1
|
Yan R, Song Y, Liu D, Yu W, Sun Y, Tang C, Yang X, Ding W, Yu N, Zhang Z, Ling M, Li X, Zhao C, Xing Y. Multi-omics reveals the role of MCM2 and hnRNP K phosphorylation in mouse renal aging through genomic instability. Exp Cell Res 2024; 440:114115. [PMID: 38844260 DOI: 10.1016/j.yexcr.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related β-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.
Collapse
Affiliation(s)
- Rong Yan
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yiping Song
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Di Liu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenzhuo Yu
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Yan Sun
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Congmin Tang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuechun Yang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjing Ding
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Na Yu
- Shandong Precision Medicine Engineering Laboratory of Bacterial Anti-tumor Drugs, Jinan, China
| | - Zhen Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Mingying Ling
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xuehui Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Chuanli Zhao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yanqiu Xing
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Gonzalez B, Tare A, Ryu S, Johnson SC, Atzmon G, Barzilai N, Kaeberlein M, Suh Y. High-throughput sequencing analysis of nuclear-encoded mitochondrial genes reveals a genetic signature of human longevity. GeroScience 2023; 45:311-330. [PMID: 35948858 PMCID: PMC9886794 DOI: 10.1007/s11357-022-00634-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.
Collapse
Affiliation(s)
- Brenda Gonzalez
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Simon C Johnson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Departments of Obstetrics and Gynecology, and Genetics and Development, Columbia University, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Unraveling the therapeutic potential of carbamoyl phosphate synthetase 1 (CPS1) in human disease. Bioorg Chem 2022; 130:106253. [DOI: 10.1016/j.bioorg.2022.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
4
|
Gonzalez Melo M, Remacle N, Cudré-Cung HP, Roux C, Poms M, Cudalbu C, Barroso M, Gersting SW, Feichtinger RG, Mayr JA, Costanzo M, Caterino M, Ruoppolo M, Rüfenacht V, Häberle J, Braissant O, Ballhausen D. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery. Mol Genet Metab 2021; 133:157-181. [PMID: 33965309 DOI: 10.1016/j.ymgme.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/08/2023]
Abstract
Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.
Collapse
Affiliation(s)
- Mary Gonzalez Melo
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Noémie Remacle
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Hong-Phuc Cudré-Cung
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland
| | - Clothilde Roux
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Martin Poms
- Klinische Chemie und Biochemie Universitäts-Kinderspital Zürich, Switzerland.
| | - Cristina Cudalbu
- CIBM Center for Biomedical Imaging, Switzerland; Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Madalena Barroso
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Søren Waldemar Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - René Günther Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Johannes Adalbert Mayr
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; CEINGE - Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy.
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| | - Olivier Braissant
- Service of Clinical Chemistry, University of Lausanne and University Hospital of Lausanne, Switzerland.
| | - Diana Ballhausen
- Pediatric Metabolic Unit, Pediatrics, Woman-Mother-Child Department, University of Lausanne and University Hospital of Lausanne, Switzerland.
| |
Collapse
|
5
|
Enhanced production of L-arginine by improving carbamoyl phosphate supply in metabolically engineered Corynebacterium crenatum. Appl Microbiol Biotechnol 2021; 105:3265-3276. [PMID: 33837829 DOI: 10.1007/s00253-021-11242-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
Carbamoyl phosphate is an important precursor for L-arginine and pyrimidines biosynthesis. In view of this importance, the cell factory should enhance carbamoyl phosphate synthesis to improve related compound production. In this work, we verified that carbamoyl phosphate is essential for L-arginine production in Corynebacterium sp., followed by engineering of carbamoyl phosphate synthesis for further strain improvement. First, carAB encoding carbamoyl phosphate synthetase II was overexpressed to improve the synthesis of carbamoyl phosphate. Second, the regulation of glutamine synthetase increases the supply of L-glutamine, providing an effective substrate for carbamoyl phosphate synthetase II. Third, carbamate kinase, which catalyzes inorganic ammonia synthesis carbamoyl phosphate, was screened and selected to assist in carbamoyl phosphate supply. Finally, we disrupted ldh (encoding lactate dehydrogenase) to decrease by-production formation and save NADH to regenerate ATP through the electron transport chain. Subsequently, the resulting strain allowed a dramatically increased L-arginine production of 68.6 ± 1.2 g∙L-1, with an overall productivity of 0.71 ± 0.01 g∙L-1∙h-1 in 5-L bioreactor. Stepwise rational metabolic engineering based on an increase in the supply of carbamoyl phosphate resulted in a gradual increase in L-arginine production. The strategy described here can also be implemented to improve L-arginine and pyrimidine derivatives. KEY POINTS: • The L-arginine production strongly depended on the supply of carbamoyl phosphate. • The novel carbamoyl phosphate synthesis pathway for C. crenatum based on carbamate kinase was first applied to L-arginine synthesis. • ATP was regenerated followed with the disruption of lactate formation.
Collapse
|
6
|
Haskins N, Bhuvanendran S, Anselmi C, Gams A, Kanholm T, Kocher KM, LoTempio J, Krohmaly KI, Sohai D, Stearrett N, Bonner E, Tuchman M, Morizono H, Jaiswal JK, Caldovic L. Mitochondrial Enzymes of the Urea Cycle Cluster at the Inner Mitochondrial Membrane. Front Physiol 2021; 11:542950. [PMID: 33551825 PMCID: PMC7860981 DOI: 10.3389/fphys.2020.542950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 12/09/2020] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial enzymes involved in energy transformation are organized into multiprotein complexes that channel the reaction intermediates for efficient ATP production. Three of the mammalian urea cycle enzymes: N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase 1 (CPS1), and ornithine transcarbamylase (OTC) reside in the mitochondria. Urea cycle is required to convert ammonia into urea and protect the brain from ammonia toxicity. Urea cycle intermediates are tightly channeled in and out of mitochondria, indicating that efficient activity of these enzymes relies upon their coordinated interaction with each other, perhaps in a cluster. This view is supported by mutations in surface residues of the urea cycle proteins that impair ureagenesis in the patients, but do not affect protein stability or catalytic activity. We find the NAGS, CPS1, and OTC proteins in liver mitochondria can associate with the inner mitochondrial membrane (IMM) and can be co-immunoprecipitated. Our in-silico analysis of vertebrate NAGS proteins, the least abundant of the urea cycle enzymes, identified a protein-protein interaction region present only in the mammalian NAGS protein—“variable segment,” which mediates the interaction of NAGS with CPS1. Use of super resolution microscopy showed that NAGS, CPS1 and OTC are organized into clusters in the hepatocyte mitochondria. These results indicate that mitochondrial urea cycle proteins cluster, instead of functioning either independently or in a rigid multienzyme complex.
Collapse
Affiliation(s)
- Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Shivaprasad Bhuvanendran
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Claudio Anselmi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Anna Gams
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, DC, United States
| | - Tomas Kanholm
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Kristen M Kocher
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Jonathan LoTempio
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Kylie I Krohmaly
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Danielle Sohai
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Nathaniel Stearrett
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States.,Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Erin Bonner
- School of Medicine and Health Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States.,Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
7
|
Nitzahn M, Lipshutz GS. CPS1: Looking at an ancient enzyme in a modern light. Mol Genet Metab 2020; 131:289-298. [PMID: 33317798 PMCID: PMC7738762 DOI: 10.1016/j.ymgme.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
The mammalian urea cycle (UC) is responsible for siphoning catabolic waste nitrogen into urea for excretion. Disruptions of the functions of any of the enzymes or transporters lead to elevated ammonia and neurological injury. Carbamoyl phosphate synthetase 1 (CPS1) is the first and rate-limiting UC enzyme responsible for the direct incorporation of ammonia into UC intermediates. Symptoms in CPS1 deficiency are typically the most severe of all UC disorders, and current clinical management is insufficient to prevent the associated morbidities and high mortality. With recent advances in basic and translational studies of CPS1, appreciation for this enzyme's essential role in the UC has been broadened to include systemic metabolic regulation during homeostasis and disease. Here, we review recent advances in CPS1 biology and contextualize them around the role of CPS1 in health and disease.
Collapse
Affiliation(s)
- Matthew Nitzahn
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Gerald S Lipshutz
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
8
|
Chen Z, Tang N, Wang X, Chen Y. The activity of the carbamoyl phosphate synthase 1 promoter in human liver-derived cells is dependent on hepatocyte nuclear factor 3-beta. J Cell Mol Med 2017; 21:2036-2045. [PMID: 28272778 PMCID: PMC5571533 DOI: 10.1111/jcmm.13123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/13/2017] [Indexed: 01/15/2023] Open
Abstract
Carbamoyl phosphate synthase 1 (CPS1) is the rate‐limiting enzyme in the first step of the urea cycle and an indispensable enzyme in the metabolism of human liver. However, CPS1 epigenetic regulation involves promoter analysis and the role of liver‐enriched transcription factors (LETFs), which is not fully elucidated. In this work, the promoter region of hCPS1 gene was cloned, and its activity was investigated. An LETF, hepatocyte nuclear factor 3‐beta (HNF3β), was found to promote the transcriptional expression of CPS1 in liver‐derived cell lines. In addition, dual‐luciferase reporter assay shows that the essential binding sites of the HNF3β may exist in the oligonucleotide −70 nt to +73 nt. Two putative binding sites are available for HNF3β. Mutation analysis results show that the binding site 2 of HNF3β was effective, and the transcriptional activity of CPS1 promoter significantly decreased after mutation. Electrophoretic mobile shift assay (EMSA) and ChIP assay confirmed that HNF3β can interact with the binding site in the CPS1 promoter region of −70 nt to +73 nt promoter region in vivo and in vitro to regulate the transcription of CPS1. Moreover, HNF3β overexpression enhanced the transcription of CPS1 and consequently improved the mRNA and protein levels of CPS1, whereas the knockdown of HNF3β showed the opposite effects. Finally, urea production in cells was measured, and ammonia detoxification improved significantly in cells after transfection with HNF3β. HNF3β plays a vital role in regulation of CPS1 gene and could promote the metabolism of ammonia by regulating CPS1 expression.
Collapse
Affiliation(s)
- Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanling Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Shi D, Zhao G, Ah Mew N, Tuchman M. Precision medicine in rare disease: Mechanisms of disparate effects of N-carbamyl-l-glutamate on mutant CPS1 enzymes. Mol Genet Metab 2017; 120:198-206. [PMID: 28007335 PMCID: PMC5346444 DOI: 10.1016/j.ymgme.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
Abstract
This study documents the disparate therapeutic effect of N-carbamyl-l-glutamate (NCG) in the activation of two different disease-causing mutants of carbamyl phosphate synthetase 1 (CPS1). We investigated the effects of NCG on purified recombinant wild-type (WT) mouse CPS1 and its human corresponding E1034G (increased ureagenesis on NCG) and M792I (decreased ureagenesis on NCG) mutants. NCG activates WT CPS1 sub-optimally compared to NAG. Similar to NAG, NCG, in combination with MgATP, stabilizes the enzyme, but competes with NAG binding to the enzyme. NCG supplementation activates available E1034G mutant CPS1 molecules not bound to NAG enhancing ureagenesis. Conversely, NCG competes with NAG binding to the scarce M792I mutant enzyme further decreasing residual ureagenesis. These results correlate with the respective patient's response to NCG. Particular caution should be taken in the administration of NCG to patients with hyperammonemia before their molecular bases of their urea cycle disorders is known.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Department of Integrative Systems Biology, Children's Research Institute, Children's National Health System, The George Washington University, Washington, DC 20010, USA.
| | - Gengxiang Zhao
- Center for Genetic Medicine Research, Department of Integrative Systems Biology, Children's Research Institute, Children's National Health System, The George Washington University, Washington, DC 20010, USA
| | - Nicholas Ah Mew
- Center for Genetic Medicine Research, Department of Integrative Systems Biology, Children's Research Institute, Children's National Health System, The George Washington University, Washington, DC 20010, USA
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Department of Integrative Systems Biology, Children's Research Institute, Children's National Health System, The George Washington University, Washington, DC 20010, USA
| |
Collapse
|
10
|
Diez-Fernandez C, Häberle J. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder. Expert Opin Ther Targets 2017; 21:391-399. [PMID: 28281899 DOI: 10.1080/14728222.2017.1294685] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.
Collapse
Affiliation(s)
- Carmen Diez-Fernandez
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| | - Johannes Häberle
- a Division of Metabolism , University Children's Hospital Zurich and Children's Research Center , Zurich , Switzerland
| |
Collapse
|
11
|
Koshiba S, Motoike I, Kojima K, Hasegawa T, Shirota M, Saito T, Saigusa D, Danjoh I, Katsuoka F, Ogishima S, Kawai Y, Yamaguchi-Kabata Y, Sakurai M, Hirano S, Nakata J, Motohashi H, Hozawa A, Kuriyama S, Minegishi N, Nagasaki M, Takai-Igarashi T, Fuse N, Kiyomoto H, Sugawara J, Suzuki Y, Kure S, Yaegashi N, Tanabe O, Kinoshita K, Yasuda J, Yamamoto M. The structural origin of metabolic quantitative diversity. Sci Rep 2016; 6:31463. [PMID: 27528366 PMCID: PMC4985752 DOI: 10.1038/srep31463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Relationship between structural variants of enzymes and metabolic phenotypes in human population was investigated based on the association study of metabolite quantitative traits with whole genome sequence data for 512 individuals from a population cohort. We identified five significant associations between metabolites and non-synonymous variants. Four of these non-synonymous variants are located in enzymes involved in metabolic disorders, and structural analyses of these moderate non-synonymous variants demonstrate that they are located in peripheral regions of the catalytic sites or related regulatory domains. In contrast, two individuals with larger changes of metabolite levels were also identified, and these individuals retained rare variants, which caused non-synonymous variants located near the catalytic site. These results are the first demonstrations that variant frequency, structural location, and effect for phenotype correlate with each other in human population, and imply that metabolic individuality and susceptibility for diseases may be elicited from the moderate variants and much more deleterious but rare variants.
Collapse
Affiliation(s)
- Seizo Koshiba
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Ikuko Motoike
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Kaname Kojima
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Takanori Hasegawa
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Tomo Saito
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Daisuke Saigusa
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Inaho Danjoh
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Yosuke Kawai
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Yumi Yamaguchi-Kabata
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Miyuki Sakurai
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
| | - Sachiko Hirano
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
| | - Junichi Nakata
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan
| | - Hozumi Motohashi
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan.,Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8579 Japan
| | - Takako Takai-Igarashi
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Hideyasu Kiyomoto
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Yoichi Suzuki
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Shigeo Kure
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Nobuo Yaegashi
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Information Sciences, Tohoku University, 6-3-09, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8579 Japan.,Institute of Development, Aging and Cancer, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Jun Yasuda
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank organization, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8573 Japan.,Graduate School of Medicine, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| |
Collapse
|
12
|
Nikmah UA, Prijanti AR, Jusman SW, Sadikin M. Expression and specific activities of carbamoyl phosphate synthetase 1 in chronic hypoxic rats. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i1.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: Urea biosynthesis is a very important process in the liver which needs ATP, CO2 and functional mitochondria or aerobic condition. Liver can adapt to hypoxic condition, generally and locally. This study aimed to analyze the effect of chronic hypoxia on liver urea biosynthesis as indicated by the level and specific activity of mRNA of carbamoyl phosphate synthetase 1 (CPS1), a key enzyme in urea biosynthesis in hypoxic rats.Methods: 20 male Sprague-Dawley rats were placed in hypoxic chamber supplied by a mixture of 10% O2 and 90% N2. Five rats were sacrificed at 1, 3, 5, and 7 days after exposure. Liver homogenates were analyzed for HIF-1 (hypoxia inducible factor-1) by ELISA, CPS1 mRNA by real time RT-PCR and CPS1 enzymatic specific activities by Pierson method. Data were analyzed by ANOVA test and Pearson correlation.Results: The HIF-1 in liver increased significantly, as well as CPS1 mRNA and CPS1 enzymatic activities (p<0.05). There was a strong correlation (r=0.618; p<0.01) between the level of CPS1 mRNA and CPS1 enzymatic activities, moderate correlation between HIF-1 and CPS1 mRNA (r=0.419; p<0.05) but no correlation between HIF-1 and CPS1 enzymatic activities. The study indicated that urea biosynthesis in liver was affected by hypoxia and partially under HIF-1 regulation. The study also found increase of urea and NH3 biosynthesis related to proteolysis as indicated by the decrease of total body weight and liver weight.Conclusion: There was an increase in the expression and specific activities of CPS1 in urea biosynthesis as a result of increasing proteolysis in chronic hypoxic condition.
Collapse
|
13
|
The Study of Carbamoyl Phosphate Synthetase 1 Deficiency Sheds Light on the Mechanism for Switching On/Off the Urea Cycle. J Genet Genomics 2015; 42:249-60. [DOI: 10.1016/j.jgg.2015.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
14
|
Hu L, Diez-Fernandez C, Rüfenacht V, Hismi BÖ, Ünal Ö, Soyucen E, Çoker M, Bayraktar BT, Gunduz M, Kiykim E, Olgac A, Pérez-Tur J, Rubio V, Häberle J. Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: characterization of a founder mutation by use of recombinant CPS1 from insect cells expression. Mol Genet Metab 2014; 113:267-73. [PMID: 25410056 DOI: 10.1016/j.ymgme.2014.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/26/2022]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) deficiency due to CPS1 mutations is a rare autosomal-recessive urea cycle disorder causing hyperammonemia that can lead to death or severe neurological impairment. CPS1 catalyzes carbamoyl phosphate formation from ammonia, bicarbonate and two molecules of ATP, and requires the allosteric activator N-acetyl-L-glutamate. Clinical mutations occur in the entire CPS1 coding region, but mainly in single families, with little recurrence. We characterized here the only currently known recurrent CPS1 mutation, p.Val1013del, found in eleven unrelated patients of Turkish descent using recombinant His-tagged wild type or mutant CPS1 expressed in baculovirus/insect cell system. The global CPS1 reaction and the ATPase and ATP synthesis partial reactions that reflect, respectively, the bicarbonate and the carbamate phosphorylation steps, were assayed. We found that CPS1 wild type and V1013del mutant showed comparable expression levels and purity but the mutant CPS1 exhibited no significant residual activities. In the CPS1 structural model, V1013 belongs to a highly hydrophobic β-strand at the middle of the central β-sheet of the A subdomain of the carbamate phosphorylation domain and is close to the predicted carbamate tunnel that links both phosphorylation sites. Haplotype studies suggested that p.Val1013del is a founder mutation. In conclusion, the mutation p.V1013del inactivates CPS1 but does not render the enzyme grossly unstable or insoluble. Recurrence of this particular mutation in Turkish patients is likely due to a founder effect, which is consistent with the frequent consanguinity observed in the affected population.
Collapse
Affiliation(s)
- Liyan Hu
- Division of Metabolism, University Children's Hospital, 8032 Zurich, Switzerland; Children's Research Center, 8032 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism, University Children's Hospital, 8032 Zurich, Switzerland; Children's Research Center, 8032 Zurich, Switzerland; Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Véronique Rüfenacht
- Division of Metabolism, University Children's Hospital, 8032 Zurich, Switzerland; Children's Research Center, 8032 Zurich, Switzerland
| | - Burcu Öztürk Hismi
- Department of Pediatric Metabolic Diseases, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey; Gaziantep Children's Hospital, Gaziantep, Turkey
| | - Özlem Ünal
- Department of Pediatric Metabolic Diseases, Ihsan Dogramaci Children's Hospital, Hacettepe University, Ankara, Turkey; Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Erdogan Soyucen
- Department of Pediatric Metabolic Disease, Medical School, Akdeniz University, Antalya, Turkey
| | - Mahmut Çoker
- Department of Pediatric Metabolic Disease, Medical School, Ege University, Bornova, Izmir, Turkey
| | - Bilge Tanyeri Bayraktar
- Division of Neonatology, Department of Pediatrics, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Gunduz
- Ankara Cocuk Sagligi ve Hastaliklari, Cocuk Beslenme & Metabolizma Unitesi, Diskapi, Ankara, Turkey
| | - Ertugrul Kiykim
- Department of Pediatric Metabolic Diseases, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Asburce Olgac
- Division of Metabolism and Nutrition, Gazi University Hospital, Ankara, Turkey
| | - Jordi Pérez-Tur
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Centro de Investigación Biomédica en Red para Enfermedades Neurodegenerativas (CIBERNED-ISCIII), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Group 739, Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Johannes Häberle
- Division of Metabolism, University Children's Hospital, 8032 Zurich, Switzerland; Children's Research Center, 8032 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Switzerland.
| |
Collapse
|
15
|
Díez-Fernández C, Hu L, Cervera J, Häberle J, Rubio V. Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function. Mol Genet Metab 2014; 112:123-32. [PMID: 24813853 DOI: 10.1016/j.ymgme.2014.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/11/2014] [Accepted: 04/11/2014] [Indexed: 01/02/2023]
Abstract
Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We investigate here by in vitro expression studies using baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, as well as the disease-causing roles and pathogenic mechanisms of the mutations affecting this domain. All but three of the 18 missense changes found thus far mapping in this domain in CPS1D patients drastically decreased the yield of pure CPS1, mainly because of decreased enzyme solubility, strongly suggesting misfolding as a major determinant of the mutations negative effects. In addition, the majority of the mutations also decreased from modestly to very drastically the specific activity of the fraction of the enzyme that remained soluble and that could be purified, apparently because they decreased V(max). Substantial although not dramatic increases in K(m) values for the substrates or for N-acetyl-L-glutamate were observed for only five mutations. Similarly, important thermal stability decreases were observed for three mutations. The results indicate a disease-causing role for all the mutations, due in most cases to the combined effects of the low enzyme level and the decreased activity. Our data strongly support the value of the present expression system for ascertaining the disease-causing potential of CPS1 mutations, provided that the CPS1 yield is monitored. The observed effects of the mutations have been rationalized on the basis of an existing structural model of CPS1. This model shows that the UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, plays a key integrating role for creating the CPS1 multidomain architecture leading us to propose here a denomination of "Integrating Domain" for this CPS1 region. The majority of these 18 mutations distort the interaction of this domain with other CPS1 domains, in many cases by causing improper folding of structural elements of the Integrating Domain that play key roles in these interactions.
Collapse
Affiliation(s)
| | - Liyan Hu
- University Children's Hospital, Zurich and Children's Research Center, Zurich, Switzerland
| | - Javier Cervera
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain; Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain
| | - Johannes Häberle
- University Children's Hospital, Zurich and Children's Research Center, Zurich, Switzerland.
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia of the CSIC, Valencia, Spain; Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, Spain.
| |
Collapse
|
16
|
Hu K, Du K, Tang G, Yao S, Wang H, Liang X, Yao B, Huang T, Zang L. Radiosynthesis and biological evaluation of N-[18F]labeled glutamic acid as a tumor metabolic imaging tracer. PLoS One 2014; 9:e93262. [PMID: 24681642 PMCID: PMC3969356 DOI: 10.1371/journal.pone.0093262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022] Open
Abstract
We have previously reported that N-(2-[18F]fluoropropionyl)-L-methionine ([18F]FPMET) selectively accumulates in tumors. However, due to the poor pharmacokinetics of [18F]FPMET in vivo, the potential clinical translation of this observation is hampered. In this study, we rationally designed and synthesized [18F] or [11C]labeled N-position L-glutamic acid analogues for tumor imaging. N-(2-[18F]fluoropropionyl)-L-glutamic acid ([18F]FPGLU) was synthesized with a 30±10% (n = 10, decay-corrected) overall radiochemical yield and a specific activity of 40±25 GBq/μmol (n = 10) after 130 min of radiosynthesis. In vitro cell experiments showed that [18F]FPGLU was primarily transported through the XAG– system and was not incorporated into protein. [18F]FPGLU was stable in urine, tumor tissues, and blood. We were able to use [18F]FPGLU in PET imaging and obtained high tumor to background ratios when visualizing tumors tissues in animal models.
Collapse
Affiliation(s)
- Kongzhen Hu
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ganghua Tang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail:
| | - Shaobo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongliang Wang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Liang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Baoguo Yao
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Huang
- PET-CT Center, Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
17
|
Diez-Fernandez C, Martínez AI, Pekkala S, Barcelona B, Pérez-Arellano I, Guadalajara AM, Summar M, Cervera J, Rubio V. Molecular Characterization of Carbamoyl-Phosphate Synthetase (CPS1) Deficiency Using Human Recombinant CPS1 as a Key Tool. Hum Mutat 2013; 34:1149-59. [DOI: 10.1002/humu.22349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Diez-Fernandez
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
| | | | - Satu Pekkala
- Centro de Investigación Príncipe Felipe; Valencia Spain
| | - Belén Barcelona
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Isabel Pérez-Arellano
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | | | - Marshall Summar
- Childrens National Medical Center; Washington District of Columbia
| | - Javier Cervera
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Centro de Investigación Príncipe Felipe; Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC); Valencia Spain
- Group 739, CIBERER, ISCIII; Spain
| |
Collapse
|
18
|
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7:32. [PMID: 22642880 PMCID: PMC3488504 DOI: 10.1186/1750-1172-7-32] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zurich, 8032, Switzerland
| | - Nathalie Boddaert
- Radiologie Hopital Necker, Service Radiologie Pediatrique, 149 Rue De Sevres, Paris 15, 75015, France
| | - Alberto Burlina
- Department of Pediatrics, Division of Inborn Metabolic Disease, University Hospital Padua, Via Giustiniani 3, Padova, 35128, Italy
| | - Anupam Chakrapani
- Birmingham Children’s Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
| | - Marjorie Dixon
- Dietetic Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom
| | - Martina Huemer
- Kinderabteilung, LKH Bregenz, Carl-Pedenz-Strasse 2, Bregenz, A-6900, Austria
| | - Daniela Karall
- University Children’s Hospital, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| | | | - René Santer
- Universitätsklinikum Hamburg Eppendorf, Klinik für Kinder- und Jugendmedizin, Martinistr. 52, Hamburg, 20246, Germany
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, rue de Sèvres, Paris, 75015, France
| | - Vassili Valayannopoulos
- Reference Center for Inherited Metabolic Disorders (MaMEA), Hopital Necker-Enfants Malades, 149 Rue de Sevres, Paris, 75015, France
| | - Martin Lindner
- University Children’s Hospital, Im Neuenheimer Feld 430, Heidelberg, 69120, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), C/ Jaume Roig 11, Valencia, 46010, Spain
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| |
Collapse
|
19
|
Häberle J. Carglumic acid for the treatment of N-acetylglutamate synthase deficiency and acute hyperammonemia. Expert Rev Endocrinol Metab 2012; 7:263-271. [PMID: 30780843 DOI: 10.1586/eem.12.17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Carglumic acid is a structural analog and the first registered synthetic form of the naturally occurring allosteric activator of the urea cycle, N-acetylglutamate (NAG), which is the product of the enzyme NAG synthase (NAGS). Because NAG is essential for the function of carbamoylphosphate synthetase 1 as the first step of the urea cycle, a decreased availability of NAG due to primary or secondary defects of NAGS will affect ammonia detoxification in the urea cycle. Carglumic acid (Carbaglu®, Orphan Europe SARL, Paris, France) is approved for the acute and long-term treatment of primary defects of NAGS in Europe and the USA. In addition, it is approved in Europe for the treatment of acute hyperammonemia in patients with specific organic acidurias that can lead to NAG deficiency secondary to inhibition of NAGS. This article reviews the use of carglumic acid for both approved indications and considers the potential of this compound for acute hyperammonemias in general.
Collapse
Affiliation(s)
- Johannes Häberle
- a University Children's Hospital, Division of Metabolism, Children's Research Center, Steinwiesstrasse 75, CH-8032 Zürich, Switzerland.
| |
Collapse
|
20
|
Takakusa H, Mohar I, Kavanagh TJ, Kelly EJ, Kaspera R, Nelson SD. Protein tyrosine nitration of mitochondrial carbamoyl phosphate synthetase 1 and its functional consequences. Biochem Biophys Res Commun 2012; 420:54-60. [PMID: 22402285 DOI: 10.1016/j.bbrc.2012.02.114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/19/2012] [Indexed: 11/29/2022]
Abstract
Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Hideo Takakusa
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Funghini S, Thusberg J, Spada M, Gasperini S, Parini R, Ventura L, Meli C, De Cosmo L, Sibilio M, Mooney SD, Guerrini R, Donati MA, Morrone A. Carbamoyl phosphate synthetase 1 deficiency in Italy: clinical and genetic findings in a heterogeneous cohort. Gene 2011; 493:228-34. [PMID: 22173106 DOI: 10.1016/j.gene.2011.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/07/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Carbamoyl Phosphate Synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder, potentially leading to lethal hyperammonemia. Based on the age of onset, there are two distinct phenotypes: neonatal and late form. The CPS1 enzyme, located in the mitochondrial matrix of hepatocytes and epithelial cells of intestinal mucosa, is encoded by the CPS1 gene. At present more than 220 clear-cut genetic lesions leading to CPS1D have been reported. As most of them are private mutations diagnosis is complicated. Here we report an overview of the main clinical findings and biochemical and molecular data of 13 CPS1D Italian patients. In two of them, one with the neonatal form and one with the late form, cadaveric auxiliary liver transplant was performed. Mutation analysis in these patients identified 17 genetic lesions, 9 of which were new confirming their "private" nature. Seven of the newly identified mutations were missense/nonsense changes. In order to study their protein level effects, we performed an in silico analysis whose results indicate that the amino acid substitutions occur at evolutionary conserved positions and affect residues necessary for enzyme stability or function.
Collapse
Affiliation(s)
- S Funghini
- Metabolic and Muscular Unit, Clinic of Paediatric Neurology, Meyer Children's Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Aires CCP, van Cruchten A, Ijlst L, de Almeida IT, Duran M, Wanders RJA, Silva MFB. New insights on the mechanisms of valproate-induced hyperammonemia: inhibition of hepatic N-acetylglutamate synthase activity by valproyl-CoA. J Hepatol 2011; 55:426-34. [PMID: 21147182 DOI: 10.1016/j.jhep.2010.11.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 10/22/2010] [Accepted: 11/08/2010] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Hyperammonemia is a frequent side-effect of valproic acid (VPA) therapy, which points to an imbalance between ammoniagenesis and ammonia disposal via the urea cycle. The impairment of this liver-specific metabolic pathway induced either by primary genetic defects or by secondary causes, namely associated with drugs administration, may result in accumulation of ammonia. To elucidate the mechanisms which underlie VPA-induced hyperammonemia, the aim of this study was to evaluate the effect of both VPA and its reactive intermediate, valproyl-CoA (VP-CoA), on the synthesis of N-acetylglutamate (NAG), a prime metabolite activator of the urea cycle. METHODS The amount of NAG in livers of rats treated with VPA was quantified by HPLC-MS/MS. The NAG synthase (NAGS) activity was evaluated in vitro in rat liver mitochondria, and the effect of both VPA and VP-CoA was characterized. RESULTS The present results clearly show that VP-CoA is a stronger inhibitor of NAGS activity in vitro than the parent drug VPA. The hepatic levels of NAG were significantly reduced in VPA-treated rats as compared with control tissues. CONCLUSIONS These data strongly suggest that the hyperammonemia observed in patients under VPA treatment may result from a direct inhibition of the NAGS activity by VP-CoA. The subsequent reduced availability of NAG will impair the flux through the urea cycle and compromise the major role of this pathway in ammonia detoxification.
Collapse
Affiliation(s)
- Cátia C P Aires
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry and Pediatrics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Häberle J, Shchelochkov OA, Wang J, Katsonis P, Hall L, Reiss S, Eeds A, Willis A, Yadav M, Summar S, Lichtarge O, Rubio V, Wong LJ, Summar M. Molecular defects in human carbamoy phosphate synthetase I: mutational spectrum, diagnostic and protein structure considerations. Hum Mutat 2011; 32:579-89. [PMID: 21120950 DOI: 10.1002/humu.21406] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/27/2010] [Indexed: 11/09/2022]
Abstract
Deficiency of carbamoyl phosphate synthetase I (CPSI) results in hyperammonemia ranging from neonatally lethal to environmentally induced adult-onset disease. Over 24 years, analysis of tissue and DNA samples from 205 unrelated individuals diagnosed with CPSI deficiency (CPSID) detected 192 unique CPS1 gene changes, of which 130 are reported here for the first time. Pooled with the already reported mutations, they constitute a total of 222 changes, including 136 missense, 15 nonsense, 50 changes of other types resulting in enzyme truncation, and 21 other changes causing in-frame alterations. Only ∼10% of the mutations recur in unrelated families, predominantly affecting CpG dinucleotides, further complicating the diagnosis because of the "private" nature of such mutations. Missense changes are unevenly distributed along the gene, highlighting the existence of CPSI regions having greater functional importance than other regions. We exploit the crystal structure of the CPSI allosteric domain to rationalize the effects of mutations affecting it. Comparative modeling is used to create a structural model for the remainder of the enzyme. Missense changes are found to directly correlate, respectively, with the one-residue evolutionary importance and inversely correlate with solvent accessibility of the mutated residue. This is the first large-scale report of CPS1 mutations spanning a wide variety of molecular defects highlighting important regions in this protein.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich, Division of Metabolism, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Martínez AI, Pérez-Arellano I, Pekkala S, Barcelona B, Cervera J. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency. Mol Genet Metab 2010; 101:311-23. [PMID: 20800523 DOI: 10.1016/j.ymgme.2010.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/28/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) plays a paramount role in liver ureagenesis since it catalyzes the first and rate-limiting step of the urea cycle, the major pathway for nitrogen disposal in humans. CPS1 deficiency (CPS1D) is an autosomal recessive inborn error which leads to hyperammonemia due to mutations in the CPS1 gene, or is caused secondarily by lack of its allosteric activator NAG. Proteolytic, immunological and structural data indicate that human CPS1 resembles Escherichia coli CPS in structure, and a 3D model of CPS1 has been presented for elucidating the pathogenic role of missense mutations. Recent availability of CPS1 expression systems also can provide valuable tools for structure-function analysis and pathogenicity-testing of mutations in CPS1. In this paper, we provide a comprehensive compilation of clinical CPS1 mutations, and discuss how structural knowledge of CPS enzymes in combination with in vitro analyses can be a useful tool for diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ana Isabel Martínez
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe (CIPF) Valencia, Spain
| | | | | | | | | |
Collapse
|
25
|
Pekkala S, Martínez AI, Barcelona B, Yefimenko I, Finckh U, Rubio V, Cervera J. Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis. Hum Mutat 2010; 31:801-8. [PMID: 20578160 DOI: 10.1002/humu.21272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Carbamoyl-phosphate synthetase I (CPS1) deficiency (CPS1D), a recessively inherited urea cycle error due to CPS1 gene mutations, causes life-threatening hyperammonemia. The disease-causing potential of missense mutations in CPS1 deficiency can be ascertained with the recombinant CPS1 expression and purification system reported here, which uses baculovirus and insect cells. We study with this system the effects of nine clinical mutations and one polymorphism on CPS1 solubility, stability, activity, and kinetic parameters for NAG. Five of the mutations (p.T471N, p.Q678P, p.P774L, p.R1453Q, and p.R1453W) are first reported here, in three severe CPS1D patients. p.P774L, p.R1453Q, and p.R1453W inactivate CPS1, p.T471N and p.Y1491H greatly decrease the apparent affinity for NAG, p.Q678P hampers correct enzyme folding, and p.S123F, p.H337R, and p.P1411L modestly decrease activity. p.G1376S is confirmed a trivial polymorphism. The effects of the C-terminal domain mutations are rationalized in the light of this domain crystal structure, including the NAG site structure [Pekkala et al. Biochem J 424:211-220]. The agreement of clinical observations and in vitro findings, and the possibility to identify CPS1D patients who might benefit from specific treatment with NAG analogues because they exhibit reduced affinity for NAG highlight the value of this novel CPS1 expression/purification system.
Collapse
Affiliation(s)
- Satu Pekkala
- Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|