1
|
Jagadeesh J, Vembar SS. Evolution of sequence, structural and functional diversity of the ubiquitous DNA/RNA-binding Alba domain. Sci Rep 2024; 14:30363. [PMID: 39638848 PMCID: PMC11621453 DOI: 10.1038/s41598-024-79937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The DNA/RNA-binding Alba domain is prevalent across all kingdoms of life. First discovered in archaea, this protein domain has evolved from RNA- to DNA-binding, with a concomitant expansion in the range of cellular processes that it regulates. Despite its widespread presence, the full extent of its sequence, structural, and functional diversity remains unexplored. In this study, we employed iterative searches in PSI-BLAST to identify 15,161 unique Alba domain-containing proteins from the NCBI non-redundant protein database. Sequence similarity network (SSN) analysis clustered them into 13 distinct subgroups, including the archaeal Alba and eukaryotic Rpp20/Pop7 and Rpp25/Pop6 groups, as well as novel fungal and Plasmodium-specific Albas. Sequence and structural conservation analysis of the subgroups indicated high preservation of the dimer interface, with Alba domains from unicellular eukaryotes notably exhibiting structural deviations towards their C-terminal end. Finally, phylogenetic analysis, while supporting SSN clustering, revealed the evolutionary branchpoint at which the eukaryotic Rpp20- and Rpp25-like clades emerged from archaeal Albas, and the subsequent taxonomic lineage-based divergence within each clade. Taken together, this comprehensive analysis enhances our understanding of the evolutionary history of Alba domain-containing proteins across diverse organisms.
Collapse
Affiliation(s)
- Jaiganesh Jagadeesh
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Tang S, Huang CH, Ko TP, Lin KF, Chang YC, Lin PY, Sun L, Chen CY. Dual dimeric interactions in the nucleic acid-binding protein Sac10b lead to multiple bridging of double-stranded DNA. Heliyon 2024; 10:e31630. [PMID: 38867953 PMCID: PMC11167270 DOI: 10.1016/j.heliyon.2024.e31630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Nucleoid-associated proteins play a crucial role in the compaction and regulation of genetic material across organisms. The Sac10b family, also known as Alba, comprises widely distributed and highly conserved nucleoid-associated proteins found in archaea. Sac10b is identified as the first 10 kDa DNA-binding protein in the thermoacidophile Sulfolobus acidocaldarius. Here, we present the crystal structures of two homologous proteins, Sac10b1 and Sac10b2, as well as the Sac10b1 mutant F59A, determined at a resolution of 1.4-2.0 Å. Electron microscopic images reveal the DNA-bridging capabilities of both Sac10b1 and Sac10b2, albeit to varying extents. Analyses of crystal packing and electron microscopic results suggest that Sac10b1 facilitates cooperative DNA binding, forming extensive bridged filaments via the conserved R58 and F59 residues at the dimer-dimer interface. Substitutions at R58 or F59 of Sac10b1 attenuate end-to-end association, resulting in non-cooperative DNA binding, and formation of small, bridged DNA segments in a way similar to Sac10b2. Analytical ultracentrifuge and circular dichroism confirm the presence of thermostable, acid-tolerant dimers in both Sac10b1 and Sac10b2. These findings attest to the functional role of Sac10b in organizing and stabilizing chromosomal DNA through distinct bridging interactions, particularly under extreme growth conditions.
Collapse
Affiliation(s)
- Songqiang Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Fu Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Liuchang Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
3
|
Banerjee C, Nag S, Goyal M, Saha D, Siddiqui AA, Mazumder S, Debsharma S, Pramanik S, Bandyopadhyay U. Nuclease activity of Plasmodium falciparum Alba family protein PfAlba3. Cell Rep 2023; 42:112292. [PMID: 36947546 DOI: 10.1016/j.celrep.2023.112292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Plasmodium falciparum Alba domain-containing protein Alba3 (PfAlba3) is ubiquitously expressed in intra-erythrocytic stages of Plasmodium falciparum, but the function of this protein is not yet established. Here, we report an apurinic/apyrimidinic site-driven intrinsic nuclease activity of PfAlba3 assisted by divalent metal ions. Surface plasmon resonance and atomic force microscopy confirm sequence non-specific DNA binding by PfAlba3. Upon binding, PfAlba3 cleaves double-stranded DNA (dsDNA) hydrolytically. Mutational studies coupled with mass spectrometric analysis indicate that K23 is the essential residue in modulating the binding to DNA through acetylation-deacetylation. We further demonstrate that PfSir2a interacts and deacetylates K23-acetylated PfAlba3 in favoring DNA binding. Hence, K23 serves as a putative molecular switch regulating the nuclease activity of PfAlba3. Thus, the nuclease activity of PfAlba3, along with its apurinic/apyrimidinic (AP) endonuclease feature identified in this study, indicates a role of PfAlba3 in DNA-damage response that may have a far-reaching consequence in Plasmodium pathogenicity.
Collapse
Affiliation(s)
- Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India; Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar Kolkata, 700091, West Bengal, India.
| |
Collapse
|
4
|
Zhang X, Zheng Q. How DNA affects the hyperthermophilic protein Ape10b2 for oligomerization: an investigation using multiple short molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:25841-25849. [PMID: 34763347 DOI: 10.1039/d1cp04341b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alba2 is a hyperthermophilic DNA-binding protein, and DNA plays a crucial role in the Alba2 oligomerization process. It is a pity that there is limited research in terms of how DNA affects the conformational change of Alba2 in oligomerization. Herein, we complement the crystal structure of the Ape10b2 (belongs to Alba2)-dsDNA complex (PDB ID: 3U6Y) and employ multiple short molecular dynamics (MSMD) simulations to illuminate the influence of DNA on Ape10b2 at four temperatures (300, 343, 363, and 373 K). Our results indicate that DNA could cause the conformational changes of two important regions (loop1 and loop5), which may be beneficial for protein oligomerization. The results of hydrogen bond analysis show that the increasing number of hydrogen bonds between two monomers of Ape10b2 may also be a favorable factor for oligomerization. In addition, Ape10b2 can stabilize DNA by electrostatic interactions with an increase in temperature, and five residues (Arg40, Arg42, Asn43, Asn45, and Arg46) play a stabilizing role during protein binding to DNA. Our findings could help in understanding the favorable factors leading to protein oligomerization, which contributes to enzyme engineering research from an industrial perspective.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, People's Republic of China. .,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130023, People's Republic of China
| |
Collapse
|
5
|
Wai AH, Cho LH, Peng X, Waseem M, Lee DJ, Lee JM, Kim CK, Chung MY. Genome-wide identification and expression profiling of Alba gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2021; 21:530. [PMID: 34772358 PMCID: PMC8588595 DOI: 10.1186/s12870-021-03310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township, Yangon Region 11041 Myanmar
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463 Republic of Korea
| | - Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of horticulture, South China Agricultural University, Guangzhou, China
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| | - Je-Min Lee
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| |
Collapse
|
6
|
Laursen SP, Bowerman S, Luger K. Archaea: The Final Frontier of Chromatin. J Mol Biol 2020; 433:166791. [PMID: 33383035 PMCID: PMC7987875 DOI: 10.1016/j.jmb.2020.166791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The three domains of life employ various strategies to organize their genomes. Archaea utilize features similar to those found in both eukaryotic and bacterial chromatin to organize their DNA. In this review, we discuss the current state of research regarding the structure-function relationships of several archaeal chromatin proteins (histones, Alba, Cren7, and Sul7d). We address individual structures as well as inferred models for higher-order chromatin formation. Each protein introduces a unique phenotype to chromatin organization, and these structures are put into the context of in vivo and in vitro data. We close by discussing the present gaps in knowledge that are preventing further studies of the organization of archaeal chromatin, on both the organismal and domain level.
Collapse
Affiliation(s)
- Shawn P Laursen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
7
|
Zhang N, Guo L, Huang L. The Sac10b homolog from Sulfolobus islandicus is an RNA chaperone. Nucleic Acids Res 2020; 48:9273-9284. [PMID: 32761152 PMCID: PMC7498313 DOI: 10.1093/nar/gkaa656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid-binding proteins of the Sac10b family, also known as Alba, are widely distributed in Archaea. However, the physiological roles of these proteins have yet to be clarified. Here, we show that Sis10b, a member of the Sac10b family from the hyperthermophilic archaeon Sulfolobus islandicus, was active in RNA strand exchange, duplex RNA unwinding in vitro and RNA unfolding in a heterologous host cell. This protein exhibited temperature-dependent binding preference for ssRNA over dsRNA and was more efficient in RNA unwinding and RNA unfolding at elevated temperatures. Notably, alanine substitution of a highly conserved basic residue (K) at position 17 in Sis10b drastically reduced the ability of this protein to catalyse RNA strand exchange and RNA unwinding. Additionally, the preferential binding of Sis10b to ssRNA also depended on the presence of K17 or R17. Furthermore, normal growth was restored to a slow-growing Sis10b knockdown mutant by overproducing wild-type Sis10b but not by overproducing K17A in this mutant strain. Our results indicate that Sis10b is an RNA chaperone that likely functions most efficiently at temperatures optimal for the growth of S. islandicus, and K17 is essential for the chaperone activity of the protein.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
8
|
Abstract
The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of “nucleosomes” of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into “endless” hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation. Both Archaea and eukaryotes express histones, but whereas the tertiary structure of histones is conserved, the quaternary structure of histone–DNA complexes is very different. In a recent study, the crystal structure of the archaeal hypernucleosome was revealed to be an “endless” core of interacting histones that wraps the DNA around it in a left-handed manner. The ability to form a hypernucleosome is likely determined by dimer–dimer interactions as well as stacking interactions between individual layers of the hypernucleosome. We analyzed a wide variety of archaeal histones and found that most but not all histones possess residues able to facilitate hypernucleosome formation. Among these are histones with truncated termini or extended histone tails. Based on our analysis, we propose several possibilities of archaeal histone involvement in transcription regulation.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Clara van Emmerik
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Hugo van Ingen
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
9
|
Xuan J, Yao H, Feng Y, Wang J. Backbone and side-chain 1H, 15N and 13C resonance assignments of two Sac10b family members Mvo10b and Mth10bTQQA from archaea. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:269-273. [PMID: 28812261 DOI: 10.1007/s12104-017-9761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
The Sac10b family proteins, also named as Alba, are small, basic, nucleic acid-binding proteins widely distributed in archaea. They possess divergent physiological functions such as binding to both DNA and RNA with a high affinity and involving in genomic DNA compaction, RNA transactions and transcriptional regulations. The structures of many Sac10b family proteins from hyperthermophilic archaea have been reported, while those from thermophilic and mesophilic archaea are largely unknown. As was pointed out, the homologous members from thermophilic and mesophilic archaea may have functions different from the hyperthermophilic members. Therefore, comparison of these homologous members can provide biophysical and structural insight into the functional diversity and thermal adaptation mechanism. The present work mainly focused on the NMR study of two Sac10b family members, Mvo10b and Mth10b, from the mesophilic and thermophilic archaea, respectively. To overcome the difficulties caused by the oligomerization and conformation heterogeneity of Mth10b, a M13T/L17Q/I20Q/P56A mutant Mth10b (Mth10bTQQA) was constructed and used together with Mvo10b for multi-dimensional NMR experiments. The resonance assignments of Mvo10b and Mth10bTQQA are reported for further structural determination which is a basis for understanding the functional diversity and their thermal adaption mechanisms.
Collapse
Affiliation(s)
- Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Hongwei Yao
- High-Field Nuclear Magnetic Resonance Research Center, Xiamen University, 422 South Siming Road, Xiamen, 361005, Fujian, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China.
| | - Jinfeng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
10
|
Abstract
The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription.
Collapse
|
11
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
12
|
Vembar SS, Macpherson CR, Sismeiro O, Coppée JY, Scherf A. The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages. Genome Biol 2015; 16:212. [PMID: 26415947 PMCID: PMC4587749 DOI: 10.1186/s13059-015-0771-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
Background Transcriptome-wide ribosome occupancy studies have suggested that during the intra-erythrocytic lifecycle of Plasmodium falciparum, select mRNAs are post-transcriptionally regulated. A subset of these encodes parasite virulence factors required for invading host erythrocytes, and are currently being developed as vaccine candidates. However, the molecular mechanisms that govern post-transcriptional regulation are currently unknown. Results We explore the previously identified DNA/RNA-binding protein PfAlba1, which localizes to multiple foci in the cytoplasm of P. falciparum trophozoites. We establish that PfAlba1 is essential for asexual proliferation, and subsequently investigate parasites overexpressing epitope-tagged PfAlba1 to identify its RNA targets and effects on mRNA homeostasis and translational regulation. Using deep sequencing of affinity-purified PfAlba1-associated RNAs, we identify 1193 transcripts that directly bind to PfAlba1 in trophozoites. For 105 such transcripts, 43 % of which are uncharacterized and 13 % of which encode erythrocyte invasion components, the steady state levels significantly change at this stage, evidencing a role for PfAlba1 in maintaining mRNA homeostasis. Additionally, we discover that binding of PfAlba1 to four erythrocyte invasion mRNAs, Rap1, RhopH3, CDPK1, and AMA1, is linked to translation repression in trophozoites whereas release of these mRNAs from a PfAlba1 complex in mature stages correlates with protein synthesis. Conclusions We show that PfAlba1 binds to a sub-population of asexual stage mRNAs and fine-tunes the timing of translation. This mode of post-transcriptional regulation may be especially important for P. falciparum erythrocyte invasion components that have to be assembled into apical secretory organelles in a highly time-dependent manner towards the end of the parasite’s asexual lifecycle. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0771-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France. .,CNRS, ERL 9195, Paris, 75015, France. .,INSERM, UMR 1201, Paris, 75015, France.
| | - Cameron Ross Macpherson
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France.,CNRS, ERL 9195, Paris, 75015, France.,INSERM, UMR 1201, Paris, 75015, France
| | - Odile Sismeiro
- Plate-forme 2, Transcriptome et Epigenome, Institut Pasteur, Paris, 75015, France
| | - Jean-Yves Coppée
- Plate-forme 2, Transcriptome et Epigenome, Institut Pasteur, Paris, 75015, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France. .,CNRS, ERL 9195, Paris, 75015, France. .,INSERM, UMR 1201, Paris, 75015, France.
| |
Collapse
|
13
|
van der Valk RA, Vreede J, Crémazy F, Dame RT. Genomic Looping: A Key Principle of Chromatin Organization. J Mol Microbiol Biotechnol 2015; 24:344-59. [DOI: 10.1159/000368851] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Chromatin structure and dynamics in hot environments: architectural proteins and DNA topoisomerases of thermophilic archaea. Int J Mol Sci 2014; 15:17162-87. [PMID: 25257534 PMCID: PMC4200833 DOI: 10.3390/ijms150917162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
In all organisms of the three living domains (Bacteria, Archaea, Eucarya) chromosome-associated proteins play a key role in genome functional organization. They not only compact and shape the genome structure, but also regulate its dynamics, which is essential to allow complex genome functions. Elucidation of chromatin composition and regulation is a critical issue in biology, because of the intimate connection of chromatin with all the essential information processes (transcription, replication, recombination, and repair). Chromatin proteins include architectural proteins and DNA topoisomerases, which regulate genome structure and remodelling at two hierarchical levels. This review is focussed on architectural proteins and topoisomerases from hyperthermophilic Archaea. In these organisms, which live at high environmental temperature (>80 °C <113 °C), chromatin proteins and modulation of the DNA secondary structure are concerned with the problem of DNA stabilization against heat denaturation while maintaining its metabolic activity.
Collapse
|
15
|
Dupé A, Dumas C, Papadopoulou B. An Alba-domain protein contributes to the stage-regulated stability of amastin transcripts inLeishmania. Mol Microbiol 2013; 91:548-61. [DOI: 10.1111/mmi.12478] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Aurélien Dupé
- Research Center in Infectious Disease; CHU de Quebec Research Center (CHUL); Department of Microbiology-Infectious Disease and Immunology; Laval University; Quebec QC Canada G1V 4G2
| | - Carole Dumas
- Research Center in Infectious Disease; CHU de Quebec Research Center (CHUL); Department of Microbiology-Infectious Disease and Immunology; Laval University; Quebec QC Canada G1V 4G2
| | - Barbara Papadopoulou
- Research Center in Infectious Disease; CHU de Quebec Research Center (CHUL); Department of Microbiology-Infectious Disease and Immunology; Laval University; Quebec QC Canada G1V 4G2
| |
Collapse
|
16
|
Guo L, Ding J, Guo R, Hou Y, Wang DC, Huang L. Biochemical and structural insights into RNA binding by Ssh10b, a member of the highly conserved Sac10b protein family in Archaea. J Biol Chem 2013; 289:1478-90. [PMID: 24307170 DOI: 10.1074/jbc.m113.521351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Proteins of the Sac10b family are highly conserved in Archaea. Ssh10b, a member of the Sac10b family from the hyperthermophilic crenarchaeon Sulfolobus shibatae, binds to RNA in vivo. Here we show that binding by Ssh10b destabilizes RNA secondary structure. Structural analysis of Ssh10b in complex with a 25-bp RNA duplex containing local distortions reveals that Ssh10b binds the two RNA strands symmetrically as a tetramer with each dimer bound asymmetrically to a single RNA strand. Amino acid residues involved in double-stranded RNA binding are similar, but non-identical, to those in dsDNA binding. The dimer-dimer interaction mediated by the intermolecular β-sheet appears to facilitate the destabilization of base pairing in the secondary structure of RNA. Our results suggest that proteins of the Sac10b family may play important roles in RNA transactions requiring destabilization of RNA secondary structure in Sulfolobus.
Collapse
Affiliation(s)
- Li Guo
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology and
| | | | | | | | | | | |
Collapse
|
17
|
Lu YW, Huang T, Tsai CT, Chang YY, Li HW, Hsu CH, Fan HF. Using Single-Molecule Approaches To Study Archaeal DNA-Binding Protein Alba1. Biochemistry 2013; 52:7714-22. [DOI: 10.1021/bi4010478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yen-Wen Lu
- Department
of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 112 Taiwan
| | - Tao Huang
- Department
of Chemistry, National Taiwan University, 106 Taiwan
| | - Cheng-Ting Tsai
- Department
of Chemistry, National Taiwan University, 106 Taiwan
| | - Yu-Yung Chang
- Department
of Agricultural Chemistry, National Taiwan University, 106 Taiwan
| | - Hung-Wen Li
- Department
of Chemistry, National Taiwan University, 106 Taiwan
| | - Chun-Hua Hsu
- Department
of Agricultural Chemistry, National Taiwan University, 106 Taiwan
- Center
for Systems Biology, National Taiwan University, 106 Taiwan
| | - Hsiu-Fang Fan
- Department
of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 112 Taiwan
| |
Collapse
|
18
|
Abstract
Crenarchaeal genomes are organized into a compact nucleoid by a set of small chromatin proteins. Although there is little knowledge of chromatin structure in Archaea, similarities between crenarchaeal and bacterial chromatin proteins suggest that organization and regulation could be achieved by similar mechanisms. In the present review, we describe the molecular properties of crenarchaeal chromatin proteins and discuss the possible role of these architectural proteins in organizing the crenarchaeal chromatin and in gene regulation.
Collapse
|
19
|
Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat Commun 2013; 3:1328. [PMID: 23271660 PMCID: PMC3535426 DOI: 10.1038/ncomms2330] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022] Open
Abstract
Architectural proteins have an important role in shaping the genome and act as global regulators of gene expression. How these proteins jointly modulate genome plasticity is largely unknown. In archaea, one of the most abundant proteins, Alba, is considered to have a key role in organizing the genome. Here we characterize the multimodal architectural properties and interplay of the Alba1 and Alba2 proteins using single-molecule imaging and manipulation techniques. We demonstrate that the two paralogues can bridge and rigidify DNA and that the interplay between the two proteins influences the balance between these effects. Our data yield a structural model that explains the multimodal behaviour of Alba proteins and its impact on genome folding. How the genome is physically organized is less understood in archaea than in eubacteria or eukaryotes. Laurens et al. measure DNA binding by the Sulfolobus solfataricus proteins Alba1 and Alba2 using single-molecule techniques and conclude that the presence of Alba2 leads to more bridging between DNA.
Collapse
|
20
|
Črnigoj M, Podlesek Z, Zorko M, Jerala R, Anderluh G, Ulrih NP. Interactions of archaeal chromatin proteins Alba1 and Alba2 with nucleic acids. PLoS One 2013; 8:e58237. [PMID: 23469156 PMCID: PMC3585288 DOI: 10.1371/journal.pone.0058237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823). METHODOLOGY/PRINCIPAL FINDINGS THESE TWO PEPTIDES WERE EXPRESSED AND THEIR INTERACTIONS WITH VARIOUS DNAS WERE STUDIED USING A COMBINATION OF VARIOUS EXPERIMENTAL TECHNIQUES: surface plasmon resonance, UV spectrophotometry, circular dichroism-spectropolarimetry, gel-shift assays, and isothermal titration calorimetry. CONCLUSIONS/SIGNIFICANCE Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.
Collapse
Affiliation(s)
- Miha Črnigoj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Zorko
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Roman Jerala
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Gregor Anderluh
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
21
|
Liu YF, Zhang N, Liu X, Wang X, Wang ZX, Chen Y, Yao HW, Ge M, Pan XM. Molecular mechanism underlying the interaction of typical Sac10b family proteins with DNA. PLoS One 2012; 7:e34986. [PMID: 22511977 PMCID: PMC3325275 DOI: 10.1371/journal.pone.0034986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The Sac10b protein family is regarded as a family of DNA-binding proteins that is highly conserved and widely distributed within the archaea. Sac10b family members are typically small basic dimeric proteins that bind to DNA with cooperativity and no sequence specificity and are capable of constraining DNA negative supercoils, protecting DNA from Dnase I digestion, and do not compact DNA obviously. However, a detailed understanding of the structural basis of the interaction of Sac10b family proteins with DNA is still lacking. Here, we determined the crystal structure of Mth10b, an atypical member of the Sac10b family from Methanobacterium thermoautotrophicum ΔH, at 2.2 Å. Unlike typical Sac10b family proteins, Mth10b is an acidic protein and binds to neither DNA nor RNA. The overall structure of Mth10b displays high similarity to its homologs, but three pairs of conserved positively charged residues located at the presumed DNA-binding surface are substituted by non-charged residues in Mth10b. Through amino acids interchanges, the DNA-binding ability of Mth10b was restored successfully, whereas the DNA-binding ability of Sso10b, a typical Sac10b family member, was weakened greatly. Based on these results, we propose a model describing the molecular mechanism underlying the interactions of typical Sac10b family proteins with DNA that explains all the characteristics of the interactions between typical Sac10b family members and DNA.
Collapse
Affiliation(s)
- Yan-Feng Liu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Nan Zhang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xi Liu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Zhi-Xin Wang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong-Wei Yao
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Meng Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (X-MP); (MG)
| | - Xian-Ming Pan
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- * E-mail: (X-MP); (MG)
| |
Collapse
|
22
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
23
|
Tanaka T, Padavattan S, Kumarevel T. Crystal structure of archaeal chromatin protein Alba2-double-stranded DNA complex from Aeropyrum pernix K1. J Biol Chem 2012; 287:10394-10402. [PMID: 22334696 DOI: 10.1074/jbc.m112.343210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All thermophilic and hyperthermophilic archaea encode homologs of dimeric Alba (Sac10b) proteins that bind cooperatively at high density to DNA. Here, we report the 2.0 Å resolution crystal structure of an Alba2 (Ape10b2)-dsDNA complex from Aeropyrum pernix K1. A rectangular tube-like structure encompassing duplex DNA reveals the positively charged residues in the monomer-monomer interface of each dimer packing on either side of the bound dsDNA in successive minor grooves. The extended hairpin loop connecting strands β3 and β4 undergoes significant conformational changes upon DNA binding to accommodate the other Alba2 dimer during oligomerization. Mutational analysis of key interacting residues confirmed the specificity of Alba2-dsDNA interactions.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sivaraman Padavattan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | |
Collapse
|
24
|
Chêne A, Vembar SS, Rivière L, Lopez-Rubio JJ, Claes A, Siegel TN, Sakamoto H, Scheidig-Benatar C, Hernandez-Rivas R, Scherf A. PfAlbas constitute a new eukaryotic DNA/RNA-binding protein family in malaria parasites. Nucleic Acids Res 2011; 40:3066-77. [PMID: 22167473 PMCID: PMC3326326 DOI: 10.1093/nar/gkr1215] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.
Collapse
Affiliation(s)
- Arnaud Chêne
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, URA 2581, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mth10b, a unique member of the Sac10b family, does not bind nucleic acid. PLoS One 2011; 6:e19977. [PMID: 21625642 PMCID: PMC3097224 DOI: 10.1371/journal.pone.0019977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/21/2011] [Indexed: 11/19/2022] Open
Abstract
The Sac10b protein family is regarded as a group of nucleic acid-binding proteins that are highly conserved and widely distributed within archaea. All reported members of this family are basic proteins that exist as homodimers in solution and bind to DNA and/or RNA without apparent sequence specificity in vitro. Here, we reported a unique member of the family, Mth10b from Methanobacterium thermoautotrophicum ΔH, whose amino acid sequence shares high homology with other Sac10b family proteins. However, unlike those proteins, Mth10b is an acidic protein; its potential isoelectric point is only 4.56, which is inconsistent with the characteristics of a nucleic acid-binding protein. In this study, Mth10b was expressed in Escherichia coli and purified using a three-column chromatography purification procedure. Biochemical characterization indicated that Mth10b should be similar to typical Sac10b family proteins with respect to its secondary and tertiary structure and in its preferred oligomeric forms. However, an electrophoretic mobility shift analysis (EMSA) showed that neither DNA nor RNA bound to Mth10b in vitro, indicating that either Mth10b likely has a physiological function that is distinct from those of other Sac10b family members or nucleic acid-binding ability may not be a fundamental factor to the actual function of the Sac10b family.
Collapse
|
26
|
Abstract
Architectural proteins play an important role in compacting and organizing the chromosomal DNA in all three kingdoms of life (Eukarya, Bacteria and Archaea). These proteins are generally not conserved at the amino acid sequence level, but the mechanisms by which they modulate the genome do seem to be functionally conserved across kingdoms. On a generic level, architectural proteins can be classified based on their structural effect as DNA benders, DNA bridgers or DNA wrappers. Although chromatin organization in archaea has not been studied extensively, quite a number of architectural proteins have been identified. In the present paper, we summarize the knowledge currently available on these proteins in Crenarchaea. By the type of architectural proteins available, the crenarchaeal nucleoid shows similarities with that of Bacteria. It relies on the action of a large set of small, abundant and generally basic proteins to compact and organize their genome and to modulate its activity.
Collapse
|
27
|
|