1
|
Zeng R, Wang L, Zhang Y, Yang Y, Yang J, Qin Y. Exploring the immunological role and prognostic potential of PPM1M in pan-cancer. Medicine (Baltimore) 2023; 102:e32758. [PMID: 36961170 PMCID: PMC10036021 DOI: 10.1097/md.0000000000032758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND PPM1M is a member of the metal-dependent protein phosphatase family, and its role in the immunization process has not been studied in depth. In this study, we investigated the role of PPM1M in pan-cancer. METHODS Samples of cancer and normal tissues were obtained from the cancer genome atlas and genotype-tissue expression. Kaplan-Meier survival curves and Cox regression were used to analyze the effect of PPM1M on prognosis. Functional and pathway enrichment analyses were performed using the R package "clusterProfiler" to explore the role of PPM1M. The Sanger Box database was used to analyze the relationship between PPM1M and tumor immune checkpoint, tumor mutational burden, and microsatellite instability. The Tumor Immune Estimation Resource 2 database and CIBERSORT method were used to analyze the relationship between PPM1M and tumor-infiltrating immune cells. Finally, the cBioPortal database was used to analyze the genomic variation in PPM1M. RESULTS Among the variety of tumors, the expression of PPM1M was higher in normal tissues than in cancerous tissues. The expression of PPM1M is closely associated with patient prognosis, tumor immune checkpoint, tumor mutational burden, and microsatellite instability. PPM1M is closely associated with the infiltration of immune cells into the tumor microenvironment. In addition, PPM1M is involved in the regulation of several immune-related pathways. CONCLUSION In pan-cancer, PPM1M affects patient prognosis and may be a potential immunological biomarker. Furthermore, PPM1M may be a potential therapeutic target in tumor immunology.
Collapse
Affiliation(s)
- Rongruo Zeng
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Lulu Wang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| | - Yuxu Zhang
- Department of International Medicine Services, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jie Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| | - Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
2
|
Sun S, Yang Y, Yang Z, Wang J, Li R, Tian H, Tan F, Xue Q, Gao Y, He J. Ferroptosis Characterization in Lung Adenocarcinomas Reveals Prognostic Signature With Immunotherapeutic Implication. Front Cell Dev Biol 2021; 9:743724. [PMID: 34746138 PMCID: PMC8563998 DOI: 10.3389/fcell.2021.743724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
The iron-dependent cell death named ferroptosis has been implicated in the progression and therapeutic response of several tumors. However, potential role of ferroptosis in lung adenocarcinomas (LUAD) remained less well understood. In TCGA-LUAD cohort, unsupervised clustering was first conducted based on ferroptosis regulators extracted from FerrDb database. Comprehensive correlation analysis and comparisons were performed among ferroptosis subtypes. The ferroptosis-related prognostic (FRP) signature was identified based on filtered features and repeated LASSO and was validated in five independent cohorts. The clinical relevance between the risk score and therapeutic response was further explored by multiple algorithms. qPCR was implemented to verify gene expression. A total of 1,168 LUAD patients and 161 ferroptosis regulators were included in this study. Three ferroptosis subtypes were identified and patients in subtype B had the best prognosis among the three subtypes. Significant differences in immune microenvironment and biological function enrichment were illustrated in distinct subtypes. The Boruta algorithm was conducted on 308 common differentially expressed genes for dimensionality reduction. A total of 56 genes served as input for model construction and a six-gene signature with the highest frequencies of 881 was chosen as FRP. The prognostic significance of FRP was validated in five independent cohorts. High FRP risk score was also linked to increased tumor mutation burden, PD-L1 protein expression and number of neoantigens. Of the FRP genes, 83.3% was abnormally expressed in LUAD cell lines. In conclusion, ferroptosis plays a non-negligible role in LUAD. Exploration of the ferroptosis pattern will enhance the prognostic stratification of individual patients and move toward the purpose of personalized treatment.
Collapse
Affiliation(s)
- Sijin Sun
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juhong Wang
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Inhibitory feedback control of NF-κB signalling in health and disease. Biochem J 2021; 478:2619-2664. [PMID: 34269817 PMCID: PMC8286839 DOI: 10.1042/bcj20210139] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Cells must adapt to changes in their environment to maintain cell, tissue and organismal integrity in the face of mechanical, chemical or microbiological stress. Nuclear factor-κB (NF-κB) is one of the most important transcription factors that controls inducible gene expression as cells attempt to restore homeostasis. It plays critical roles in the immune system, from acute inflammation to the development of secondary lymphoid organs, and also has roles in cell survival, proliferation and differentiation. Given its role in such critical processes, NF-κB signalling must be subject to strict spatiotemporal control to ensure measured and context-specific cellular responses. Indeed, deregulation of NF-κB signalling can result in debilitating and even lethal inflammation and also underpins some forms of cancer. In this review, we describe the homeostatic feedback mechanisms that limit and ‘re-set’ inducible activation of NF-κB. We first describe the key components of the signalling pathways leading to activation of NF-κB, including the prominent role of protein phosphorylation and protein ubiquitylation, before briefly introducing the key features of feedback control mechanisms. We then describe the array of negative feedback loops targeting different components of the NF-κB signalling cascade including controls at the receptor level, post-receptor signalosome complexes, direct regulation of the critical ‘inhibitor of κB kinases’ (IKKs) and inhibitory feedforward regulation of NF-κB-dependent transcriptional responses. We also review post-transcriptional feedback controls affecting RNA stability and translation. Finally, we describe the deregulation of these feedback controls in human disease and consider how feedback may be a challenge to the efficacy of inhibitors.
Collapse
|
4
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
5
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
6
|
Interactome analysis of transforming growth factor-β-activated kinase 1 in Helicobacter pylori-infected cells revealed novel regulators tripartite motif 28 and CDC37. Oncotarget 2018; 9:14366-14381. [PMID: 29581850 PMCID: PMC5865676 DOI: 10.18632/oncotarget.24544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) plays a central role in controlling the cellular pro-inflammatory response via the activation of the nuclear factor κB (NF-κB)- and mitogen-activated protein (MAP) kinases-dependent transcriptional programs. Here, we show that depletion of TAK1 and the TAK1-binding proteins TAB1 and TAB2 affects NF-κB, JNK and p38 phosphorylation and suppresses NF-κB activity in AGS cells infected with Helicobacter pylori or stimulated with the cytokines TNF and IL-1β. To increase our understanding of TAK1 regulation and function, we performed mass spectrometry (MS)-based TAK1 interactomics. In addition to the identification of known and novel TAK1 interacting proteins, including TRIM28, CDC37 and STOML2, analysis of the MS data revealed various post-translational modifications within the TAK1/TAB complex. By applying siRNAs, TRIM28 and CDC37 were found to regulate phosphorylations of TAK1, IκB kinases IKKα/IKKβ and MAP kinases, NF-κB transactivation activity and IL-8 expression in the infected epithelial cells.
Collapse
|
7
|
Wang WJ, Cai GY, Chen XM. Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease. Oncotarget 2017; 8:64520-64533. [PMID: 28969091 PMCID: PMC5610023 DOI: 10.18632/oncotarget.17327] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is increasingly being accepted as a type of renal ageing. The kidney undergoes age-related alterations in both structure and function. To date, a comprehensive analysis of cellular senescence and senescence-associated secretory phenotype (SASP) in CKD is lacking. Hence, this review mainly discusses the relationship between the two phenomena to show the striking similarities between SASP and CKD-associated secretory phenotype (CASP). It has been reported that replicative senescence, stress-induced premature ageing, and epigenetic abnormalities participate in the occurrence and development of CKD. Genomic damage and external environmental stimuli cause increased levels of oxidative stress and a chronic inflammatory state as a result of irreversible cell cycle arrest and low doses of SASP. Similar to SASP, CASP factors activate tissue repair by multiple mechanisms. Once tissue repair fails, the accumulated SASP or CASP species aggravate DNA damage response (DDR) and cause the senescent cells to secrete more SASP factors, accelerating the process of cellular ageing and eventually leading to various ageing-related changes. It is concluded that cellular senescence and SASP participate in the pathological process of CKD, and correspondingly CKD accelerated the progression of cell senescence and the secretion of SASP. These results will facilitate the integration of these mechanisms into the care and management of CKD and other age-related diseases.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
- Department of Nephrology, Beijing Changping Hospital, Beijing 102200, China
| | - Guang-Yan Cai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
| |
Collapse
|
8
|
Park JH, Hale TK, Smith RJ, Yang T. PPM1B depletion induces premature senescence in human IMR-90 fibroblasts. Mech Ageing Dev 2014; 138:45-52. [DOI: 10.1016/j.mad.2014.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/10/2014] [Accepted: 03/15/2014] [Indexed: 01/23/2023]
|
9
|
N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells. Biochem J 2013; 449:741-9. [PMID: 23088624 DOI: 10.1042/bj20121201] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PPM [metal-dependent protein phosphatase, formerly called PP2C (protein phosphatase 2C)] family members play essential roles in regulating a variety of signalling pathways. While searching for protein phosphatase(s) that act on AMPK (AMP-activated protein kinase), we found that PPM1A and PPM1B are N-myristoylated and that this modification is essential for their ability to dephosphorylate the α subunit of AMPK (AMPKα) in cells. N-Myristoylation was also required for two other functions of PPM1A and PPM1B in cells. Although a non-myristoylated mutation (G2A) of PPM1A and PPM1B prevented membrane association, this relocalization did not likely cause the decreased activity towards AMPKα. In in vitro experiments, the G2A mutants exhibited reduced activities towards AMPKα, but much higher specific activity against an artificial substrate, PNPP (p-nitrophenyl phosphate), compared with the wild-type counterparts. Taken together, the results of the present study suggest that N-myristoylation of PPM1A and PPM1B plays a key role in recognition of their physiological substrates in cells.
Collapse
|
10
|
Wei J, Liang BS. PPM1B and P-IKKβ expression levels correlated inversely with rat gastrocnemius atrophy after denervation. Braz J Med Biol Res 2012; 45:711-5. [PMID: 22584641 PMCID: PMC3854238 DOI: 10.1590/s0100-879x2012007500080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 05/03/2012] [Indexed: 11/22/2022] Open
Abstract
Activated inhibitor of nuclear factor-κB kinase β (IKKβ) is necessary and sufficient for denervated skeletal muscle atrophy. Although several studies have shown that Mg(2+)/Mn(2+)-dependent protein phosphatase 1B (PPM1B) inactivated IKKβ, few studies have investigated the role of PPM1B in denervated skeletal muscle. In this study, we aim to explore the expression and significance of PPM1B and phosphorylated IKKβ (P-IKKβ) during atrophy of the denervated gastrocnemius. Thirty young adult female Wistar rats were subjected to right sciatic nerve transection and were sacrificed at 0 (control), 2, 7, 14, and 28 days after denervation surgery. The gastrocnemius was removed from both the denervated and the contralateral limb. The muscle wet weight ratio was calculated as the ratio of the wet weight of the denervated gastrocnemius to that of the contralateral gastrocnemius. RT-PCR and Western blot analysis showed that mRNA and protein levels of PPM1B were significantly lower than those of the control group at different times after the initiation of denervation, while P-IKKβ showed the opposite trends. PPM1B protein expression persistently decreased while P-IKKβ expression persistently increased for 28 days after denervation. PPM1B expression correlated negatively with P-IKKβ expression by the Spearman test, whereas decreasing PPM1B expression correlated positively with the muscle wet weight ratio. The expression levels of PPM1B and P-IKKβ were closely associated with atrophy in skeletal denervated muscle. These results suggest that PPM1B and P-IKKβ could be markers in skeletal muscle atrophy.
Collapse
Affiliation(s)
- Jian Wei
- Department of Orthopedics, the Second Hospital, Shanxi Medical University, Taiyuan, China
| | | |
Collapse
|
11
|
Miyagi T, Kikuchi K, Tamura S. Shigeru Tsuiki: a pioneer in the research fields of complex carbohydrates and protein phosphatases. J Biochem 2011; 150:483-90. [PMID: 22039278 DOI: 10.1093/jb/mvr045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dr Tsuiki made three major contributions during his illustrious career as a biochemist. First, he developed the procedure for mucin isolation from bovine submaxillary glands. His work became the basis for mucin biochemistry. Second, he identified four distinct molecular species of mammalian sialidase. Subsequent studies based on his work led to the discovery that sialidase plays a unique role as an intracellular signalling factor involved in the regulation of a variety of cellular functions. Finally, he established the molecular basis for the diversity of mammalian protein phosphatases through protein purification and molecular cloning. His work prompted the functional studies of protein phosphatases.
Collapse
Affiliation(s)
- Taeko Miyagi
- Department of Cancer Glycosylation Research, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Komatsushima, Aoba-ku, Sendai, Japan
| | | | | |
Collapse
|
12
|
Brigelius-Flohé R, Flohé L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 2011; 15:2335-81. [PMID: 21194351 PMCID: PMC3166203 DOI: 10.1089/ars.2010.3534] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O(2)•- and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H(2)O(2), enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany.
| | | |
Collapse
|
13
|
Dobierzewska A, Giltiay NV, Sabapathi S, Karakashian AA, Nikolova-Karakashian MN. Protein phosphatase 2A and neutral sphingomyelinase 2 regulate IRAK-1 protein ubiquitination and degradation in response to interleukin-1beta. J Biol Chem 2011; 286:32064-73. [PMID: 21708940 DOI: 10.1074/jbc.m111.238030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The IL-1β signaling cascade is initiated by the phosphorylation of IL-1β receptor-associated kinase-1 (IRAK-1), followed by its ubiquitination and degradation. This paper investigates the regulation of IRAK-1 degradation in primary hepatocytes and in HEK cells overexpressing the IL-1β receptor. We provide evidence that protein phosphatase 2A (PP2A) is a negative regulator of the phosphorylation, Lys(48)-linked ubiquitination, and degradation of IRAK-1. PP2A catalytic activity increased within 30 min of stimulation with IL-1β. siRNA against PP2A catalytic subunit (PP2Ac) or treatment with pharmacological inhibitor, okadaic acid, enhanced IRAK-1 Lys(48)-linked ubiquitination and degradation. Direct interaction between PP2Ac and IRAK-1 was observed, suggesting that IRAK-1 might be a PP2A substrate. The mechanisms of PP2A activation by IL-1β involved neutral sphingomyelinase-2 (NSMase-2) and an accumulation of ceramide. Overexpression of NSMase-2 delayed IRAK-1 degradation in a PP2A-dependent manner, whereas NSMase-2 silencing had the opposite effect. The addition of sphingomyelinase, ceramide, or a proteasome inhibitor all led to retention of IRAK-1 at the cell membrane and to increased JNK phosphorylation. This study suggests that NSMase-2- and PP2A-dependent regulation of IRAK-1 degradation is a novel mechanism to fine tune the magnitude of IL-1β response.
Collapse
Affiliation(s)
- Aneta Dobierzewska
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
14
|
RNAi screen to identify protein phosphatases that regulate the NF-kappaB signaling. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-0050-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|