bachelard H, Hébert J, Bork K. Measurement of Bradykinin Formation and Degradation in Blood Plasma: Relevance for Acquired Angioedema Associated With Angiotensin Converting Enzyme Inhibition and for Hereditary Angioedema Due to Factor XII or Plasminogen Gene Variants. Front Med (Lausanne) 2020; 7:358. [PMID: 32766265 PMCID: PMC7380097 DOI: 10.3389/fmed.2020.00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
Bradykinin (BK)-mediated angioedema (AE) states are rare acquired or hereditary conditions involving localized edema of the subcutaneous and submucosal tissues. Citrated plasma from healthy volunteers or patients with hereditary angioedema (HAE) with normal level of C1-inhibitor (C1-INH) was used to investigate pathways of BK formation and breakdown relevant to AE physiopathology. The half-life of BK (100 nM) added to normal plasma was 34 s, a value that was increased ~12-fold when the angiotensin converting enzyme (ACE) inhibitor enalaprilat (130 nM) was added (enzyme immunoassay measurements). The BK half-life was similarly increased ~5-fold following 2 daily oral doses of enalapril maleate in healthy volunteers, finding of possible relevance for the most common form of drug-associated AE. We also addressed the kinetics of immunoreactive BK (iBK) formation and decline, spontaneous or under three standardized stimuli: tissue kallikrein (KLK-1), the particulate material Kontact-APTT™ and tissue plasminogen activator (tPA). Relative to controls, iBK production was rapid (10–20 min) and very intense in response to tPA in plasma of female heterozygotes for variants in gene F12 coding for factor XII (FXII) (p.Thr328Lys, 9 patients; p.Thr328Arg, one). An increased response to Kontact-APTT™ and an early tPA-induced cleavage of anomalous FXII (immunoblots) were also observed. Biotechnological inhibitors showed that the early response to tPA was dependent on plasmin, FXIIa and plasma kallikrein. Results from post-menopausal and pre-menopausal women with HAE-FXII were indistinguishable. The iBK production profiles in seven patients with the plasminogen p.Lys330Glu variant (HAE-PLG) did not significantly differ from those of controls, except for an unexpected, rapid and lanadelumab-resistant potentiation of KLK-1 effect. This enzyme did not cleave plasminogen or factor XII, suggesting a possible idiosyncratic interaction of the plasminogen pathogenic variant with KLK-1 activity. KLK-1 abounds in salivary glands and human saliva, hypothetically correlating with the clinical presentation of HAE-PLG that includes the swelling of the tongue, lips and contiguous throat tissues. Samples from HAE patients with normal C1-INH levels and F12 gene did not produce excessive iBK in response to stimuli. The ex vivo approach provides physiopathological insight into AE states and supports the heterogeneous physiopathology of HAE with normal C1-INH.
Collapse
Affiliation(s)
- François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Georges E Rivard
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Julie M Gauthier
- Molecular Diagnostic Laboratory, Division of Medical Genetics, Department of Pediatrics, Sainte-Justine University Hospital Center, University of Montreal, Montreal, QC, Canada
| | - Karen E Binkley
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Arnaud Bonnefoy
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Boccon-Gibod
- National Reference Center for Angioedema (CREAK), Grenoble University Hospital, Grenoble, France
| | - Laurence Bouillet
- National Reference Center for Angioedema (CREAK), Grenoble University Hospital, Grenoble, France
| | - Matthieu Picard
- Service d'Immunologie Clinique etl allergie, Département de Médecine, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | | | - Hannah Laure Elfassy
- Département d'Immunologie-Allergie, Hôpital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Hélène Bachelard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jacques Hébert
- Service d'Allergie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Konrad Bork
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
10
|
Marceau F, Bachelard H, Rivard GÉ, Hébert J. Increased fibrinolysis-induced bradykinin formation in hereditary angioedema confirmed using stored plasma and biotechnological inhibitors. BMC Res Notes 2019; 12:291. [PMID: 31133046 PMCID: PMC6537381 DOI: 10.1186/s13104-019-4335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
Objective We recently investigated the pathways of immunoreactive bradykinin (iBK) formation in fresh blood of normal volunteers and of patients with hereditary angioedema due to C1-esterase inhibitor deficiency (HAE-1/-2). Herein, we adapted the techniques to small volumes (200 μl) of previously frozen citrated plasma and further analyzed the mechanisms of iBK formation with additional biotechnological inhibitors. Results Measurable iBK formation was observed under stimulation with tissue kallikrein (KLK-1, 10 nM), the particulate material Kontact-APTT (concentration reduced to 2% v/v) or recombinant tissue plasminogen activator (tPA, 169 nM), with little background in unstimulated plasma incubated for up to 2 h. Plasma samples from HAE-1/-2 patients responded earlier to tPA than those from controls, as previously reported with whole blood. Lanadelumab inhibited iBK formation induced by Kontact-APTT and tPA. A highly specific plasmin inhibitor, DX-1000, abolished tPA-induced iBK formation in plasma but had no effect against Kontact-APTT, confirming the role of fibrinolysis in tPA-induced kinin formation. The anti-lanadelumab neutralizing antibody M293-D02 reversed the inhibitory effects of lanadelumab. Frozen plasma is a suitable material for measuring iBK formation kinetics, with possible applications such as investigating the effect of rare disease states on the kallikrein–kinin system and monitoring the effect of HAE prophylactic treatments. Electronic supplementary material The online version of this article (10.1186/s13104-019-4335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada.
| | - Hélène Bachelard
- Axe Endocrinologie et Néphrologie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada
| | | | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Quebec, QC, G1V 4G2, Canada
| |
Collapse
|
11
|
Lenga Ma Bonda W, Iochmann S, Magnen M, Courty Y, Reverdiau P. Kallikrein-related peptidases in lung diseases. Biol Chem 2019; 399:959-971. [PMID: 29604204 DOI: 10.1515/hsz-2018-0114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Human tissue kallikreins (KLKs) are 15 members of the serine protease family and are present in various healthy human tissues including airway tissues. Multiple studies have revealed their crucial role in the pathophysiology of a number of chronic, infectious and tumour lung diseases. KLK1, 3 and 14 are involved in asthma pathogenesis, and KLK1 could be also associated with the exacerbation of this inflammatory disease caused by rhinovirus. KLK5 was demonstrated as an influenza virus activating protease in humans, and KLK1 and 12 could also be involved in the activation and spread of these viruses. KLKs are associated with lung cancer, with up- or downregulation of expression depending on the KLK, cancer subtype, stage of tumour and also the microenvironment. Functional studies showed that KLK12 is a potent pro-angiogenic factor. Moreover, KLK6 promotes malignant-cell proliferation and KLK13 invasiveness. In contrast, KLK8 and KLK10 reduce proliferation and invasion of malignant cells. Considering the involvement of KLKs in various physiological and pathological processes, KLKs appear to be potential biomarkers and therapeutic targets for lung diseases.
Collapse
Affiliation(s)
- Woodys Lenga Ma Bonda
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.,Université de Tours, F-37032 Tours, France
| | - Sophie Iochmann
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.,Université de Tours, F-37032 Tours, France.,IUT de Tours, Université de Tours, F-37082 Tours, France
| | - Mélia Magnen
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.,Université de Tours, F-37032 Tours, France
| | - Yves Courty
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.,Université de Tours, F-37032 Tours, France
| | - Pascale Reverdiau
- Centre d'Etude des Pathologies Respiratoires, INSERM UMR 1100, Faculté de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France.,Université de Tours, F-37032 Tours, France.,IUT de Tours, Université de Tours, F-37082 Tours, France
| |
Collapse
|
12
|
Antibodies against Schistosoma japonicum lactate dehydrogenase B enhance enzyme active. Mol Biochem Parasitol 2018; 226:1-8. [DOI: 10.1016/j.molbiopara.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022]
|
13
|
Charest-Morin X, Hébert J, Rivard GÉ, Bonnefoy A, Wagner E, Marceau F. Comparing Pathways of Bradykinin Formation in Whole Blood From Healthy Volunteers and Patients With Hereditary Angioedema Due to C1 Inhibitor Deficiency. Front Immunol 2018; 9:2183. [PMID: 30333824 PMCID: PMC6176197 DOI: 10.3389/fimmu.2018.02183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple pathways have been proposed to generate bradykinin (BK)-related peptides from blood. We applied various forms of activation to fresh blood obtained from 10 healthy subjects or 10 patients with hereditary angioedema (HAE-1 or −2 only) to investigate kinin formation. An enzyme immunoassay for BK was applied to extracts of citrated blood incubated at 37°C under gentle agitation for 0–2 h in the presence of activators and/or inhibitory agents. Biologically active kinins in extracts were corroborated by c-Fos accumulation in HEK 293a cells that express either recombinant human B2 or B1 receptors (B2R, B1R). Biological evidence of HAE diagnostic and blood cell activation was also obtained. The angiotensin converting enzyme inhibitor enalaprilat, without any effect per se, increased immunoreactive BK (iBK) concentration under active stimulation of blood. Tissue kallikrein (KLK-1) and Kontact-APTT, a particulate material that activates the contact system, rapidly (5 min) and intensely (>100 ng/mL) induced similar iBK generation in the blood of control or HAE subjects. Tissue plasminogen activator (tPA) slowly (≥1 h) induced iBK generation in control blood, but more rapidly and intensely so in that of HAE patients. Effects of biotechnological inhibitors indicate that tPA recruits factor XIIa (FXIIa) and plasma kallikrein to generate iBK. KLK-1, independent of the contact system, is the only stimulus leading to an inconsistent B1R stimulation. Stimulating neutrophils or platelets did not generate iBK. In the HAE patients observed during remission, iBK formation capability coupled to B2R stimulation appears largely intact. However, a selective hypersensitivity to tPA in the blood of HAE patients suggests a role of plasmin-activated FXIIa in the development of attacks. Proposed pathways of kinin formation dependent on blood cell activation were not corroborated.
Collapse
Affiliation(s)
- Xavier Charest-Morin
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jacques Hébert
- Service d'allergie, CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - Arnaud Bonnefoy
- Division of Hematology/Oncology, CHU Sainte-Justine, Montréal, QC, Canada
| | - Eric Wagner
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| | - François Marceau
- Axe Microbiologie-Infectiologie et Immunologie, CHU de Québec-Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
Loessner D, Goettig P, Preis S, Felber J, Bronger H, Clements JA, Dorn J, Magdolen V. Kallikrein-related peptidases represent attractive therapeutic targets for ovarian cancer. Expert Opin Ther Targets 2018; 22:745-763. [PMID: 30114962 DOI: 10.1080/14728222.2018.1512587] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Aberrant levels of kallikrein-related peptidases (KLK1-15) have been linked to cancer cell proliferation, invasion and metastasis. In ovarian cancer, the KLK proteolytic network has a crucial role in the tissue and tumor microenvironment. Publically available ovarian cancer genome and expression data from multiple patient cohorts show an upregulation of most KLKs. Areas covered: Here, we review the expression levels of all 15 members of this family in normal and ovarian cancer tissues, categorizing them into highly and moderately or weakly expressed KLKs, and their association with patient prognosis and survival. We summarize their tumor-biological functions determined in cell-based assays and xenograft models, further highlighting their suitability as cancer biomarkers and attractive candidates for drug development. Finally, we discuss some different pharmaceutical approaches, including peptide-based and small molecule inhibitors, cyclic peptides, depsipeptides, engineered natural inhibitors, antibodies, RNA/DNA-based aptamers, prodrugs, miRNA and siRNA. Expert opinion: In light of the results from clinical and tumor-biological studies, together with the available pharmaceutical tools, we suggest KLK4, KLK5, KLK6 and possibly KLK7 as preferred targets for inhibition in ovarian cancer.
Collapse
Affiliation(s)
- Daniela Loessner
- a Barts Cancer Institute , Queen Mary University of London , London , UK.,b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia
| | - Peter Goettig
- c Department of Biosciences , University of Salzburg , Salzburg , Austria
| | - Sarah Preis
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Johanna Felber
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Holger Bronger
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Judith A Clements
- b Institute of Health and Biomedical Innovation , Queensland University of Technology (QUT) , Brisbane , Australia.,e Australian Prostate Cancer Research Centre - Queensland , Queensland University of Technology (QUT), Translational Research Institute , Brisbane , Australia
| | - Julia Dorn
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| | - Viktor Magdolen
- d Department of Obstetrics and Gynecology , Technical University of Munich , Munich , Germany
| |
Collapse
|
15
|
Duran AFA, Neves LDP, da Silva FRS, Machado GC, Ferreira GC, Lourenço JD, Tanaka AS, Martins MDA, Lopes FDTQS, Sasaki SD. rBmTI-6 attenuates pathophysiological and inflammatory parameters of induced emphysema in mice. Int J Biol Macromol 2018; 111:1214-1221. [PMID: 29339284 DOI: 10.1016/j.ijbiomac.2018.01.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Protease/anti-protease imbalance is the main pathogenic mechanism of emphysema and protease inhibitors have been recognized as potential molecules to treat the disease conditions. In this work the rBmTI-6 first domain (rBmTI-6-D1), a recombinant Kunitz-type serine proteinase inhibitor, was used to verify its effect in prevention or minimization of PPE-induced emphysema in mice. C57BL/6 mice were submitted to a PPE-induced emphysema model and treated with rBmTI-6-D1 before the emphysema development. We showed that the rBmTI-6-D1 treatment was sufficient to avoid the loss of elastic recoil, an effective decrease in alveolar enlargement and in the number of macrophages and lymphocytes in bronchoalveolar lavage fluid. Proteolytic analysis showed a significant increase in elastase activity in PPE-VE (induced emphysema) group that is controlled by rBmTI-6-D1. Kallikrein activity was decreased in the PPE-rBmTI6 (induced emphysema and inhibitor treated) group when compared to PPE-VE group. Although rBmTI-6-D1, did not present a neutrophil elastase (NE) inhibitory activity, the results show that the inhibitor interfered in the pathway of NE secretion in PPE-emphysema mice model. The role of rBmTI-6-D1 in the prevention of emphysema development in the mice model, apparently, is related with a control of inflammatory response due the trypsin/kallikrein inhibitory activity of rBmTI-6-D1.
Collapse
Affiliation(s)
| | - Luana de Paiva Neves
- Centro de Ciências Naturais e Humanas, UFABC, São Bernardo do Campo, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas, UFABC, São Bernardo do Campo, São Paulo, Brazil.
| |
Collapse
|
16
|
Kenniston JA, Taylor BM, Conley GP, Cosic J, Kopacz KJ, Lindberg AP, Comeau SR, Atkins K, Bullen J, TenHoor C, Adelman BA, Sexton DJ, Edwards TE, Nixon AE. Structural basis for pH-insensitive inhibition of immunoglobulin G recycling by an anti-neonatal Fc receptor antibody. J Biol Chem 2017; 292:17449-17460. [PMID: 28878017 DOI: 10.1074/jbc.m117.807396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
The neonatal Fc receptor FcRn plays a critical role in the trafficking of IgGs across tissue barriers and in retaining high circulating concentrations of both IgG and albumin. Although generally beneficial from an immunological perspective in maintaining IgG populations, FcRn can contribute to the pathogenesis of autoimmune disorders when an abnormal immune response targets normal biological components. We previously described a monoclonal antibody (DX-2507) that binds to FcRn with high affinity at both neutral and acidic pH, prevents the simultaneous binding of IgG, and reduces circulating IgG levels in preclinical animal models. Here, we report a 2.5 Å resolution X-ray crystal structure of an FcRn-DX-2507 Fab complex, revealing a nearly complete overlap of the IgG-Fc binding site in FcRn by complementarity-determining regions in DX-2507. This overlap explains how DX-2507 blocks IgG binding to FcRn and thereby shortens IgG half-life by preventing IgGs from recycling back into circulation. Moreover, the complex structure explains how the DX-2507 interaction is pH-insensitive unlike normal Fc interactions and how serum albumin levels are unaffected by DX-2507 binding. These structural studies could inform antibody-based therapeutic approaches for limiting the effects of IgG-mediated autoimmune disease.
Collapse
Affiliation(s)
- Jon A Kenniston
- From Shire, Lexington, Massachusetts 02421, .,Dyax Corp., Burlington, Massachusetts 01803
| | - Brandy M Taylor
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, and
| | | | | | | | | | | | - Kateri Atkins
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, and
| | - Jameson Bullen
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, and
| | | | | | | | - Thomas E Edwards
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, and
| | | |
Collapse
|
17
|
Masurier N, Arama DP, El Amri C, Lisowski V. Inhibitors of kallikrein-related peptidases: An overview. Med Res Rev 2017; 38:655-683. [DOI: 10.1002/med.21451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/24/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Dominique P. Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256; Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology; Paris France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS; Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques; Montpellier Cedex France
| |
Collapse
|
18
|
Li K, Gesang L, Dan Z, Gusang L. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia. Int J Mol Med 2016; 39:287-296. [PMID: 28000848 PMCID: PMC5358693 DOI: 10.3892/ijmm.2016.2830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.
Collapse
Affiliation(s)
- Kang Li
- High Altitude Medical Research Institute, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Luobu Gesang
- High Altitude Medical Research Institute, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Zeng Dan
- Department of Gastroenterology, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| | - Lamu Gusang
- Department of Cardiology, People's Hospital of Tibet Autonomous Region, Lhasa 850000, P.R. China
| |
Collapse
|
19
|
The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2015; 122:283-99. [PMID: 26343558 DOI: 10.1016/j.biochi.2015.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/07/2023]
Abstract
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Collapse
|
20
|
Aztatzi-Aguilar OG, Uribe-Ramírez M, Arias-Montaño JA, Barbier O, De Vizcaya-Ruiz A. Acute and subchronic exposure to air particulate matter induces expression of angiotensin and bradykinin-related genes in the lungs and heart: Angiotensin-II type-I receptor as a molecular target of particulate matter exposure. Part Fibre Toxicol 2015; 12:17. [PMID: 26113123 PMCID: PMC4482198 DOI: 10.1186/s12989-015-0094-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/15/2015] [Indexed: 01/03/2023] Open
Abstract
Background Particulate matter (PM) adverse effects on health include lung and heart damage. The renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) endocrine systems are involved in the pathophysiology of cardiovascular diseases and have been found to impact lung diseases. The aim of the present study was to evaluate whether PM exposure regulates elements of RAAS and KKS. Methods Sprague–Dawley rats were acutely (3 days) and subchronically (8 weeks) exposed to coarse (CP), fine (FP) or ultrafine (UFP) particulates using a particulate concentrator, and a control group exposed to filtered air (FA). We evaluated the mRNA of the RAAS components At1, At2r and Ace, and of the KKS components B1r, B2r and Klk-1 by RT-PCR in the lungs and heart. The ACE and AT1R protein were evaluated by Western blot, as were HO-1 and γGCSc as indicators of the antioxidant response and IL-6 levels as an inflammation marker. We performed a binding assay to determinate AT1R density in the lung, also the subcellular AT1R distribution in the lungs was evaluated. Finally, we performed a histological analysis of intramyocardial coronary arteries and the expression of markers of heart gene reprogramming (Acta1 and Col3a1). Results The PM fractions induced the expression of RAAS and KKS elements in the lungs and heart in a time-dependent manner. CP exposure induced Ace mRNA expression and regulated its protein in the lungs. Acute and subchronic exposure to FP and UFP induced the expression of At1r in the lungs and heart. All PM fractions increased the AT1R protein in a size-dependent manner in the lungs and heart after subchronic exposure. The AT1R lung protein showed a time-dependent change in subcellular distribution. In addition, the presence of AT1R in the heart was accompanied by a decrease in HO-1, which was concomitant with the induction of Acta1 and Col3a1 and the increment of IL-6. Moreover, exposure to all PM fractions increased coronary artery wall thickness. Conclusion We demonstrate that exposure to PM induces the expression of RAAS and KKS elements, including AT1R, which was the main target in the lungs and the heart.
Collapse
Affiliation(s)
- Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - José Antonio Arias-Montaño
- Departamento de Fisiología, Neurociencias y Biofísica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, C.P. 07360, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional, 2508, México D. F, CP. 07360, Mexico.
| |
Collapse
|
21
|
Nixon AE, Chen J, Sexton DJ, Muruganandam A, Bitonti AJ, Dumont J, Viswanathan M, Martik D, Wassaf D, Mezo A, Wood CR, Biedenkapp JC, TenHoor C. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates. Front Immunol 2015; 6:176. [PMID: 25954273 PMCID: PMC4407741 DOI: 10.3389/fimmu.2015.00176] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/29/2015] [Indexed: 12/24/2022] Open
Abstract
The therapeutic management of antibody-mediated autoimmune disease typically involves immunosuppressant and immunomodulatory strategies. However, perturbing the fundamental role of the neonatal Fc receptor (FcRn) in salvaging IgG from lysosomal degradation provides a novel approach - depleting the body of pathogenic immunoglobulin by preventing IgG binding to FcRn and thereby increasing the rate of IgG catabolism. Herein, we describe the discovery and preclinical evaluation of fully human monoclonal IgG antibody inhibitors of FcRn. Using phage display, we identified several potent inhibitors of human-FcRn in which binding to FcRn is pH-independent, with over 1000-fold higher affinity for human-FcRn than human IgG-Fc at pH 7.4. FcRn antagonism in vivo using a human-FcRn knock-in transgenic mouse model caused enhanced catabolism of exogenously administered human IgG. In non-human primates, we observed reductions in endogenous circulating IgG of >60% with no changes in albumin, IgM, or IgA. FcRn antagonism did not disrupt the ability of non-human primates to mount IgM/IgG primary and secondary immune responses. Interestingly, the therapeutic anti-FcRn antibodies had a short serum half-life but caused a prolonged reduction in IgG levels. This may be explained by the high affinity of the antibodies to FcRn at both acidic and neutral pH. These results provide important preclinical proof of concept data in support of FcRn antagonism as a novel approach to the treatment of antibody-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | - Jie Chen
- Dyax Corp. , Burlington, MA , USA
| | | | | | - Alan J Bitonti
- Syntonix Pharmaceuticals (a wholly-owned subsidiary of Biogen Idec.) , Waltham, MA , USA
| | | | | | | | | | - Adam Mezo
- Syntonix Pharmaceuticals (a wholly-owned subsidiary of Biogen Idec.) , Waltham, MA , USA
| | | | | | | |
Collapse
|
22
|
Cereda V, Formica V, Menghi A, Pellicori S, Roselli M. Kallikrein-related peptidases targeted therapies in prostate cancer: perspectives and challenges. Expert Opin Investig Drugs 2015; 24:929-47. [PMID: 25858813 DOI: 10.1517/13543784.2015.1035708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Despite the emergence of several new effective treatments for metastatic castration-resistant prostate cancer patients, disease progression inevitably occurs, leading scientific community to carefully look for novel therapeutic targets of prostate cancer. Kallikrein (KLK)-related peptidases have been demonstrated to facilitate prostate tumorigenesis and disease progression through the development of an oncogenic microenvironment for prostate cells. AREAS COVERED This review first summarizes the large amount of preclinical data showing the involvement of KLKs in prostate cancer pathobiology. In the second part, the authors assess the current status and future directions for KLK-targeted therapy and briefly describe the advances and challenges implicated in the design of effective manufactured drugs. The authors then focus on the preclinical data and on Phase I/II studies of the most promising KLK-targeted agents in prostate cancer. The drugs discussed here are divided on the basis of their mechanism of action: KLK-engineered inhibitors; KLK-activated pro-drugs; KLK-targeted microRNAs and small interfering RNAs(-/)small hairpin RNAs; KLK vaccines and antibodies. EXPERT OPINION Targeting KLK expression and/or activity could be a promising direction in prostate cancer treatment. Future human clinical trials will help us to evaluate the real benefits, toxicities and the consequent optimal use of KLK-targeted drugs, as mono-therapy or in combination regimens.
Collapse
Affiliation(s)
- Vittore Cereda
- 1 University of Rome Tor Vergata, Tor Vergata University Clinical Center, Department of Systems Medicine, Medical Oncology , Viale Oxford 81, 00133 Rome , Italy +39 0620908190 ; +39 0620903504 ;
| | | | | | | | | |
Collapse
|
23
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Kenniston JA, Faucette RR, Martik D, Comeau SR, Lindberg AP, Kopacz KJ, Conley GP, Chen J, Viswanathan M, Kastrapeli N, Cosic J, Mason S, DiLeo M, Abendroth J, Kuzmic P, Ladner RC, Edwards TE, TenHoor C, Adelman BA, Nixon AE, Sexton DJ. Inhibition of plasma kallikrein by a highly specific active site blocking antibody. J Biol Chem 2014; 289:23596-608. [PMID: 24970892 PMCID: PMC4156074 DOI: 10.1074/jbc.m114.569061] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma kallikrein (pKal) proteolytically cleaves high molecular weight kininogen to generate the potent vasodilator and the pro-inflammatory peptide, bradykinin. pKal activity is tightly regulated in healthy individuals by the serpin C1-inhibitor, but individuals with hereditary angioedema (HAE) are deficient in C1-inhibitor and consequently exhibit excessive bradykinin generation that in turn causes debilitating and potentially fatal swelling attacks. To develop a potential therapeutic agent for HAE and other pKal-mediated disorders, we used phage display to discover a fully human IgG1 monoclonal antibody (DX-2930) against pKal. In vitro experiments demonstrated that DX-2930 potently inhibits active pKal (Ki = 0.120 ± 0.005 nm) but does not target either the zymogen (prekallikrein) or any other serine protease tested. These findings are supported by a 2.1-Å resolution crystal structure of pKal complexed to a DX-2930 Fab construct, which establishes that the pKal active site is fully occluded by the antibody. DX-2930 injected subcutaneously into cynomolgus monkeys exhibited a long half-life (t½ ∼12.5 days) and blocked high molecular weight kininogen proteolysis in activated plasma in a dose- and time-dependent manner. Furthermore, subcutaneous DX-2930 reduced carrageenan-induced paw edema in rats. A potent and long acting inhibitor of pKal activity could be an effective treatment option for pKal-mediated diseases, such as HAE.
Collapse
Affiliation(s)
| | | | - Diana Martik
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Kris J Kopacz
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | - Jie Chen
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | - Janja Cosic
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Shauna Mason
- From the Dyax Corp., Burlington, Massachusetts 01803
| | - Mike DiLeo
- From the Dyax Corp., Burlington, Massachusetts 01803
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opin Ther Targets 2014; 18:365-83. [PMID: 24571737 DOI: 10.1517/14728222.2014.880693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Antoniu SA. Monoclonal antibodies for asthma and chronic obstructive pulmonary disease. Expert Opin Biol Ther 2013; 13:257-68. [PMID: 23282002 DOI: 10.1517/14712598.2012.758247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In asthma and chronic obstructive pulmonary disease (COPD), the inflammation in the airways cannot always be controlled with conventional therapies, such as inhaled corticosteroids. Addition of more specific anti-inflammatory therapies, such as monoclonal antibodies, against inflammation pathways might improve the disease outcome. AREAS COVERED This review individually discusses the major inflammation pathways and their potential blocking monoclonal antibodies in asthma and COPD. EXPERT OPINION The current use of omalizumab in asthma provides a good example on the potential therapeutic role of monoclonal antibodies in both asthma and COPD. There are many other monoclonal antibodies which are currently investigated as possible therapies in these diseases. The identification of the disease subsets in which such antibodies might exert the maximum benefit opens the door for personalized medicine and for targeted biological therapy in asthma and COPD.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- University of Medicine and Pharmacy, Pulmonary Disease University Hospital, Division of Pulmonary Disease, Iasi 700115, Romania.
| |
Collapse
|
27
|
Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci 2012; 33:623-34. [PMID: 23089221 DOI: 10.1016/j.tips.2012.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022]
Abstract
Kallikrein-related peptidases (KLKs) constitute a family of 15 serine proteases. Recent studies have shed light on key physiological functions of KLK enzymes and implicate their deregulation in major human pathologies such as neurodegenerative and inflammatory diseases, skin conditions, asthma, and cancer. Consequently, KLKs have emerged as novel targets for pharmacological intervention. Given the pleiotropic roles of KLKs, both activators and inhibitors of KLK activities are of therapeutic interest. For example, inhibitors of hyperactive KLKs in the epidermis would be effective against excess skin desquamation and inflammation, whereas KLK activators could benefit hyperkeratosis caused by diminished KLK proteolysis. Expression of active KLKs by cancer cells and tissues can be exploited to target prodrugs that are proteolytically cleaved to release a cytotoxic compound or a cytolytic toxin at the site of KLK protease activity. Here, we review current approaches for the design and testing of KLK-based therapeutics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Greece.
| | | |
Collapse
|
28
|
Abstract
Antibodies display great versatility in protein interactions and have become important therapeutic agents for a variety of human diseases. Their ability to discriminate between highly conserved sequences could be of great use for therapeutic approaches that target proteases, for which structural features are conserved among family members. Recent crystal structures of antibody-protease complexes provide exciting insight into the variety of ways antibodies can interfere with the catalytic machinery of serine proteases. The studies revealed the molecular details of two fundamental mechanisms by which antibodies inhibit catalysis of trypsin-like serine proteases, exemplified by hepatocyte growth factor activator and MT-SP1 (matriptase). Enzyme kinetics defines both mechanisms as competitive inhibition systems, yet, on the molecular level, they involve distinct structural elements of the active-site region. In the steric hindrance mechanism, the antibody binds to protruding surface loops and inserts one or two CDR (complementarity-determining region) loops into the enzyme's substrate-binding cleft, which results in obstruction of substrate access. In the allosteric inhibition mechanism the antibody binds outside the active site at the periphery of the substrate-binding cleft and, mediated through a conformational change of a surface loop, imposes structural changes at important substrate interaction sites resulting in impaired catalysis. At the centre of this allosteric mechanism is the 99-loop, which is sandwiched between the substrate and the antibody-binding sites and serves as a mobile conduit between these sites. These findings provide comprehensive structural and functional insight into the molecular versatility of antibodies for interfering with the catalytic machinery of proteases.
Collapse
|
29
|
Goettig P, Magdolen V, Brandstetter H. Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs). Biochimie 2010; 92:1546-67. [PMID: 20615447 PMCID: PMC3014083 DOI: 10.1016/j.biochi.2010.06.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 06/29/2010] [Indexed: 01/21/2023]
Abstract
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn(2+) ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α(2)-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria.
| | | | | |
Collapse
|
30
|
Scott CJ, Taggart CC. Biologic protease inhibitors as novel therapeutic agents. Biochimie 2010; 92:1681-8. [PMID: 20346385 DOI: 10.1016/j.biochi.2010.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/16/2010] [Indexed: 12/23/2022]
Abstract
Deregulated proteolytic activities frequently have causative or exacerbative functions in pathological conditions such as cancer and inflammatory disease. Many proteases therefore represent therapeutic targets, but the generation of successful small molecule drugs is often limited by the ability to achieve sufficient specificity of action. Consequently, several proteases have been deemed as unsuitable drug targets due to the inability to target them successfully. In an effort to circumvent these issues, much interest has recently focused on the development and application of biologic inhibitors. In this review, the latest research in the development of biologic protease inhibitors is examined. This includes a review of engineered kunitz and other inhibitory domains as well as the application of antibodies as therapeutically viable inhibitors.
Collapse
Affiliation(s)
- Christopher J Scott
- Molecular Therapeutics, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | | |
Collapse
|