1
|
Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc Natl Acad Sci U S A 2022; 119:e2210109119. [PMID: 36251992 PMCID: PMC9618040 DOI: 10.1073/pnas.2210109119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting (LH) complexes of phototrophic bacteria absorb solar energy for photosynthesis, and it is important to understand how the protein components influence the way bound pigments absorb light. We studied the LH2 complexes of Rhodopseudomonas palustris, which are encoded by a multigene family. Various combinations of LH2 genes were deleted, yielding strains that assemble only one of the four types of LH2. Following purification, the structures of four LH2 complexes were determined by cryogenic electron microscopy, revealing a basic nonameric ring structure comprising nine αβ-polypeptide pairs. An additional hitherto unknown polypeptide, γ, was found in each structure that binds six further bacteriochlorophylls. Comparison of these different structures shows how nature tunes their ability to absorb different wavelengths of light. The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and β-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αβ-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αβ-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.
Collapse
|
2
|
Kim J, Oh J, Osuka A, Kim D. Porphyrinoids, a unique platform for exploring excited-state aromaticity. Chem Soc Rev 2021; 51:268-292. [PMID: 34879124 DOI: 10.1039/d1cs00742d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, Baird (anti)aromaticity has been referred to as a description of excited-state (anti)aromaticity. With the term of Baird's rule, recent studies have intensively verified that the Hückel aromatic [4n + 2]π (or antiaromatic [4n]π) molecules in the ground state are reversed to give Baird aromatic [4n]π (or Baird antiaromatic [4n + 2]π) molecules in the excited states. Since the Hückel (anti)aromaticity has great influence on the molecular properties and reaction mechanisms, the Baird (anti)aromaticity has been expected to act as a dominant factor in governing excited-state properties and processes, which has attracted intensive scientific investigations for the verification of the concept of reversed aromaticity in the excited states. In this scientific endeavor, porphyrinoids have recently played leading roles in the demonstration of the aromaticity reversal in the excited states and its conceptual development. The distinct structural and electronic nature of porphyhrinoids depending on their (anti)aromaticity allow the direct observation of excited-state aromaticity reversal, Baird's rule. The explicit experimental demonstration with porphyrinoids has contributed greatly to its conceptual development and application in novel functional organic materials. Based on the significant role of porphyrinoids in the field of excited-state aromaticity, this review provides an overview of the experimental verification of the reversal concept of excited-state aromaticity by porphyrinoids and the recent progress on its conceptual application in novel functional molecules.
Collapse
Affiliation(s)
- Jinseok Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan-si 31538, Korea.
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Dongho Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
3
|
Kunsel T, Löhner A, Mayo JJ, Köhler J, Jansen TLC, Knoester J. Unraveling intra-aggregate structural disorder using single-molecule spectroscopy. J Chem Phys 2020; 153:134304. [PMID: 33032400 DOI: 10.1063/5.0023551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Structural disorder within self-assembled molecular aggregates may have strong effects on their optical functionality. Such disorder, however, is hard to explore using standard ensemble measurements. In this paper, we report on the characterization of intra-aggregate structural disorder through a linewidth analysis of fluorescence excitation experiments on individual zinc-chlorin (ZnChl) nanotubular molecular aggregates. Recent experiments suggest an anomaly in the linewidths of the two absorption bands that dominate the spectra: the higher-energy bands on average show a smaller linewidth than the lower-energy bands. This anomaly is explored in this paper by analyzing and modeling the correlation of the two linewidths for each aggregate. We exploit a Frenkel exciton model to show that the experimentally observed correlation of linewidths and other statistical properties of the single-aggregate spectra can be explained from small variations of the molecular orientations within individual aggregates.
Collapse
Affiliation(s)
- T Kunsel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - A Löhner
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, 94557 Bayreuth, Germany
| | - J J Mayo
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstraße 30, 94557 Bayreuth, Germany
| | - T L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
5
|
Park KH, Cho JW, Kim TW, Shimizu H, Nakao K, Iyoda M, Kim D. Defining Cyclic-Acyclic Exciton Transition at the Single-Molecule Level: Size-Dependent Conformational Heterogeneity and Exciton Delocalization in Ethynylene-Bridged Cyclic Oligothiophenes. J Phys Chem Lett 2016; 7:1260-1266. [PMID: 26983838 DOI: 10.1021/acs.jpclett.6b00360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conformational disorder in π-conjugated cyclic systems plays a crucial role in controlling the extent of exciton delocalization in much the same way as that in linear counterparts. However, to date, there have been no detailed spectroscopic investigations on the nature of excitons in π-conjugated cyclic systems at the single-molecule level. Herein, we studied the effect of conformational disorder on the excitonic behaviors of cyclic oligothiophenes composed of 6, 8, 10, and 12 subunits (C-6T, C-8T, C-10T, and C-12T, respectively) by employing single-molecule fluorescence spectroscopy. We found that, due to the cyclic symmetry constraint which suppresses S1-S0 transition, small and rigid C-6T and C-8T exhibit extremely long fluorescence lifetimes, while short lifetimes typical of linear systems are dominant in large, flexible C-10T and C-12T. Two-dimensional correlation maps between fluorescence lifetimes and spectral positions show that, by torsional defects created through continued photoexcitation, fully delocalized cyclic excitons shrink to form acyclic excitons in the case of C-10T, while localized acyclic excitons from initial states are maintained in the case of C-12T. The distribution of linear dichroism values from C-6T to C-10T gradually broadens but narrows in C-12T, suggesting a cyclic-to-acyclic transition in excitonic nature between C-10T and C-12T.
Collapse
Affiliation(s)
- Kyu Hyung Park
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Jae-Won Cho
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Tae-Woo Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| | - Hideyuki Shimizu
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University , Hachioji, Tokyo 192-0397, Japan
| | - Kazumi Nakao
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University , Hachioji, Tokyo 192-0397, Japan
| | - Masahiko Iyoda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University , Hachioji, Tokyo 192-0397, Japan
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University , Seoul 03722, Korea
| |
Collapse
|
6
|
Chorošajev V, Rancova O, Abramavicius D. Polaronic effects at finite temperatures in the B850 ring of the LH2 complex. Phys Chem Chem Phys 2016; 18:7966-77. [DOI: 10.1039/c5cp06871a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Energy transfer and relaxation dynamics in the B850 ring of LH2 molecular aggregates are described, taking into account the polaronic effects, by a stochastic time-dependent variational approach.
Collapse
Affiliation(s)
- Vladimir Chorošajev
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - Olga Rancova
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| | - Darius Abramavicius
- Department of Theoretical Physics
- Faculty of Physics
- Vilnius University
- LT-10222 Vilnius
- Lithuania
| |
Collapse
|
7
|
Camacho R, Tubasum S, Southall J, Cogdell RJ, Sforazzini G, Anderson HL, Pullerits T, Scheblykin IG. Fluorescence polarization measures energy funneling in single light-harvesting antennas--LH2 vs conjugated polymers. Sci Rep 2015; 5:15080. [PMID: 26478272 PMCID: PMC4609963 DOI: 10.1038/srep15080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
Numerous approaches have been proposed to mimic natural photosynthesis using artificial antenna systems, such as conjugated polymers (CPs), dendrimers, and J-aggregates. As a result, there is a need to characterize and compare the excitation energy transfer (EET) properties of various natural and artificial antennas. Here we experimentally show that EET in single antennas can be characterized by 2D polarization imaging using the single funnel approximation. This methodology addresses the ability of an individual antenna to transfer its absorbed energy towards a single pool of emissive states, using a single parameter called energy funneling efficiency (ε). We studied individual peripheral antennas of purple bacteria (LH2) and single CP chains of 20 nm length. As expected from a perfect antenna, LH2s showed funneling efficiencies close to unity. In contrast, CPs showed lower average funneling efficiencies, greatly varying from molecule to molecule. Cyclodextrin insulation of the conjugated backbone improves EET, increasing the fraction of CPs possessing ε = 1. Comparison between LH2s and CPs shows the importance of the protection systems and the protein scaffold of LH2, which keep the chromophores in functional form and at such geometrical arrangement that ensures excellent EET.
Collapse
Affiliation(s)
- Rafael Camacho
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Sumera Tubasum
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - June Southall
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Giuseppe Sforazzini
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tõnu Pullerits
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| | - Ivan G Scheblykin
- Chemical Physics, Lund University, PO Box 124, Lund, SE-22100, Sweden
| |
Collapse
|
8
|
Schörner M, Beyer SR, Southall J, Cogdell RJ, Köhler J. Conformational Memory of a Protein Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2015; 119:13964-70. [PMID: 26420643 DOI: 10.1021/acs.jpcb.5b07494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteins are supramolecular machines that carry out a wide range of different functions, many of which require flexibility. Up until now spontaneous conformational fluctuations of proteins have always been assumed to reflect a stochastic random process. However, if changing between different conformational states was random, then it would be difficult to understand how conformational control of protein function could have evolved. Here we demonstrate that a single protein can show conformational memory. This is exactly the process that can facilitate the evolution of control of switching between two conformational states that can then be used to regulate protein function.
Collapse
Affiliation(s)
- Mario Schörner
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - Sebastian Reinhardt Beyer
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| |
Collapse
|
9
|
Park KH, Kim P, Kim W, Shimizu H, Han M, Sim E, Iyoda M, Kim D. Excited-State Dynamic Planarization of Cyclic Oligothiophenes in the Vicinity of a Ring-to-Linear Excitonic Behavioral Turning Point. Angew Chem Int Ed Engl 2015; 54:12711-5. [DOI: 10.1002/anie.201504588] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/20/2015] [Indexed: 11/11/2022]
|
10
|
Park KH, Kim P, Kim W, Shimizu H, Han M, Sim E, Iyoda M, Kim D. Excited-State Dynamic Planarization of Cyclic Oligothiophenes in the Vicinity of a Ring-to-Linear Excitonic Behavioral Turning Point. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
van der Vegte CP, Prajapati JD, Kleinekathöfer U, Knoester J, Jansen TLC. Atomistic Modeling of Two-Dimensional Electronic Spectra and Excited-State Dynamics for a Light Harvesting 2 Complex. J Phys Chem B 2015; 119:1302-13. [DOI: 10.1021/jp509247p] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. P. van der Vegte
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - J. D. Prajapati
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - U. Kleinekathöfer
- School
of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - J. Knoester
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - T. L. C. Jansen
- Zernike
Institute for Advanced Materials, University of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Pajusalu M, Kunz R, Rätsep M, Timpmann K, Köhler J, Freiberg A. Unified analysis of ensemble and single-complex optical spectral data from light-harvesting complex-2 chromoproteins for gaining deeper insight into bacterial photosynthesis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052709. [PMID: 26651725 DOI: 10.1103/physreve.92.052709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 05/15/2023]
Abstract
Bacterial light-harvesting pigment-protein complexes are very efficient at converting photons into excitons and transferring them to reaction centers, where the energy is stored in a chemical form. Optical properties of the complexes are known to change significantly in time and also vary from one complex to another; therefore, a detailed understanding of the variations on the level of single complexes and how they accumulate into effects that can be seen on the macroscopic scale is required. While experimental and theoretical methods exist to study the spectral properties of light-harvesting complexes on both individual complex and bulk ensemble levels, they have been developed largely independently of each other. To fill this gap, we simultaneously analyze experimental low-temperature single-complex and bulk ensemble optical spectra of the light-harvesting complex-2 (LH2) chromoproteins from the photosynthetic bacterium Rhodopseudomonas acidophila in order to find a unique theoretical model consistent with both experimental situations. The model, which satisfies most of the observations, combines strong exciton-phonon coupling with significant disorder, characteristic of the proteins. We establish a detailed disorder model that, in addition to containing a C_{2}-symmetrical modulation of the site energies, distinguishes between static intercomplex and slow conformational intracomplex disorders. The model evaluations also verify that, despite best efforts, the single-LH2-complex measurements performed so far may be biased toward complexes with higher Huang-Rhys factors.
Collapse
Affiliation(s)
- Mihkel Pajusalu
- Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
| | - Ralf Kunz
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research, University of Bayreuth, 95440 Bayreuth, Germany
| | - Margus Rätsep
- Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
| | - Kõu Timpmann
- Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research, University of Bayreuth, 95440 Bayreuth, Germany
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
13
|
Roos C, Köhn A, Gauss J, Diezemann G. The temperature dependence of vibronic lineshapes: linear electron-phonon coupling. J Chem Phys 2014; 141:154110. [PMID: 25338884 DOI: 10.1063/1.4898081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We calculate the effect of a linear electron-phonon coupling on vibronic transitions of dye molecules of arbitrary complexity. With the assumption of known vibronic frequencies (for instance from quantum-chemical calculations), we give expressions for the absorption or emission lineshapes in a second-order cumulant expansion. We show that the results coincide with those obtained from generalized Redfield theory if one uses the time-local version of the theory and applies the secular approximation. Furthermore, the theory allows to go beyond the Huang-Rhys approximation and can be used to incorporate Dushinsky effects in the treatment of the temperature dependence of optical spectra. We consider both, a pure electron-phonon coupling independent of the molecular vibrations and a coupling bilinear in the molecular vibrational modes and the phonon coordinates. We discuss the behavior of the vibronic density of states for various models for the spectral density representing the coupling of the vibronic system to the harmonic bath. We recover some of the results that have been derived earlier for the spin-boson model and we show that the behavior of the spectral density at low frequencies determines the dominant features of the spectra. In case of the bilinear coupling between the molecular vibrations and the phonons we give analytical expressions for different spectral densities. The spectra are reminiscent of those obtained from the well known Brownian oscillator model and one finds a zero-phonon line and phonon-side bands located at vibrational frequencies of the dye. The intensity of the phonon-side bands diminishes with increasing vibrational frequencies and with decreasing coupling strength (Huang-Rhys factor). It vanishes completely in the Markovian limit where only a Lorentzian zero-phonon line is observed.
Collapse
Affiliation(s)
- Claudia Roos
- Institut für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Gregor Diezemann
- Institut für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
Ashikhmin A, Makhneva Z, Moskalenko A. The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:291-303. [PMID: 24163008 DOI: 10.1007/s11120-013-9947-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
The effect of the inhibitor of carotenoid (Car) biosynthesis, diphenylamine (DPA), on the cells of the purple sulfur bacterium Ectothiorhodospira (Ect.) haloalkaliphila has been studied. There occurs an inhibition of the biosynthesis of colored Cars (≥99 %) at 71 μM DPA. Considering "empty" Car pockets (Moskalenko and Makhneva 2012) the content of Cars in the DPA-treated samples is first calculated more correctly. The total content of the colored Cars in the sample at 71 μM DPA does not exceed 1 % of the wild type. In the DPA-treated cells (membranes) a complete set of pigment-protein complexes is retained. The LH2 complex at 71 μM DPA is isolated, which is identical to the LH2 complex of the wild type in near IR absorption spectra. This suggests that the principles for assembling this LH2 complex in vivo in the absence of colored Cars remain the same. These results are in full agreement with the data obtained earlier for Allochromatium (Alc.) minutissimum (Moskalenko and Makhneva 2012). They are as follows: (1) DPA almost entirely inhibits the biosynthesis of the colored Cars in Ect. haloalkaliphila cells. (2) In the DPA-treated samples non-colored Cars are detected at 53.25 μM DPA (as traces) and at 71 μM DPA. (3) DPA may affect both phytoene synthase (at ≤71 μM DPA) and phytoene desaturase (at ≥53.25 μM DPA). (4) The assembly of LH2 complex does occur without any colored Cars.
Collapse
Affiliation(s)
- Aleksandr Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290, Russia
| | | | | |
Collapse
|
15
|
Böhm PS, Kunz R, Southall J, Cogdell RJ, Köhler J. Does the Reconstitution of RC-LH1 Complexes from Rhodopseudomonas acidophila Strain 10050 into a Phospholipid Bilayer Yield the Optimum Environment for Optical Spectroscopy? J Phys Chem B 2013; 117:15004-13. [DOI: 10.1021/jp409980k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paul S. Böhm
- Experimental
Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Ralf Kunz
- Experimental
Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College
of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College
of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Jürgen Köhler
- Experimental
Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
16
|
Kunz R, Timpmann K, Southall J, Cogdell RJ, Köhler J, Freiberg A. Fluorescence-Excitation and Emission Spectra from LH2 Antenna Complexes of Rhodopseudomonas acidophila as a Function of the Sample Preparation Conditions. J Phys Chem B 2013; 117:12020-9. [DOI: 10.1021/jp4073697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ralf Kunz
- Experimental Physics
IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Kõu Timpmann
- Institute
of Physics, University of Tartu, Riia 142, Tartu EE-51014, Estonia
| | - June Southall
- Institute of Molecular,
Cell and Systems Biology, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular,
Cell and Systems Biology, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jürgen Köhler
- Experimental Physics
IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| | - Arvi Freiberg
- Institute
of Physics, University of Tartu, Riia 142, Tartu EE-51014, Estonia
- Institute of Molecular
and Cell Biology, University of Tartu, Riia 23, Tartu EE-51010, Estonia
| |
Collapse
|
17
|
Leiger K, Reisberg L, Freiberg A. Fluorescence Micro-Spectroscopy Study of Individual Photosynthetic Membrane Vesicles and Light-Harvesting Complexes. J Phys Chem B 2013; 117:9315-26. [DOI: 10.1021/jp4014509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristjan Leiger
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Liis Reisberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
| | - Arvi Freiberg
- Institute
of Physics, University of Tartu, Riia 142,
Tartu 51014, Estonia
- Institute
of Molecular and Cell
Biology, University of Tartu, Riia 23,
Tartu 51010, Estonia
| |
Collapse
|
18
|
Tubasum S, Sakai S, Dewa T, Sundström V, Scheblykin IG, Nango M, Pullerits T. Anchored LH2 Complexes in 2D Polarization Imaging. J Phys Chem B 2013; 117:11391-6. [DOI: 10.1021/jp403863c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sumera Tubasum
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Shunsuke Sakai
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takehisa Dewa
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Villy Sundström
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Ivan G. Scheblykin
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| | - Mamoru Nango
- Department of Frontier Materials,
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, SE-22 100, Lund, Sweden
| |
Collapse
|
19
|
Tubasum S, Camacho R, Meyer M, Yadav D, Cogdell RJ, Pullerits T, Scheblykin IG. Evidence of excited state localization and static disorder in LH2 investigated by 2D-polarization single-molecule imaging at room temperature. Phys Chem Chem Phys 2013; 15:19862-9. [DOI: 10.1039/c3cp52127c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Camacho R, Thomsson D, Yadav D, Scheblykin I. Quantitative characterization of light-harvesting efficiency in single molecules and nanoparticles by 2D polarization microscopy: Experimental and theoretical challenges. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Goliney I, Sugakov V, Valkunas L, Vertsimakha G. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Tian Y, Stepanenko V, Kaiser TE, Würthner F, Scheblykin IG. Reorganization of perylene bisimide J-aggregates: from delocalized collective to localized individual excitations. NANOSCALE 2012; 4:218-223. [PMID: 22075846 DOI: 10.1039/c1nr10973a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Water-induced reorganization of individual one-dimensional J-aggregates of perylene bisimide (PBI) dyes was observed by fluorescence microscopy. Fluorescence spectra and decay kinetics of individual J-aggregates immobilized on glass surfaces were measured under a dry nitrogen atmosphere and under humid conditions. The fluorescence properties of PBI J-aggregates arisen from collective excitons under dry nitrogen atmosphere were changed to those of non-interacting dye monomers when water vapor was introduced into the environment (sample chamber). Time-dependent changes of the fluorescence spectra and lifetimes upon exposure to water vapor suggest an initial coordination of water molecules at defect sites leading to the formation of H-type dimer units that act as exciton quenchers, and a subsequent slower disintegration of the hydrogen-bonded J-aggregate into monomers that lack resonance coupling. Our present studies resulted in a direct demonstration of how drastically the optical properties of molecular ensembles and characteristics of their excited states can be changed by delicate reorganization of dye molecules at nanometre scales.
Collapse
Affiliation(s)
- Yuxi Tian
- Chemical Physics, Lund University, Box 124, 22100, Lund, Sweden
| | | | | | | | | |
Collapse
|
23
|
Collins AM, Wen J, Blankenship RE. Photosynthetic Light-Harvesting Complexes. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The light-harvesting antenna systems found in photosynthetic organisms function to collect light and transfer energy in the photon to a reaction center, where electron transfer gives rise to long-term energy storage. The antenna systems found in different types of photosynthetic organisms adapt the organisms to very different photic environments, and almost certainly have been invented multiple times during evolution. The diverse collection of photosynthetic antenna systems is described in terms of their pigment and protein components and their organization in the photosystem. The Förster theory is described as the physical basis of energy transfer in photosynthetic antennas, although in many systems it is not adequate to describe energy transfer in complexes with closely interacting pigments. Regulatory aspects of antennas are described, including the process of non-photochemical quenching.
Collapse
Affiliation(s)
- Aaron M. Collins
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Jianzhong Wen
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Robert E. Blankenship
- Departments of Biology and Chemistry Washington University in St. Louis, St. Louis, MO 63130 USA
| |
Collapse
|
24
|
Jang S, Silbey RJ, Kunz R, Hofmann C, Köhler J. Is There Elliptic Distortion in the Light Harvesting Complex 2 of Purple Bacteria? J Phys Chem B 2011; 115:12947-53. [DOI: 10.1021/jp202344s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Flushing, New York 11367-1597, United States
| | - Robert J. Silbey
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralf Kunz
- Experimental Physics IV and Bayreuth Institute of Macromolecular Research (BIMF), Universität Bayreuth, 95447 Bayreuth, Germany
| | - Clemens Hofmann
- Experimental Physics IV and Bayreuth Institute of Macromolecular Research (BIMF), Universität Bayreuth, 95447 Bayreuth, Germany
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute of Macromolecular Research (BIMF), Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
25
|
Pflock TJ, Oellerich S, Southall J, Cogdell RJ, Ullmann GM, Köhler J. The Electronically Excited States of LH2 Complexes from Rhodopseudomonas acidophila Strain 10050 Studied by Time-Resolved Spectroscopy and Dynamic Monte Carlo Simulations. I. Isolated, Non-Interacting LH2 Complexes. J Phys Chem B 2011; 115:8813-20. [DOI: 10.1021/jp202353c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tobias J. Pflock
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Silke Oellerich
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Biomedical Research Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - G. Matthias Ullmann
- Computational Biochemistry/Bioinformatics, University of Bayreuth, D-95440 Bayreuth
| | - Jürgen Köhler
- Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
26
|
Uchiyama D, Oikawa H, Otomo K, Nango M, Dewa T, Fujiyoshi S, Matsushita M. Reconstitution of bacterial photosynthetic unit in a lipid bilayer studied by single-molecule spectroscopy at 5 K. Phys Chem Chem Phys 2011; 13:11615-9. [PMID: 21597611 DOI: 10.1039/c1cp20172g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a model of photosynthetic unit (PSU), self-assembled aggregates of pigment-protein complexes from photosynthetic bacteria were prepared in a lipid bilayer by reconstitution of the light-harvesting 2 (LH2) complex and light-harvesting 1-reaction center (LH1-RC) complex through detergent removal of their micelles in the presence of lipids. By performing polarization-controlled fluorescence and fluorescence-excitation spectroscopy on single aggregates at a temperature of 5 K, the composition of individual aggregates was determined and excitation energy transfer (EET) between constituent complexes was observed. LH2 and LH1-RC from a bacterium, Rhodobacter (Rb.) sphaeroides, were found to form a trimeric aggregate in which EET takes place from one LH2 to two LH1-RCs. In contrast, a heterodimer of LH2 and LH1-RC in which EET works was found to assemble from a combination of complexes of different bacterial species, that is, LH2 from Rb. sphaeroides and LH1-RC from Rhodopseudomonas (Rps.) palustris.
Collapse
Affiliation(s)
- Daisuke Uchiyama
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Tubasum S, Cogdell RJ, Scheblykin IG, Pullerits T. Excitation−Emission Polarization Spectroscopy of Single Light Harvesting Complexes. J Phys Chem B 2011; 115:4963-70. [DOI: 10.1021/jp107480x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumera Tubasum
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22 100, Lund, Sweden
| | - Richard J. Cogdell
- Glasgow Biomedical Research Centre, University of Glasgow, G12 8QQ, United Kingdom
| | - Ivan G. Scheblykin
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22 100, Lund, Sweden
| | - Tõnu Pullerits
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22 100, Lund, Sweden
| |
Collapse
|
28
|
Krüger TPJ, Ilioaia C, van Grondelle R. Fluorescence Intermittency from the Main Plant Light-Harvesting Complex: Resolving Shifts between Intensity Levels. J Phys Chem B 2011; 115:5071-82. [DOI: 10.1021/jp201609c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tjaart P. J. Krüger
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Cristian Ilioaia
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Krüger TPJ, Novoderezhkin VI, Ilioaia C, van Grondelle R. Fluorescence spectral dynamics of single LHCII trimers. Biophys J 2010; 98:3093-101. [PMID: 20550923 DOI: 10.1016/j.bpj.2010.03.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/26/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022] Open
Abstract
Single-molecule spectroscopy was employed to elucidate the fluorescence spectral heterogeneity and dynamics of individual, immobilized trimeric complexes of the main light-harvesting complex of plants in solution near room temperature. Rapid reversible spectral shifts between various emitting states, each of which was quasi-stable for seconds to tens of seconds, were observed for a fraction of the complexes. Most deviating states were characterized by the appearance of an additional, red-shifted emission band. Reversible shifts of up to 75 nm were detected. By combining modified Redfield theory with a disordered exciton model, fluorescence spectra with peaks between 670 nm and 705 nm could be explained by changes in the realization of the static disorder of the pigment-site energies. Spectral bands beyond this wavelength window suggest the presence of special protein conformations. We attribute the large red shifts to the mixing of an excitonic state with a charge-transfer state in two or more strongly coupled chlorophylls. Spectral bluing is explained by the formation of an energy trap before excitation energy equilibration is completed.
Collapse
Affiliation(s)
- Tjaart P J Krüger
- Department of Biophysics, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Spectral properties of single light-harvesting complexes in bacterial photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.02.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|