1
|
Yang Y, Wang S, Liu X, Zhang W, Tong W, Luo H, Zhao L. Interactions of ferulic acid and ferulic acid methyl ester with endogenous proteins: Determination using the multi-methods. Heliyon 2024; 10:e24605. [PMID: 38312678 PMCID: PMC10835327 DOI: 10.1016/j.heliyon.2024.e24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Ferulic acid (FA) and ferulic acid methyl ester (FAM) are important phenolic compounds in Baijiu. In this study, the interaction of FA and FAM with human serum albumin (HSA) and lysozyme (LZM) was investigated using multispectral methods and molecular dynamics simulation. FA and FAM could interact with HSA and LZM, changing the conformation and hydrophilicity of the protein. The quenching mechanisms of FA-HSA, FA-LZM, FAM-HSA, and FAM-LZM were all static-quenching. In the FA-HSA, FAM-HSA, and FA-LZM systems, the interaction forces were mainly hydrophobic interactions and hydrogen bonding. In the FAM-LZM system, the interaction forces were mainly hydrophobic interactions, hydrogen bonding, and van der Waals force. Common metal ions such as K+, Ca2+, Cu2+, Mg2+, and Mn2+ could affect the binding ability of FA and FAM to HSA and LZM. Moreover, FA and FAM could increase the stability of HSA and LZM, and the protein bound to FA/FAM was more stable than the free protein. FA and FAM had varying degrees of impact on the physiological activities of HSA and LZM. This study provides relevant information on the interactions and metabolic mechanisms of FA and its derivatives with endogenous proteins.
Collapse
Affiliation(s)
- Ying Yang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Shuqin Wang
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Xingyan Liu
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
| | - Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510000, China
| | - Wenhua Tong
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Huibo Luo
- School of Biological Engineering, Sichuan University of Science and Engineering, Yibin, 644000, China
- Key Laboratory of Brewing Biotechnology and Application, Yibin, 644000, China
| | - Liming Zhao
- East China University of Science and Technology, Shanghai, 200000, China
| |
Collapse
|
2
|
Wang Y, Luo Z, Morelli X, Xu P, Jiang L, Shi X, Huang M. Crystal structures of human serum albumin in complex with lysophosphatidylcholine. Biophys J 2023; 122:4135-4143. [PMID: 37731243 PMCID: PMC10645546 DOI: 10.1016/j.bpj.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Lysophospholipids (lysoPLs) are crucial metabolites involved in various physiological and pathological cellular processes. Understanding their binding interactions, particularly with human serum albumin (HSA), is essential due to their role in regulating lysoPLs-induced cytotoxicity. However, the precise mechanism of lysoPLs binding to HSA remains elusive. In this study, we employed fluorescence quenching and optical interferometry assays to demonstrate direct binding between lysophosphatidylcholine (LPC) and HSA (KD = 25 μM). Furthermore, we determined crystal structures of HSA in complex with LPC, both in the absence and the presence of the endogenous fatty acid myristate (14:0). The crystal structure of binary HSA:LPC revealed that six LPC molecules are bound to HSA at the primary fatty acid binding sites. Interestingly, the ternary HSA:Myr:LPC structure demonstrated the continued binding of three LPC molecules to HSA at binding sites 1, 3, and 5 in the presence of myristate. These findings support HSA's role as a carrier protein for lysoPLs in blood plasma and provide valuable insights into the structural basis of their binding mechanisms.
Collapse
Affiliation(s)
- Yu Wang
- College of Chemistry, Fuzhou University, Fuzhou, China; Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Xavier Morelli
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, University Aix-Marseill1715e, Marseille, France
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | | | - Xiaoli Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China.
| | | |
Collapse
|
3
|
Inoue N, Sakurai T, Yamamoto Y, Chiba H, Hui SP. Profiling of lysophosphatidylethanolamine molecular species in human serum and in silico prediction of the binding site on albumin. Biofactors 2022; 48:1076-1088. [PMID: 35686952 DOI: 10.1002/biof.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
Lysophosphatidylethanolamine (LPE) is a major lysophospholipid produced by phospholipids and binds to human serum albumin (HSA). LPEs may play various roles in vivo depending on the differences in their acyl chains. However, only few reports have been published on the biological functions of LPEs. Hence, we determined the exact relative abundance of the major LPEs in the serum of healthy participants (n = 8) using liquid chromatography-tandem mass spectrometry. Consequently, LPE 18:2 (24.1 ± 5.2%) was found to be the most abundant in serum. To understand the distribution of LPEs, the serum separated via gel-filtration high-performance liquid chromatography was subjected to quantitative measurement. LPEs were more observed in the albumin fraction than the lipoprotein fraction. We also performed a fluorescence displacement assay and an in silico molecular docking experiment using AutoDock to confirm the affinity and binding sites of the LPEs on HSA. The binding affinities of the LPEs for drug sites 1 and 2 on HSA were relatively low, with Ki values of approximately 11 and 3.8 μM, respectively. AutoDock analysis revealed the conformation of the LPEs bound to drug sites and the possibility of LPEs binding to other HSA sites. These findings could help to elucidate the biological and pathological functions of LPEs.
Collapse
Affiliation(s)
- Nao Inoue
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Yusuke Yamamoto
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Chen S, Yuan C, Jiang L, Luo Z, Huang M. Crystallographic analysis of interaction between cisplatin and human serum albumin: Effect of fatty acid. Int J Biol Macromol 2022; 216:172-178. [PMID: 35788007 DOI: 10.1016/j.ijbiomac.2022.06.181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
Metallodrugs are important for anticancer treatments. They bind mainly to human serum albumin (HSA) in blood circulation, greatly modulating their pharmacokinetics and anticancer efficacy. Fatty acid (FA) is one of the most important endogenous ligands of HSA with tight binding to HSA and affecting its conformation. However, the effect of fatty acids on metallodrugs interaction with HSA is unknown. Here we identify the binding sites of a widely used metallodrug, cisplatin, in HSA in the presence or absence of a representative fatty acid, myristate, by X-ray crystallography. Our crystal structures indicate that the sidechain of residue Met548 becomes more exposed to solvent in the presence of fatty acid, and is the main Pt binding site together with Met329 in HSA:Myr:cisplatin ternary structure. An undoubted new Pt binding site is detected at His338 in the presence of fatty acid, and additional two sites are also identified at His146 and His440 + K436. In addition, we revealed the mechanism of cisplatin-induced HSA aggregation, which is due to the crosslinking between Met298 and His510 of two HSA molecules.
Collapse
Affiliation(s)
- Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Huang Z, Lin H, Yu S, Li H, Zhou Y, Cheng Y, Chen S, Yuan C, Huang M. A versatile insertion point on albumin to accommodate peptides and maintain their activities. Int J Biol Macromol 2022; 205:49-54. [PMID: 35134454 DOI: 10.1016/j.ijbiomac.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
Genetic fusion of human serum albumin to peptides is an important strategy to enhance the plasma half-life of the peptide. An inherent challenge of such method is the reduction of specific activity of the cargo peptides upon connecting at N- or C-termini of albumin. Here, we report a finding that residue 363-364 of albumin can be inserted with a peptide while maintaining the peptide activities. We insert a peptide inhibitor into this site, and at the N-terminus of albumin, for comparison. The chimeric protein displays potent inhibition (IC50 value of 30 nM) to its target (uPAR), but not the N-terminally fused construct. We also study the chimera of HSA with a cyclic peptide inhibitor of murine urokinase-type plasminogen activator grafted at either the internal site or the N-terminus. The internally peptide-grafted protein possesses a much more potent inhibition compared to the N-terminally located fusion (IC50 value of 32 nM vs 19 μM). We further demonstrate that such internal fusion does not affect albumin expression, secondary structure, and inherent drug binding activity. Thus, this work identifies a versatile insertion point inside albumin for maintaining fusion peptide activity, and opens a new avenue to expand the applications of albumin fusion technology.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huajian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hanlin Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuan Cheng
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shanli Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
6
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
7
|
Evaluation of release and pharmacokinetics of hexadecylphosphocholine (miltefosine) in phosphatidyldiglycerol-based thermosensitive liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183698. [PMID: 34283999 DOI: 10.1016/j.bbamem.2021.183698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
Hexadecylphosphocholine (HePC, Miltefosine) is a drug from the class of alkylphosphocholines with an antineoplastic and antiprotozoal activity. We previously reported that HePC uptake from thermosensitive liposomes (TSL) containing 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) into cancer cells is accelerated at mild hyperthermia (HT) resulting in increased cytotoxicity. In this study, we compared HePC release of different TSL formulations in serum. HePC showed rapid but incomplete release below the transition temperature (Tm) of investigated TSL formulations in serum. Short heating (5 min) to 42 °C increased HePC release from DPPG2-TSL (Tm = 41 °C) by a factor of two in comparison to body temperature (37 °C). Bovine serum albumin (BSA) induced HePC release from DPPG2-TSL comparable to serum. Furthermore, multilamellar vesicles (MLV) were capable to extract HePC from DPPG2-TSL in a concentration- and temperature-dependent manner. Repetitive exposure of DPPG2-TSL to MLV at 37 °C led to a fast initial release of HePC which slowed down after subsequent extraction cycles finally reaching approx. 50% HePC release. A pharmacokinetic study in rats revealed a biphasic pattern with an immediate clearance of approx. 50% HePC whereas the remaining 50% HePC showed a prolonged circulation time. We speculate that HePC located in the external leaflet of DPPG2-TSL is rapidly released upon contact with suitable biological acceptors. As demonstrated by MLV transfer experiments, asymmetric incorporation of HePC into the internal leaflet of DPPG2-TSL might improve HePC retention in presence of complex biological media and still give rise to HT-induced HePC release.
Collapse
|
8
|
Shaktah R, Vardanyan L, David E, Aleman A, Orr D, Shaktah LA, Tamae D, Minehan T. Synthesis and Stereochemical Assignment of Conioidine A: DNA- and HSA-Binding Studies of the Four Diastereomers. JOURNAL OF NATURAL PRODUCTS 2020; 83:3191-3198. [PMID: 33034450 DOI: 10.1021/acs.jnatprod.0c00871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conioidine A (1), isolated in 1993 with unknown relative and absolute configuration, was suggested to be a DNA-binding compound by an indirect technique. Four stereoisomers of conioidine A have been synthesized from d- and l-proline, and the natural product has been identified as possessing (4R,6R) absolute configuration. Binding of the conioidine diastereomers to calf thymus DNA (CT DNA) and human serum albumin (HSA) has been investigated by fluorescence spectroscopy and isothermal titration calorimetry (ITC). All stereoisomers display at least an order of magnitude weaker binding to DNA than the control compound netropsin; however, a strong association with HSA was observed for the (4R,6S) stereoisomer.
Collapse
Affiliation(s)
- Ryan Shaktah
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Laura Vardanyan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Elroma David
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Alexis Aleman
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Dupre Orr
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Lawrence A Shaktah
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Daniel Tamae
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| | - Thomas Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330, United States
| |
Collapse
|
9
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Zielinski K, Sekula B, Bujacz A, Szymczak I. Structural investigations of stereoselective profen binding by equine and leporine serum albumins. Chirality 2020; 32:334-344. [PMID: 31905261 DOI: 10.1002/chir.23162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/28/2022]
Abstract
Serum albumin, the most abundant transport protein of mammalian blood, interacts with various nonsteroidal anti-inflammatory drugs (NSAIDs) affecting their disposition, metabolism, and excretion. A big group of chiral NSAIDs transported by albumin, profens, is created by derivatives of 2-arylpropionic acid. The chiral center in the structures of profens is adjacent to the carboxylate moiety and often determines different pharmacological properties of profen enantiomers. This study describes crystal structures of two albumins, isolated from equine and leporine serum, in complexes with three profens: ibuprofen, ketoprofen, and suprofen. Based on three-dimensional structures, the stereoselectivity of albumin is discussed and referred to the previously published albumin complexes with drugs. Drug Site 2 (DS2) of albumin, the bulky hydrophobic pocket of subdomain IIIA with a patch of polar residues, preferentially binds (S)-enantiomers of all investigated profens. Almost identical binding mode of all these drugs clearly indicates the stereoselectivity of DS2 towards (S)-profens in different albumin species. Also, the affinity studies show that DS2 is the major site that presents high affinity towards investigated drugs. Additionally, crystallographic data reveal the secondary binding sites of ketoprofen in leporine serum albumin and ibuprofen in equine serum albumin, both overlapping with previously identified naproxen binding sites: the cleft formed between subdomains IIIA and IIIB close to the fatty acid binding site 5 and the niche created between subdomains IIA and IIIA, called fatty acid site 6.
Collapse
Affiliation(s)
- Kamil Zielinski
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, USA.,Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Izabela Szymczak
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
11
|
Zhang RR, Grudzinksi JJ, Mehta TI, Burnette RR, Hernandez R, Clark PA, Lubin JA, Pinchuk AN, Jeffrey J, Longino M, Kuo JS, Weichert JP. In Silico Docking of Alkylphosphocholine Analogs to Human Serum Albumin Predicts Partitioning and Pharmacokinetics. Mol Pharm 2019; 16:3350-3360. [PMID: 31082240 DOI: 10.1021/acs.molpharmaceut.8b01301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alkylphosphocholine (APC) analogs are a novel class of broad-spectrum tumor-targeting agents that can be used for both diagnosis and treatment of cancer. The potential for clinical translation for APC analogs will strongly depend on their pharmacokinetic (PK) profiles. The aim of this work was to understand how the chemical structures of various APC analogs impact binding and PK. To achieve this aim, we performed in silico docking analysis, in vitro and in vivo partitioning experiments, and in vivo PK studies. Our results have identified 7 potential high-affinity binding sites of these compounds on human serum albumin (HSA) and suggest that the size of the functional group directly influences the albumin binding, partitioning, and PK. Namely, the bulkier the functional groups, the weaker the agent binds to albumin, the more the agent partitions onto lipoproteins, and the less time the agent spends in circulation. The results of these experiments provide novel molecular insights into the binding, partitioning, and PK of this class of compounds and similar molecules as well as suggest pharmacological strategies to alter their PK profiles. Importantly, our methodology may provide a way to design better drugs by better characterizing the PK profile for lead compound optimization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marc Longino
- Cellectar Biosciences Inc. , Madison , Wisconsin , United States
| | | | | |
Collapse
|
12
|
Kordalewska M, Macioszek S, Wawrzyniak R, Sikorska-Wiśniewska M, Śledziński T, Chmielewski M, Mika A, Markuszewski MJ. Multiplatform metabolomics provides insight into the molecular basis of chronic kidney disease. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:49-57. [DOI: 10.1016/j.jchromb.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/18/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
|
13
|
Ditz T, Fuchs B. Determination of the Phosphatidylcholine/Lysophosphatidylcholine Ratio in Intact Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Prior Enzymatic Albumin Digestion. Lipids 2018; 53:971-977. [PMID: 30485452 DOI: 10.1002/lipd.12106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 11/10/2022]
Abstract
Lysophosphatidylcholine (lysoPtdCho) is a well-known biomarker in body fluids for inflammation and oxidative stress and provides a possible clinical screening marker for certain diseases where inflammation is involved. It was shown in our previous article that the measurement of intact serum using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) provides the phosphatidylcholine (PtdCho)/lysoPtdCho ratios faster than the measurements after organic extraction, while the standard deviations of those "intact" measurements are even smaller. Surprisingly, the PtdCho/lysoPtdCho ratio is about two times higher in the intact serum MALDI-TOF MS measurement than in the MALDI-TOF MS analysis of the organic extracts. Albumin binding of lysoPtdCho seems to be a very likely reason for increased PtdCho/lysoPtdCho ratios in the intact serum measurements. In this article, this hypothesis is tested on horse serum as a biological sample. Albumin (equine and bovine) addition to serum shows an increase in the PtdCho/lysoPtdCho ratio detected by MALDI-TOF MS. Further experiments with a comparable lipid model suspension verify that pepsin and trypsin are able to liberate the bound lipids. Under different conditions, the effects of both enzymes on the lipid model suspension are compared. Finally, an improved MALDI-TOF MS measurement of the PtdCho/lysoPtdCho ratio in intact serum after a prior pepsin digestion step was established. As is known that lysoPtdCho is cytotoxic and albumin is capable of decreasing this cytotoxicity by binding lysoPtdCho, this study proposes to consider both PtdCho/lysoPtdCho ratios-with and without albumin-bound lysoPtdCho-that could be superior diagnostic markers for inflammation and oxidative stress.
Collapse
Affiliation(s)
- Timo Ditz
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107, Leipzig, Germany
| | - Beate Fuchs
- Leibniz-Institut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| |
Collapse
|
14
|
Palese LL. A random version of principal component analysis in data clustering. Comput Biol Chem 2018; 73:57-64. [PMID: 29428276 DOI: 10.1016/j.compbiolchem.2018.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 01/01/2023]
Abstract
Principal component analysis (PCA) is a widespread technique for data analysis that relies on the covariance/correlation matrix of the analyzed data. However, to properly work with high-dimensional data sets, PCA poses severe mathematical constraints on the minimum number of different replicates, or samples, that must be included in the analysis. Generally, improper sampling is due to a small number of data respect to the number of the degrees of freedom that characterize the ensemble. In the field of life sciences it is often important to have an algorithm that can accept poorly dimensioned data sets, including degenerated ones. Here a new random projection algorithm is proposed, in which a random symmetric matrix surrogates the covariance/correlation matrix of PCA, while maintaining the data clustering capacity. We demonstrate that what is important for clustering efficiency of PCA is not the exact form of the covariance/correlation matrix, but simply its symmetry.
Collapse
Affiliation(s)
- Luigi Leonardo Palese
- University of Bari "Aldo Moro", Department of Basic Medical Sciences, Neurosciences and Sense Organs (SMBNOS), Bari 70124, Italy.
| |
Collapse
|
15
|
2- OMe -lysophosphatidylcholine analogues are GPR119 ligands and activate insulin secretion from βTC-3 pancreatic cells: Evaluation of structure-dependent biological activity. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:91-103. [DOI: 10.1016/j.bbalip.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/08/2023]
|
16
|
Ohlson S, Kaur J, Raida M, Niss U, Bengala T, Drum CL, Boehm B, Torres AR. Direct analysis – no sample preparation – of bioavailable cortisol in human plasma by weak affinity chromatography (WAC). J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:438-444. [DOI: 10.1016/j.jchromb.2017.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/21/2023]
|
17
|
Landreh M, Costeira-Paulo J, Gault J, Marklund EG, Robinson CV. Effects of Detergent Micelles on Lipid Binding to Proteins in Electrospray Ionization Mass Spectrometry. Anal Chem 2017. [PMID: 28627869 PMCID: PMC5559180 DOI: 10.1021/acs.analchem.7b00922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
A wide
variety of biological processes rely upon interactions between
proteins and lipids, ranging from molecular transport to the organization
of the cell membrane. It was recently established that electrospray
ionization mass spectrometry (ESI-MS) is capable of capturing transient
interactions between membrane proteins and their lipid environment,
and a detailed understanding of the underlying processes is therefore
of high importance. Here, we apply ESI-MS to investigate the factors
that govern complex formation in solution and gas phases by comparing
nonselective lipid binding with soluble and membrane proteins. We
find that exogenously added lipids did not bind to soluble proteins,
suggesting that lipids have a low propensity to form electrospray
ionization adducts. The presence of detergents at increasing micelle
concentrations, on the other hand, resulted in moderate lipid binding
to soluble proteins. A direct ESI-MS comparison of lipid binding to
the soluble protein serum albumin and to the integral membrane protein
NapA shows that soluble proteins acquire fewer lipid adducts. Our
results suggest that protein–lipid complexes form via contacts
between proteins and mixed lipid/detergent micelles. For soluble proteins,
these complexes arise from nonspecific contacts between the protein
and detergent/lipid micelles in the electrospray droplet. For membrane
proteins, lipids are incorporated into the surrounding micelle in
solution, and complex formation occurs independently of the ESI process.
We conclude that the lipids in the resulting complexes interact predominantly
with sites located in the transmembrane segments, resulting in nativelike
complexes that can be interrogated by MS.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| | - Joana Costeira-Paulo
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Joseph Gault
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| | - Erik G Marklund
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University , Box 576, SE-751 23 Uppsala, Sweden
| | - Carol V Robinson
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford, Oxfordshire OX1 3QZ, United Kingdom
| |
Collapse
|
18
|
Yamamoto Y, Itoh T, Yamamoto K. A study of synthetic approaches to 2-acyl DHA lysophosphatidic acid. Org Biomol Chem 2017; 15:8186-8192. [DOI: 10.1039/c7ob01771e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A salt formation suppresses acyl migration of DHA lysophosphatidic acid.
Collapse
Affiliation(s)
- Yoshinori Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry
- Showa Pharmaceutical University
- Machida
- Japan
| |
Collapse
|
19
|
Hosseini-Kharat M, Karami K, Saeidifar M, Rizzoli C, Zahedi-Nasab R, Sohrabijam Z, Sharifi T. A novel Pd(ii) CNO pincer complex of MR (methyl red): synthesis, crystal structure, interaction with human serum albumin (HSA) in vitro and molecular docking. NEW J CHEM 2017. [DOI: 10.1039/c7nj01415e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C–H activation of methyl red (MR) (MR = 2-{[4-(dimethylamino)phenyl]diazenyl}benzoic acid) was achieved by reaction with Pd(OAc)2under mild conditions.
Collapse
Affiliation(s)
| | - Kazem Karami
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials
- Materials and Energy Research Center
- Karaj
- Iran
| | - Corrado Rizzoli
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- I-43124 Parma
- Italy
| | | | - Zahra Sohrabijam
- Department of Nanotechnology and Advanced Materials
- Materials and Energy Research Center
- Karaj
- Iran
| | - Tayebeh Sharifi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| |
Collapse
|
20
|
Dimitrova A, Walko M, Hashemi Shabestari M, Kumar P, Huber M, Kocer A. In situ, Reversible Gating of a Mechanosensitive Ion Channel through Protein-Lipid Interactions. Front Physiol 2016; 7:409. [PMID: 27708587 PMCID: PMC5030285 DOI: 10.3389/fphys.2016.00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Understanding the functioning of ion channels, as well as utilizing their properties for biochemical applications requires control over channel activity. Herein we report a reversible control over the functioning of a mechanosensitive ion channel by interfering with its interaction with the lipid bilayer. The mechanosensitive channel of large conductance from Escherichia coli is reconstituted into liposomes and activated to its different sub-open states by titrating lysophosphatidylcholine (LPC) into the lipid bilayer. Activated channels are closed back by the removal of LPC out of the membrane by bovine serum albumin (BSA). Electron paramagnetic resonance spectra showed the LPC-dose-dependent gradual opening of the channel pore in the form of incrementally increasing spin label mobility and decreasing spin-spin interaction. A method to reversibly open and close mechanosensitive channels to distinct sub-open conformations during their journey from the closed to the fully open state enables detailed structural studies to follow the conformational changes during channel functioning. The ability of BSA to revert the action of LPC opens new perspectives for the functional studies of other membrane proteins that are known to be activated by LPC.
Collapse
Affiliation(s)
- Anna Dimitrova
- Department of Biochemistry, University of GroningenGroningen, Netherlands
| | - Martin Walko
- Department of Biochemistry, University of GroningenGroningen, Netherlands
| | | | - Pravin Kumar
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden UniversityLeiden, Netherlands
| | - Martina Huber
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden UniversityLeiden, Netherlands
| | - Armagan Kocer
- Neuroscience Department, University of Groningen, University Medical Center GroningenGroningen, Netherlands
| |
Collapse
|
21
|
Structural evidence of the species-dependent albumin binding of the modified cyclic phosphatidic acid with cytotoxic properties. Biosci Rep 2016; 36:BSR20160089. [PMID: 27129297 PMCID: PMC5293571 DOI: 10.1042/bsr20160089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic properties of a new phosphorodithioate myristoyl derivative of cyclic phosphatidic acid as well as detailed binding mode of this ligand by human and equine serum albumins based on two crystal structures are presented. Cyclic phosphatidic acids (cPAs) are naturally occurring, very active signalling molecules, which are involved in several pathological states, such as cancer, diabetes or obesity. As molecules of highly lipidic character found in the circulatory system, cPAs are bound and transported by the main extracellular lipid binding protein–serum albumin. Here, we present the detailed interactions between human serum albumin (HSA) and equine serum albumin (ESA) with a derivative of cPA, 1-O-myristoyl-sn-glycerol-2,3-cyclic phosphorodithioate (Myr-2S-cPA). Initial selection of the ligand used for the structural study was made by the analysis of the therapeutically promising properties of the sulfur containing analogues of cPA in respect to the unmodified lysophospholipids (LPLs). Substitution of one or two non-bridging oxygen atoms in the phosphate group with one or two sulfur atoms increases the cytotoxic effect of cPAs up to 60% on the human prostate cancer (PC) cells. Myr-2S-cPA reduces cancer cell viability in a dose-dependent manner, with IC50 value of 29.0 μM after 24 h incubation, which is almost 30% lower than IC50 of single substituted phosphorothioate cPA. Although, the structural homology between HSA and ESA is big, their crystal complexes with Myr-2S-cPA demonstrate significantly different mode of binding of this LPL analogue. HSA binds three molecules of Myr-2S-cPA, whereas ESA only one. Moreover, none of the identified Myr-2S-cPA binding sites overlap in both albumins.
Collapse
|
22
|
Development of a mass-spectrometry-based lipidomics platform for the profiling of phospholipids and sphingolipids in brain tissues. Anal Bioanal Chem 2015; 407:6543-55. [DOI: 10.1007/s00216-015-8822-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
|
23
|
Lambrinidis G, Vallianatou T, Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv Drug Deliv Rev 2015; 86:27-45. [PMID: 25819487 DOI: 10.1016/j.addr.2015.03.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/11/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Plasma protein binding (PPB) strongly affects drug distribution and pharmacokinetic behavior with consequences in overall pharmacological action. Extended plasma protein binding may be associated with drug safety issues and several adverse effects, like low clearance, low brain penetration, drug-drug interactions, loss of efficacy, while influencing the fate of enantiomers and diastereoisomers by stereoselective binding within the body. Therefore in holistic drug design approaches, where ADME(T) properties are considered in parallel with target affinity, considerable efforts are focused in early estimation of PPB mainly in regard to human serum albumin (HSA), which is the most abundant and most important plasma protein. The second critical serum protein α1-acid glycoprotein (AGP), although often underscored, plays also an important and complicated role in clinical therapy and thus the last years it has been studied thoroughly too. In the present review, after an overview of the principles of HSA and AGP binding as well as the structure topology of the proteins, the current trends and perspectives in the field of PPB predictions are presented and discussed considering both HSA and AGP binding. Since however for the latter protein systematic studies have started only the last years, the review focuses mainly to HSA. One part of the review highlights the challenge to develop rapid techniques for HSA and AGP binding simulation and their performance in assessment of PPB. The second part focuses on in silico approaches to predict HSA and AGP binding, analyzing and evaluating structure-based and ligand-based methods, as well as combination of both methods in the aim to exploit the different information and overcome the limitations of each individual approach. Ligand-based methods use the Quantitative Structure-Activity Relationships (QSAR) methodology to establish quantitate models for the prediction of binding constants from molecular descriptors, while they provide only indirect information on binding mechanism. Efforts for the establishment of global models, automated workflows and web-based platforms for PPB predictions are presented and discussed. Structure-based methods relying on the crystal structures of drug-protein complexes provide detailed information on the underlying mechanism but are usually restricted to specific compounds. They are useful to identify the specific binding site while they may be important in investigating drug-drug interactions, related to PPB. Moreover, chemometrics or structure-based modeling may be supported by experimental data a promising integrated alternative strategy for ADME(T) properties optimization. In the case of PPB the use of molecular modeling combined with bioanalytical techniques is frequently used for the investigation of AGP binding.
Collapse
|
24
|
Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, Zhang F, Xue J, Chen X, Huang M. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics 2014; 4:642-59. [PMID: 24723985 PMCID: PMC3982134 DOI: 10.7150/thno.8527] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
Abstract
Human serum albumin (HSA), a naturally abundant protein in blood plasma and tissue fluids, has an extraordinary ligand-binding capacity and is advocated as a drug carrier to facilitate drug delivery. To render it tumor targeting specificity, we generated a recombinant HSA fused with the amino-terminal fragment (ATF) of urokinase, allowing the fusion protein to bind to urokinase receptor (uPAR), which is shown to have a high expression level in many tumors, but not in normal tissues. To test the efficacy of this bifunctional protein (ATF-HSA), a hydrophobic photosensitizer (mono-substituted β-carboxy phthalocyanine zinc, CPZ) was chosen as a cytotoxic agent. A dilution-incubation-purification (DIP) strategy was developed to load the ATF-HSA with this CPZ, forming a 1:1 molecular complex (ATF-HSA:CPZ). We demonstrated that CPZ was indeed embedded inside ATF-HSA at the fatty acid binding site 1 (FA1) of HSA, giving a hydrodynamic radius of 7.5 nm, close to HSA's (6.5 nm). ATF-HSA:CPZ showed high stability and remarkable optical and photophysical properties in aqueous solution. In addition, the molecular complex ATF-HSA:CPZ can bind to recombinant uPAR in vitro and uPAR on tumor cell surfaces, and was efficient in photodynamic killing of tumor cells. The tumor-killing potency of this molecular complex was further demonstrated in a tumor-bearing mouse model at a dose of 0.080 μmol / kg, or 0.050 mg CPZ / kg of mouse body weight. Using fluorescent molecular tomography (FMT), ATF-HSA:CPZ was shown to accumulate specifically in tumors, and importantly, such tumor retention was higher than that of HSA:CPZ. Together, these results indicate that ATF-HSA:CPZ is not only an efficient tumor-specific cytotoxic agent, but also an useful tumor-specific imaging probe. This bifunctional protein ATF-HSA can also be used as a drug carrier for other types of cytotoxic or imaging agents to render them specificity for uPAR-expressing tumors.
Collapse
|
25
|
Interactive association of drugs binding to human serum albumin. Int J Mol Sci 2014; 15:3580-95. [PMID: 24583848 PMCID: PMC3975355 DOI: 10.3390/ijms15033580] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023] Open
Abstract
Human serum albumin (HSA) is an abundant plasma protein, which attracts great interest in the pharmaceutical industry since it can bind a remarkable variety of drugs impacting their delivery and efficacy and ultimately altering the drug’s pharmacokinetic and pharmacodynamic properties. Additionally, HSA is widely used in clinical settings as a drug delivery system due to its potential for improving targeting while decreasing the side effects of drugs. It is thus of great importance from the viewpoint of pharmaceutical sciences to clarify the structure, function, and properties of HSA–drug complexes. This review will succinctly outline the properties of binding site of drugs in IIA subdomain within the structure of HSA. We will also give an overview on the binding characterization of interactive association of drugs to human serum albumin that may potentially lead to significant clinical applications.
Collapse
|
26
|
Perrakis A, Moolenaar WH. Autotaxin: structure-function and signaling. J Lipid Res 2014; 55:1010-8. [PMID: 24548887 DOI: 10.1194/jlr.r046391] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase-2, is a secreted lysophospholipase D (lysoPLD) that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA), a ligand for specific G protein-coupled receptors. ATX-LPA signaling is essential for development and has been implicated in a great diversity of (patho)physiological processes, ranging from lymphocyte homing to tumor progression. Structural and functional studies have revealed what makes ATX a unique lysoPLD, and how secreted ATX binds to its target cells. The ATX catalytic domain shows a characteristic bimetallic active site followed by a shallow binding groove that can accommodate nucleotides as well as the glycerol moiety of lysophospholipids, and by a deep lipid-binding pocket. In addition, the catalytic domain has an open tunnel of unknown function adjacent to the active site. Here, we discuss our current understanding of ATX structure-function relationships and signaling mechanisms, and how ATX isoforms use distinct mechanisms to target LPA production to the plasma membrane, notably binding to integrins and heparan sulfate proteoglycans. We also briefly discuss the development of drug-like inhibitors of ATX.
Collapse
Affiliation(s)
- Anastassis Perrakis
- Divisions of Biochemistry, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | - Wouter H Moolenaar
- Cell Biology, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| |
Collapse
|
27
|
Hollie NI, Cash JG, Matlib MA, Wortman M, Basford JE, Abplanalp W, Hui DY. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:888-95. [PMID: 24315825 DOI: 10.1016/j.bbalip.2013.11.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/02/2013] [Accepted: 11/26/2013] [Indexed: 12/17/2022]
Abstract
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40-200μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220μM CaCl2, cyclosporine A protected against permeability transition induced by 40μM, but not 80μM lysophosphatidylcholine. Incubation with 40-120μM lysophosphatidylcholine also increased mitochondrial permeability to 75μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30-50% at 100μM lysophosphatidylcholine. Finally, while 40μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.
Collapse
Affiliation(s)
- Norris I Hollie
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James G Cash
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - M Abdul Matlib
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew Wortman
- Department of Internal Medicine, Division of Endocrinology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joshua E Basford
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William Abplanalp
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Fujiwara SI, Amisaki T. Fatty acid binding to serum albumin: Molecular simulation approaches. Biochim Biophys Acta Gen Subj 2013; 1830:5427-34. [DOI: 10.1016/j.bbagen.2013.03.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 02/02/2023]
|
29
|
Li M, Lee P, Zhang Y, Ma Z, Yang F, Zhou Z, Wu X, Liang H. X-ray Crystallographic and Fluorometric Analysis of the Interactions of Rhein to Human Serum Albumin. Chem Biol Drug Des 2013; 83:167-73. [DOI: 10.1111/cbdd.12208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 01/30/2023]
Affiliation(s)
- Mei Li
- College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 Hunan China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| | - Philbert Lee
- Ben May Department for Cancer Research; University of Chicago; Chicago 60637 IL USA
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| | - ZhiYuan Ma
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| | - ZuPing Zhou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| | - XiaoYang Wu
- Ben May Department for Cancer Research; University of Chicago; Chicago 60637 IL USA
| | - Hong Liang
- College of Chemistry and Chemical Engineering; Central South University; Changsha 410083 Hunan China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources; Ministry of Science and Technology of China; Guangxi Normal University; Guilin 541004 Guangxi China
| |
Collapse
|
30
|
Moghaddam MM, Pirouzi M, Saberi MR, Chamani J. Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques. LUMINESCENCE 2013; 29:314-31. [DOI: 10.1002/bio.2546] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/17/2013] [Accepted: 05/06/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | - Malihe Pirouzi
- Department of Biology, Faculty of Sciences, Mashhad Branch; Islamic Azad University; Mashhad Iran
| | - Mohammad Reza Saberi
- Medical Chemistry Department, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch; Islamic Azad University; Mashhad Iran
| |
Collapse
|
31
|
Wang Y, Yu H, Shi X, Luo Z, Lin D, Huang M. Structural mechanism of ring-opening reaction of glucose by human serum albumin. J Biol Chem 2013; 288:15980-7. [PMID: 23592780 DOI: 10.1074/jbc.m113.467027] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glucose reacts with proteins nonenzymatically under physiological conditions. Such glycation is exacerbated in diabetic patients with high levels of blood sugar and induces various complications. Human albumin serum (HSA) is the most abundant protein in plasma and is glycated by glucose. The glycation sites on HSA remain controversial among different studies. Here, we report two protein crystal structures of HSA in complex with either glucose or fructose. These crystal structures reveal the presence of linear forms of sugar for both monosaccharides. The linear form of glucose forms a covalent bond to Lys-195 of HSA, but this is not the case for fructose. Based on these structures, we propose a mechanism for glucose ring opening involving both residues Lys-195 and Lys-199. These results provide mechanistic insights to understand the glucose ring-opening reaction and the glycation of proteins by monosaccharides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | | | | | | | | | | |
Collapse
|
32
|
Vallianatou T, Lambrinidis G, Tsantili-Kakoulidou A. In silicoprediction of human serum albumin binding for drug leads. Expert Opin Drug Discov 2013; 8:583-95. [DOI: 10.1517/17460441.2013.777424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Yang F, Yue J, Ma L, Ma Z, Li M, Wu X, Liang H. Interactive Associations of Drug–Drug and Drug–Drug–Drug with IIA Subdomain of Human Serum Albumin. Mol Pharm 2012; 9:3259-65. [DOI: 10.1021/mp300322y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Feng Yang
- State Key Laboratory Cultivation
Base for the Chemistry and Molecular Engineering of Medicinal Resources,
Ministry of Science and Technology of China, Guangxi
Normal University, Guilin, Guangxi, China
| | - Jiping Yue
- Ben May Department for Cancer
Research, University of Chicago, Chicago, Illinois, United States
| | - Li Ma
- State Key Laboratory Cultivation
Base for the Chemistry and Molecular Engineering of Medicinal Resources,
Ministry of Science and Technology of China, Guangxi
Normal University, Guilin, Guangxi, China
| | - Zhiyuan Ma
- State Key Laboratory Cultivation
Base for the Chemistry and Molecular Engineering of Medicinal Resources,
Ministry of Science and Technology of China, Guangxi
Normal University, Guilin, Guangxi, China
| | - Mei Li
- State Key Laboratory Cultivation
Base for the Chemistry and Molecular Engineering of Medicinal Resources,
Ministry of Science and Technology of China, Guangxi
Normal University, Guilin, Guangxi, China
| | - Xiaoyang Wu
- Ben May Department for Cancer
Research, University of Chicago, Chicago, Illinois, United States
| | - Hong Liang
- State Key Laboratory Cultivation
Base for the Chemistry and Molecular Engineering of Medicinal Resources,
Ministry of Science and Technology of China, Guangxi
Normal University, Guilin, Guangxi, China
| |
Collapse
|
34
|
Song Z, Zhao H, Olubajo O, Hall LB, Orr CN, Askew CB. Characterizing the binding of nucleotide ATP on serum albumin by 31P NMR diffusion. CAN J CHEM 2012. [DOI: 10.1139/v2012-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pulsed-field-gradient (PFG) 31P NMR diffusion spectra were measured under varied sample conditions to characterize the low-affinity binding of adenosine 5′-triphosphate (ATP) on human serum albumin (HSA) or bovine serum albumin (BSA). The NMR diffusion constants of ATP, ATP–HSA, or ATP–BSA were illustrated as function of ATP concentrations. The binding curves of ATP–HSA and ATP–BSA were identical but strikingly different from the ATP curve. Using a “Scatchard plot”, the apparent binding constant (K) and number of ATP binding sites (n) on serum albumin were evaluated as K = 75.25 (mol/L)–1 and n = 10, respectively. At a pH < 5.0 and a pH > 9.0 or a temperature > 45 °C, the diffusion data of ATP–HSA were found to increase remarkably, suggesting that the dissociation of ATP from HSA was largely enhanced, probably because of pH- or heat-induced protein structural change, degradation, or aggregation. In addition, our data indicated that ADP was strongly competitive with ATP for the low-affinity binding to HSA, but heptanone and Cl– were essentially noncompetitive. These results are important for further elucidating the interaction of ATP with serum albumin and its possible effect on related bioprocesses. The method can be well applied to study the binding of other nucleotides/nucleosides on proteins.
Collapse
Affiliation(s)
- Zhiyan Song
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Hua Zhao
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Olarongbe Olubajo
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Lewis B. Hall
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Chauncey N. Orr
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| | - Courtney B. Askew
- Department of Natural Sciences, Savannah State University, Savannah, GA 31404, USA
| |
Collapse
|
35
|
Human serum albumin: from bench to bedside. Mol Aspects Med 2011; 33:209-90. [PMID: 22230555 DOI: 10.1016/j.mam.2011.12.002] [Citation(s) in RCA: 1267] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 02/07/2023]
Abstract
Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed.
Collapse
|
36
|
Wang Y, Luo Z, Shi X, Wang H, Nie L, Huang M. A fluorescent fatty acid probe, DAUDA, selectively displaces two myristates bound in human serum albumin. Protein Sci 2011; 20:2095-101. [PMID: 21997768 DOI: 10.1002/pro.749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/28/2011] [Indexed: 11/08/2022]
Abstract
11-(Dansylamino) undecanoic acid (DAUDA) is a dansyl-type fluorophore and has widely used as a probe to determine the binding site for human serum albumin (HSA). Here, we reported that structure of HSA-Myristate-DAUDA ternary complex and identified clearly the presence of two DAUDA molecules at fatty acid (FA) binding site 6 and 7 of HSA, thus showing these two sites are weak FA binding sites. This result also show that DAUDA is an appropriate probe for FA site 6 and 7 on HSA as previous studied, but not a good probe of FA binding site 1 that is likely bilirubin binding site on HSA.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | | | | | | | | | | |
Collapse
|