1
|
Chandran S, Binninger D. Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer's Disease. Antioxidants (Basel) 2023; 13:21. [PMID: 38275641 PMCID: PMC10812627 DOI: 10.3390/antiox13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
A major contributor to dementia seen in aging is Alzheimer's disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins by reactive oxygen species (ROS). Hyperphosphorylation and accumulation of the protein tau in the microtubules within the brain also promote ROS production. Methionine, a residue of proteins, is particularly sensitive to oxidation by ROS. One of the enzyme systems that reverses the oxidative damage in mammalian cells is the enzyme system known as Methionine Sulfoxide Reductases (MSRs). The components of the MSR system, namely MSRA and MSRB, reduce oxidized forms of methionine (Met-(o)) in proteins back to methionine (Met). Furthermore, the MSRs scavenge ROS by allowing methionine residues in proteins to utilize their antioxidant properties. This review aims to improve the understanding of the role of the MSR system of enzymes in reducing cellular oxidative damage and AD pathogenesis, which may contribute to effective therapeutic approaches for AD by targeting the MSR system.
Collapse
Affiliation(s)
- Sanjana Chandran
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David Binninger
- Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Atlante A, Valenti D. Mitochondrial Complex I and β-Amyloid Peptide Interplay in Alzheimer's Disease: A Critical Review of New and Old Little Regarded Findings. Int J Mol Sci 2023; 24:15951. [PMID: 37958934 PMCID: PMC10650435 DOI: 10.3390/ijms242115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-β-amyloid (Aβ) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aβ toxicity. On the other hand, if it is true that the accumulation of Aβ in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aβ production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aβ aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aβ, in order to understand how their interplay is implicated in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | | |
Collapse
|
3
|
Zhao W, Hou Y, Zhang Q, Yu H, Meng M, Zhang H, Zhou Y. Estrogen receptor β exerts neuroprotective effects by fine-tuning mitochondrial homeostasis through NRF1/PGC-1α. Neurochem Int 2023; 171:105636. [PMID: 39491237 DOI: 10.1016/j.neuint.2023.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
BACKGROUND Estrogen deficiency causes mitochondrial defects that precede pathological changes related to Alzheimer's disease (AD) in the mouse model of postmenopause. The aim of this study was to investigate in such a mouse model whether and how estrogen receptor β (ERβ) was involved in prevention of mitochondrial damage and protection of neurons in the hippocampus. METHODS A mouse model of postmenopausal AD was created by ovariectomizing female 3xTg-AD mice, some of which were subcutaneously injected for six weeks with the non-steroidal ERβ agonist diarylpropionitrile. ERβ expression in female C57BL/6J mice was knocked down using shRNA interference. The different groups of animals were compared in terms of cognitive function using the Y-maze test, new object recognition test, and Morris water maze test, expression of numerous proteins related to mitochondrial biogenesis, mitophagy, apoptosis, and mitochondrial membrane potential, as well as deposition of amyloid β and neurofibrillary tangles. To complement these in vivo studies, we probed the effects of diarylpropionitrile on ERβ expression, apoptosis, and mitochondrial homeostasis in primary rat hippocampal neurons treated with amyloid β. RESULTS ERβ knockdown in C57BL/6J mice produced cognitive impairment, reduced mitochondrial biogenesis by downregulating PGC-1α, NRF1, mtTFA, and TOM20, and decreased mitophagy by downregulating Pink1, Parkin, and LC3B while upregulating PARIS and p62. ERβ knockdown promoted neuronal apoptosis by upregulating Cleaved-Caspase 9, Cleaved-Caspase 3, and Bax, while downregulating Bcl2 in hippocampus. Diarylpropionitrile mitigated cognitive decline in ovariectomized 3xTg-AD mice, which was associated with downregulation of BACE1, reduction of Aβ deposition, neurofibrillary tangles, and tau hyperphosphorylation, and upregulation of ERβ, increases in mitochondrial biogenesis and mitophagy, and decreases in apoptosis. The effects of diarylpropionitrile in mice were recapitulated in Aβ-injured primary rat hippocampal neurons. CONCLUSIONS ERβ activation can support learning and memory and alleviate AD symptoms in the postmenopausal AD model, which may involve regulation of neuronal mitochondrial biogenesis and mitophagy via NRF1/PGC-1α. This study supports further research on ERβ as a therapeutic target for postmenopausal women with AD.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China
| | - Yue Hou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian City, 271018, China
| | - Haiyang Yu
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Meichen Meng
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China
| | - Hanting Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China; Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266011, China.
| | - Yanmeng Zhou
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, China.
| |
Collapse
|
4
|
Alaqeel NK, AlSheikh MH, Al-Hariri MT. Quercetin Nanoemulsion Ameliorates Neuronal Dysfunction in Experimental Alzheimer's Disease Model. Antioxidants (Basel) 2022; 11:1986. [PMID: 36290710 PMCID: PMC9598210 DOI: 10.3390/antiox11101986] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 09/05/2023] Open
Abstract
Aluminum is the most abundant metal that can get admission to the human through several means that include our food, drinking water, cans, drugs, and deodorants, causing neurodegenerative diseases such as Alzheimer's disease (AD). The present study aims to evaluate the role of quercetin nanoemulsion (QCNE) in attenuating neuronal dysfunction in aluminum chloride (AlCl3)-induced experimental AD. All animals were classified into six groups including negative control group (I): received a vehicle; QC group: received intraperitoneal (IP) injection of QC; Alzheimer's group: received AlCl3 orally; treated group (I): received AlCl3 orally and IP injection of QC; treated group (II): received AlCl3 orally and QC orally; and treated group (III): received AlCl3 orally and IP injection of QCNE. At the end of the experimental period (30 days), the brain was used to study biochemical parameters (measurement of neurotransmitters (serotonin, dopamine, and norepinephrine), oxidant/antioxidant parameters (reduced glutathione, malondialdehyde, superoxide dismutase, and advanced oxidation protein product), and inflammatory markers (adiponectin, interleukin 1β, and plasma tumor necrosis factor-alpha)), while another part was for brain immune-histochemical analysis (study cyclooxygenases (COX-1 and COX-2)). Results showed that the mean value of oxidative stress markers was significantly increased in the AD group as well as the inflammatory biomarkers and all the study neurotransmitters, whereas these parameters were attenuated in treated groups, especially those that received QCNE. The immunohistochemistry findings confirm our results. Both approaches (QC and QCNE) succeeded in retracting the negative impact of AlCl3. Meanwhile, the effect of QCNE is more potent in mitigating the impact mediated by AlCl3 in treated animals. In conclusion, the treatment mainly by QCNE has huge potential in protecting against AlCl3-induced neuronal dysfunction, as shown in our results by the elevation of brain antioxidant/anti-inflammatory activities and neurotransmitter levels as well as mending of the histopathological changes in animal models.
Collapse
Affiliation(s)
- Nouf K. Alaqeel
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mona H. AlSheikh
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| | - Mohammed T. Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34719, Saudi Arabia
| |
Collapse
|
5
|
Yang X, Du W, Zhang Y, Wang H, He M. Neuroprotective Effects of Higenamine Against the Alzheimer's Disease Via Amelioration of Cognitive Impairment, A β Burden, Apoptosis and Regulation of Akt/GSK3β Signaling Pathway. Dose Response 2020; 18:1559325820972205. [PMID: 33354171 PMCID: PMC7734528 DOI: 10.1177/1559325820972205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
The present investigation was envisaged to elucidate the neuroprotective effect of Higenamine (HGN) against aluminum chloride (AlCl3) triggered experimental Alzheimer's disease (AD) rat model. Thirty-six male albino Wister rats were randomized and divided in 6 groups and subjected to experimentation for 6 weeks. Control group, AlCl3 (100 mg/kg orally), HGN (50 mg/kg orally), HGN25, HGN50, HGN75 (HGN 25, 50 and 75 mg/kg respectively and AlCl3 100 mg/kg orally). After completion of 42 days protocol, the animals were subjected to passive avoidance test. The animals were then anesthetized by intramuscularly injecting ketamine hydrochloride (24 mg/kg body weight) and euthanized by cervical amputation. Cortical and hippocampal tissues were carefully removed and were employed for quantification of aluminum and acetylcholinesterase. The tissues were quantified using Western blotting and detection kits for APP, Aβ1-42, β and γ secretases, Bax, Bad, caspases-9, cyto-c, pAkt and pGSK-3β, and oxidative markers. HGN significantly protected AlCl3 induced memory and learning impairments, Al overload, AChE hyperactivity, amyloid β (Aβ) burden and apoptosis in brain tissues via activating Akt/GSK3β pathway. HGN attenuated oxidative damage induced by Al by modulation of oxidative markers. Our findings advocate the neuroprotective effect of HGN in AlCl3 induced AD rat model.
Collapse
Affiliation(s)
- Xiaona Yang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wanliang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Zhang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin He
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer's Disease: Toward Multi-Interaction Biomolecular Processes. Biomolecules 2020; 10:E1214. [PMID: 32825572 PMCID: PMC7563123 DOI: 10.3390/biom10091214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Progressive mitochondrial dysfunction due to the accumulation of amyloid beta (Aβ) peptide within the mitochondrial matrix represents one of the key characteristics of Alzheimer's disease (AD) and appears already in its early stages. Inside the mitochondria, Aβ interacts with a number of biomolecules, including cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), and affects their physiological functions. However, despite intensive ongoing research, the exact mechanisms through which Aβ impairs mitochondrial functions remain to be explained. In this work, we studied the interactions of Aβ with cypD and 17β-HSD10 in vitro using the surface plasmon resonance (SPR) method and determined the kinetic parameters (association and dissociation rates) of these interactions. This is the first work which determines all these parameters under the same conditions, thus, enabling direct comparison of relative affinities of Aβ to its mitochondrial binding partners. Moreover, we used the determined characteristics of the individual interactions to simulate the concurrent interactions of Aβ with cypD and 17β-HSD10 in different model situations associated with the progression of AD. This study not only advances the understanding of Aβ-induced processes in mitochondria during AD, but it also provides a new perspective on research into complex multi-interaction biomolecular processes in general.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Zdeňka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| |
Collapse
|
7
|
Kristofikova Z, Springer T, Gedeonova E, Hofmannova A, Ricny J, Hromadkova L, Vyhnalek M, Laczo J, Nikolai T, Hort J, Petrasek T, Stuchlik A, Vales K, Klaschka J, Homola J. Interactions of 17β-Hydroxysteroid Dehydrogenase Type 10 and Cyclophilin D in Alzheimer's Disease. Neurochem Res 2020; 45:915-927. [PMID: 31997103 PMCID: PMC7078148 DOI: 10.1007/s11064-020-02970-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 02/02/2023]
Abstract
The nucleus-encoded 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) regulates cyclophilin D (cypD) in the mitochondrial matrix. CypD regulates opening of mitochondrial permeability transition pores. Both mechanisms may be affected by amyloid β peptides accumulated in mitochondria in Alzheimer's disease (AD). In order to clarify changes occurring in brain mitochondria, we evaluated interactions of both mitochondrial proteins in vitro (by surface plasmon resonance biosensor) and detected levels of various complexes of 17β-HSD10 formed in vivo (by sandwich ELISA) in brain mitochondria isolated from the transgenic animal model of AD (homozygous McGill-R-Thy1-APP rats) and in cerebrospinal fluid samples of AD patients. By surface plasmon resonance biosensor, we observed the interaction of 17β-HSD10 and cypD in a direct real-time manner and determined, for the first time, the kinetic parameters of the interaction (ka 2.0 × 105 M1s-1, kd 5.8 × 104 s-1, and KD 3.5 × 10-10 M). In McGill-R-Thy1-APP rats compared to controls, levels of 17β-HSD10-cypD complexes were decreased and those of total amyloid β increased. Moreover, the levels of 17β-HSD10-cypD complexes were decreased in cerebrospinal fluid of individuals with AD (in mild cognitive impairment as well as dementia stages) or with Frontotemporal lobar degeneration (FTLD) compared to cognitively normal controls (the sensitivity of the complexes to AD dementia was 92.9%, that to FTLD 73.8%, the specificity to AD dementia equaled 91.7% in a comparison with the controls but only 26.2% with FTLD). Our results demonstrate the weakened ability of 17β-HSD10 to regulate cypD in the mitochondrial matrix probably via direct effects of amyloid β. Levels of 17β-HSD10-cypD complexes in cerebrospinal fluid seem to be the very sensitive indicator of mitochondrial dysfunction observed in neurodegeneration but unfortunately not specific to AD pathology. We do not recommend it as the new biomarker of AD.
Collapse
Affiliation(s)
- Zdenka Kristofikova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Tomas Springer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 57, 182 51, Prague, Czech Republic
| | - Erika Gedeonova
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 57, 182 51, Prague, Czech Republic
| | - Adéla Hofmannova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Hromadkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Martin Vyhnalek
- Department of Neurology, Memory Disorders Clinic, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V uvalu 84, 150 06, Prague 5, Czech Republic
| | - Jan Laczo
- Department of Neurology, Memory Disorders Clinic, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V uvalu 84, 150 06, Prague 5, Czech Republic
| | - Tomas Nikolai
- Department of Neurology, Memory Disorders Clinic, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V uvalu 84, 150 06, Prague 5, Czech Republic
| | - Jakub Hort
- Department of Neurology, Memory Disorders Clinic, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, V uvalu 84, 150 06, Prague 5, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science, Czech Academy of Sciences, Pod vodarenskou vezi 271/2, 182 07, Prague, Czech Republic
| | - Jiri Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 57, 182 51, Prague, Czech Republic
| |
Collapse
|
8
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. In vitro study of interaction of 17β-hydroxysteroid dehydrogenase type 10 and cyclophilin D and its potential implications for Alzheimer's disease. Sci Rep 2019; 9:16700. [PMID: 31723183 PMCID: PMC6853915 DOI: 10.1038/s41598-019-53157-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
In early stages of Alzheimer's disease (AD), amyloid-β (Aβ) accumulates in neuronal mitochondria where it interacts with a number of biomolecules including 17beta-hydroxysteroide dehydrogenase 10 (17β-HSD10) and cyclophilin D (cypD). It has been hypothesized that 17β-HSD10 interacts with cypD preventing it from opening mitochondrial permeability transition pores and that its regulation during AD may be affected by the accumulation of Aβ. In this work, we demonstrate for the first time that 17β-HSD10 and cypD form a stable complex in vitro. Furthermore, we show that factors, such as pH, ionic environment and the presence of Aβ, affect the ability of 17β-HSD10 to bind cypD. We demonstrate that K+ and Mg2+ ions present at low levels may facilitate this binding. We also show that different fragments of Aβ (Aβ1-40 and Aβ1-42) affect the interaction between 17β-HSD10 and cypD differently and that Aβ1-42 (in contrast to Aβ1-40) is capable of simultaneously binding both 17β-HSD10 and cypD in a tri-complex.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Zdenka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic.
| |
Collapse
|
9
|
Malishev R, Nandi S, Śmiłowicz D, Bakavayev S, Engel S, Bujanover N, Gazit R, Metzler-Nolte N, Jelinek R. Interactions between BIM Protein and Beta-Amyloid May Reveal a Crucial Missing Link between Alzheimer's Disease and Neuronal Cell Death. ACS Chem Neurosci 2019; 10:3555-3564. [PMID: 31141342 DOI: 10.1021/acschemneuro.9b00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive neuronal cell death is among the pathological hallmarks of Alzheimer's disease. While neuron death is coincident with formation of plaques comprising the beta-amyloid (Aβ) peptide, a direct causative link between Aβ (or other Alzheimer's-associated proteins) and cell toxicity is yet to be found. Here we show that BIM-BH3, the primary proapoptotic domain of BIM, a key protein in varied apoptotic cascades of which elevated levels have been found in brain cells of patients afflicted with Alzheimer's disease, interacts with the 42-residue amyloid isoform Aβ42. Remarkably, BIM-BH3 modulated the structure, fibrillation pathway, aggregate morphology, and membrane interactions of Aβ42. In particular, BIM-BH3 inhibited Aβ42 fibril-formation, while it simultaneously enhanced protofibril assembly. Furthermore, we discovered that BIM-BH3/Aβ42 interactions induced cell death in a human neuroblastoma cell model. Overall, our data provide a crucial mechanistic link accounting for neuronal cell death in Alzheimer's disease patients and the participation of both BIM and Aβ42 in the neurotoxicity process.
Collapse
Affiliation(s)
- Ravit Malishev
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sukhendu Nandi
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dariusz Śmiłowicz
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Bujanover
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nils Metzler-Nolte
- Inorganic Chemistry I – Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Novel Benzothiazole-based Ureas as 17β-HSD10 Inhibitors, A Potential Alzheimer's Disease Treatment. Molecules 2019; 24:molecules24152757. [PMID: 31362457 PMCID: PMC6696238 DOI: 10.3390/molecules24152757] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
It has long been established that mitochondrial dysfunction in Alzheimer’s disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17β-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17β-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.
Collapse
|
11
|
Kristofikova Z, Ricny J, Kaping D, Klaschka J, Kotoucova J, Bartos A. Levels of 17β-hydroxysteroid dehydrogenase type 10 in CSF are not a valuable biomarker for multiple sclerosis. Biomark Med 2018; 12:1331-1340. [DOI: 10.2217/bmm-2018-0061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We aimed to characterize the role of mitochondrial 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) overexpression in multiple sclerosis (MS) and to evaluate its use as a biomarker. Materials & methods: We estimated levels of 17β-HSD10, amyloid β 1–42, cyclophilin D, 17β-HSD10-cyclophilin D complexes or 17β-HSD10-parkin complexes in cerebrospinal fluid (CSF) samples. Results: The increase in 17β-HSD10 levels or in 17β-HSD10-parkin complexes and links to leukocytes were found only in relapsing–remitting MS. The sensitivity of the biomarker was 64%, the specificity equaled 60–63% compared with controls. Conclusion: Increased CSF levels of 17β-HSD10 in later stages of MS could be interpreted via its upregulation in demyelinated neuronal axons. CSF levels of 17β-HSD10 are not the valuable biomarker for the early diagnosis or for the progression of MS.
Collapse
Affiliation(s)
| | - Jan Ricny
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science, Academy of Sciences, 182 07 Prague, Czech Republic
| | - Jolana Kotoucova
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Ales Bartos
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
- Department of Neurology, Third Faculty of Medicine, University Hospital Kralovske Vinohrady, Charles University, 100 34 Prague, Czech Republic
| |
Collapse
|
12
|
Morsy A, Trippier PC. Amyloid-Binding Alcohol Dehydrogenase (ABAD) Inhibitors for the Treatment of Alzheimer’s Disease. J Med Chem 2018; 62:4252-4264. [DOI: 10.1021/acs.jmedchem.8b01530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed Morsy
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
- Center for Chemical Biology, Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
13
|
Genetic association of the cytochrome c oxidase-related genes with Alzheimer's disease in Han Chinese. Neuropsychopharmacology 2018; 43:2264-2276. [PMID: 30054583 PMCID: PMC6135758 DOI: 10.1038/s41386-018-0144-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mitochondrial dysfunction has been widely reported in AD due to its important role in cellular metabolism and energy production. Complex IV (cytochrome c oxidase, COX) of mitochondrial electron transport chain, is particularly vulnerable in AD. Defects of COX in AD have been well documented, but there is little evidence to support the genetic association of the COX-related genes with AD. In this study, we investigated the genetic association between 17 nuclear-encoded COX-related genes and AD in 1572 Han Chinese. The whole exons of these genes were also screened in 107 unrelated AD patients with a high probability of hereditarily transmitted AD. Variants in COX6B1, NDUFA4, SURF1, and COX10 were identified to be associated with AD. An integrative analysis with data of eQTL, expression and pathology revealed that most of the COX-related genes were significantly downregulated in AD patients and mouse models, and the AD-associated variants in COX6B1, SURF1, and COX10 were linked to altered mRNA levels in brain tissues. Furthermore, mRNA levels of Ndufa4, Cox5a, Cox10, Cox6b2, Cox7a2, and Lrpprc were significantly correlated with Aβ plaque burden in hippocampus of AD mice. Convergent functional genomics analysis revealed strong supportive evidence for the roles of COX6B1, COX10, NDUFA4, and SURF1 in AD. As the result of our comprehensive analysis of the COX-related genes at the genetic, expression, and pathology levels, we have been able to provide a systematic view for understanding the relationships of the COX-related genes in the pathology of AD.
Collapse
|
14
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
15
|
The biological foundation of the genetic association of TOMM40 with late-onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2973-2986. [PMID: 28768149 DOI: 10.1016/j.bbadis.2017.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/13/2017] [Accepted: 07/28/2017] [Indexed: 02/06/2023]
Abstract
A variable-length poly-T variant in intron 6 of the TOMM40 gene, rs10524523, is associated with risk and age-of-onset of sporadic (late-onset) Alzheimer's disease. In Caucasians, the three predominant alleles at this locus are Short (S), Long (L) or Very long (VL). On an APOE ε3/3 background, the S/VL and VL/VL genotypes are more protective than S/S. The '523 poly-T has regulatory properties, in that the VL poly-T results in higher expression than the S poly-T in luciferase expression systems. The aim of the current work was to identify effects on cellular bioenergetics of increased TOM40 protein expression. MitoTracker Green fluorescence and autophagic vesicle staining was the same in control and over-expressing cells, but TOM40 over-expression was associated with increased expression of TOM20, a preprotein receptor of the TOM complex, the mitochondrial chaperone HSPA9, and PDHE1a, and increased activities of the oxidative phosphorylation complexes I and IV and of the TCA member α-ketoglutaric acid dehydrogenase. Consistent with the complex I findings, respiration was more sensitive to inhibition by rotenone in control cells than in the TOM40 over-expressing cells. In the absence of inhibitors, total cellular ATP, the mitochondrial membrane potential, and respiration were elevated in the over-expressing cells. Spare respiratory capacity was greater in the TOM40 over-expressing cells than in the controls. TOM40 over-expression blocked Ab-elicited decreases in the mitochondrial membrane potential, cellular ATP levels, and cellular viability in the control cells. These data suggest elevated expression of TOM40 may be protective of mitochondrial function.
Collapse
|
16
|
Genetic ablation of the p66 Shc adaptor protein reverses cognitive deficits and improves mitochondrial function in an APP transgenic mouse model of Alzheimer's disease. Mol Psychiatry 2017; 22:605-614. [PMID: 27431297 DOI: 10.1038/mp.2016.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/26/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
The mammalian ShcA adaptor protein p66Shc is a key regulator of mitochondrial reactive oxygen species (ROS) production and has previously been shown to mediate amyloid β (Aβ)-peptide-induced cytotoxicity in vitro. Moreover, p66Shc is involved in mammalian longevity and lifespan determination as revealed in the p66Shc knockout mice, which are characterized by a 30% prolonged lifespan, lower ROS levels and protection from age-related impairment of physical and cognitive performance. In this study, we hypothesized a role for p66Shc in Aβ-induced toxicity in vivo and investigated the effects of genetic p66Shc deletion in the PSAPP transgenic mice, an established Alzheimer's disease mouse model of β-amyloidosis. p66Shc-ablated PSAPP mice were characterized by an improved survival and a complete rescue of Aβ-induced cognitive deficits at the age of 15 months. Importantly, these beneficial effects on survival and cognitive performance were independent of Aβ levels and amyloid plaque deposition, but were associated with improved brain mitochondrial respiration, a reversal of mitochondrial complex I dysfunction, restored adenosine triphosphate production and reduced ROS levels. The results of this study support a role for p66Shc in Aβ-related mitochondrial dysfunction and oxidative damage in vivo, and suggest that p66Shc ablation may be a promising novel therapeutic strategy against Aβ-induced toxicity and cognitive impairment.
Collapse
|
17
|
Mamada N, Tanokashira D, Ishii K, Tamaoka A, Araki W. Mitochondria are devoid of amyloid β-protein (Aβ)-producing secretases: Evidence for unlikely occurrence within mitochondria of Aβ generation from amyloid precursor protein. Biochem Biophys Res Commun 2017; 486:321-328. [PMID: 28302486 DOI: 10.1016/j.bbrc.2017.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is implicated in the pathological mechanism of Alzheimer's disease (AD). Amyloid β-protein (Aβ), which plays a central role in AD pathogenesis, is reported to accumulate within mitochondria. However, a question remains as to whether Aβ is generated locally from amyloid precursor protein (APP) within mitochondria. We investigated this issue by analyzing the expression patterns of APP, APP-processing secretases, and APP metabolites in mitochondria separated from human neuroblastoma SH-SY5Y cells and those expressing Swedish mutant APP. APP, BACE1, and PEN-2 protein levels were significantly lower in crude mitochondria than microsome fractions while those of ADAM10 and the other γ-secretase complex components (presenilin 1, nicastrin, and APH-1) were comparable between fractions. The crude mitochondrial fraction containing substantial levels of cathepsin D, a lysosomal marker, was further separated via iodixanol gradient centrifugation to obtain mitochondria- and lysosome-enriched fractions. Mature APP, BACE1, and all γ-secretase complex components (in particular, presenilin 1 and PEN-2) were scarcely present in the mitochondria-enriched fraction, compared to the lysosome-enriched fraction. Moreover, expression of the β-C-terminal fragment (β-CTF) of APP was markedly low in the mitochondria-enriched fraction. Additionally, immunocytochemical analysis showed very little co-localization between presenilin 1 and Tom20, a marker protein of mitochondria. In view of the particularly low expression levels of BACE1, γ-secretase complex proteins, and β-CTF in mitochondria, we propose that it is unlikely that Aβ generation from APP occurs locally within this organelle.
Collapse
Affiliation(s)
- Naomi Mamada
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan; Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Daisuke Tanokashira
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan.
| | - Kazuhiro Ishii
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Akira Tamaoka
- Department of Neurology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
18
|
Prema A, Thenmozhi AJ, Manivasagam T, Essa MM, Akbar MD, Akbar M. Fenugreek Seed Powder Nullified Aluminium Chloride Induced Memory Loss, Biochemical Changes, Aβ Burden and Apoptosis via Regulating Akt/GSK3β Signaling Pathway. PLoS One 2016; 11:e0165955. [PMID: 27893738 PMCID: PMC5125597 DOI: 10.1371/journal.pone.0165955] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/20/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that mainly affects the cognitive functions of the aged populations. Trigonella foenum-graecum (L.) (fenugreek), a traditionally well utilized medicinal plant ubiquitously used as one of the main food additive worldwide, is known to have numerous beneficial health effects. Fenugreek seed extract could be able to inhibit the activity of acetylcholinesterase (AChE), a key enzyme involved in the pathogenesis of AD, and further shown to have anti-parkinsonic effect. The present study was aimed to explore the neuroprotective effect of fenugreek seed powder (FSP) against aluminium chloride (AlCl3) induced experimental AD model. Administration of germinated FSP (2.5, 5 and 10% mixed with ground standard rat feed) protected AlCl3 induced memory and learning impairments, Al overload, AChE hyperactivity, amyloid β (Aβ) burden and apoptosis via activating Akt/GSK3β pathway. Our present data could confirm the neuroprotective effect of fenugreek seeds. Further these results could lead a possible therapeutics for the management of neurodegenerative diseases including AD in future.
Collapse
Affiliation(s)
- Asokan Prema
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamilnadu 608 002, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamilnadu 608 002, India
- * E-mail:
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamilnadu 608 002, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu 600094, India
| | - Mohammed D. Akbar
- SMPT, NIAAA, National Institutes of Health, Rockville, MD, United States of America
| | - Mohammed Akbar
- SMPT, NIAAA, National Institutes of Health, Rockville, MD, United States of America
| |
Collapse
|
19
|
Synthesis and Biological Evaluation of Novel Multi-target-Directed Benzazepines Against Excitotoxicity. Mol Neurobiol 2016; 54:6697-6722. [PMID: 27744571 DOI: 10.1007/s12035-016-0184-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Excitotoxicty, a key pathogenic event is characteristic of the onset and development of neurodegeneration. The glutamatergic neurotransmission mediated through different glutamate receptor subtypes plays a pivotal role in the onset of excitotoxicity. The role of NMDA receptor (NMDAR), a glutamate receptor subtype, has been well established in the excitotoxicity pathogenesis. NMDAR overactivation triggers excessive calcium influx resulting in excitotoxic neuronal cell death. In the present study, a series of benzazepine derivatives, with the core structure of 3-methyltetrahydro-3H-benzazepin-2-one, were synthesised in our laboratory and their NMDAR antagonist activity was determined against NMDA-induced excitotoxicity using SH-SY5Y cells. In order to assess the multi-target-directed potential of the synthesised compounds, Aβ1-42 aggregation inhibitory activity of the most potent benzazepines was evaluated using thioflavin T (ThT) and Congo red (CR) binding assays as Aβ also imparts toxicity, at least in part, through NMDAR overactivation. Furthermore, neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic activities of the two potential test compounds (7 and 14) were evaluated using primary rat hippocampal neuronal culture against Aβ1-42-induced toxicity. Finally, in vivo neuroprotective potential of 7 and 14 was assessed using intracerebroventricular (ICV) rat model of Aβ1-42-induced toxicity. All of the synthesised benzazepines have shown significant neuroprotection against NMDA-induced excitotoxicity. The most potent compound (14) showed relatively higher affinity for the glycine binding site as compared with the glutamate binding site of NMDAR in the molecular docking studies. 7 and 14 have been shown experimentally to abrogate Aβ1-42 aggregation efficiently. Additionally, 7 and 14 showed significant neuroprotective, free radical scavenging, anti-oxidant and anti-apoptotic properties in different in vitro and in vivo experimental models. Finally, 7 and 14 attenuated Aβ1-42-induced tau phosphorylation by abrogating activation of tau kinases, i.e. MAPK and GSK-3β. Thus, the results revealed multi-target-directed potential of some of the synthesised novel benzazepines against excitotoxicity.
Collapse
|
20
|
Lee J. Mitochondrial drug targets in neurodegenerative diseases. Bioorg Med Chem Lett 2016; 26:714-720. [PMID: 26806044 DOI: 10.1016/j.bmcl.2015.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 142-732, Republic of Korea.
| |
Collapse
|
21
|
Progress in drug development for Alzheimer's disease: An overview in relation to mitochondrial energy metabolism. Eur J Med Chem 2016; 121:774-784. [DOI: 10.1016/j.ejmech.2016.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/21/2016] [Accepted: 03/26/2016] [Indexed: 12/27/2022]
|
22
|
Tomasini MC, Borelli AC, Beggiato S, Ferraro L, Cassano T, Tanganelli S, Antonelli T. Differential Effects of Palmitoylethanolamide against Amyloid-β Induced Toxicity in Cortical Neuronal and Astrocytic Primary Cultures from Wild-Type and 3xTg-AD Mice. J Alzheimers Dis 2016; 46:407-21. [PMID: 25765918 DOI: 10.3233/jad-143039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Considering the heterogeneity of pathological changes occurring in Alzheimer's disease (AD), a therapeutic approach aimed both to neuroprotection and to neuroinflammation reduction may prove effective. Palmitoylethanolamide (PEA) has attracted attention for its anti-inflammatory/neuroprotective properties observed in AD animal models. OBJECTIVE AND METHODS We evaluated the protective role of PEA against amyloid-β₄₂ (Aβ₄₂) toxicity on cell viability and glutamatergic transmission in primary cultures of cerebral cortex neurons and astrocytes from the triple-transgenic murine model of AD (3xTg-AD) and their wild-type littermates (non-Tg) mice. RESULTS Aβ₄₂ (0.5 μM; 24 h) affects the cell viability in cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. These effects were counteracted by the pretreatment with PEA (0.1 μM). Basal glutamate levels in cultured neurons and astrocytes from 3xTg-AD mice were lower than those observed in cultured cells from non-Tg mice. Aβ₄₂-exposure reduced and increased glutamate levels in non-Tg mouse cortical neurons and astrocytes, respectively. These effects were counteracted by the pretreatment with PEA. By itself, PEA did not affect cell viability and glutamate levels in cultured cortical neurons and astrocytes from non-Tg or 3xTg-AD mice. CONCLUSION The exposure to Aβ₄₂ induced toxic effects on cultured cortical neurons and astrocytes from non-Tg mice, but not in those from 3xTg-AD mice. Furthermore, PEA exerts differential effects against Aβ₄₂-induced toxicity in primary cultures of cortical neurons and astrocytes from non-Tg and 3xTg-AD mice. In particular, PEA displays protective properties in non-Tg but not in 3xTg-AD mouse neuronal cultured cells overexpressing Aβ.
Collapse
Affiliation(s)
- Maria Cristina Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | | | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Italy.,IRET Foundation, Ozzano Emilia, Bologna, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Italy
| | - Sergio Tanganelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| | - Tiziana Antonelli
- IRET Foundation, Ozzano Emilia, Bologna, Italy.,Department of Medical Sciences, University of Ferrara, Italy.,LTTA Centre, University of Ferrara, Italy
| |
Collapse
|
23
|
Shidore M, Machhi J, Shingala K, Murumkar P, Sharma MK, Agrawal N, Tripathi A, Parikh Z, Pillai P, Yadav MR. Benzylpiperidine-Linked Diarylthiazoles as Potential Anti-Alzheimer’s Agents: Synthesis and Biological Evaluation. J Med Chem 2016; 59:5823-46. [DOI: 10.1021/acs.jmedchem.6b00426] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mahesh Shidore
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Jatin Machhi
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Kaushik Shingala
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Prashant Murumkar
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mayank Kumar Sharma
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Neetesh Agrawal
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Ashutosh Tripathi
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Zalak Parikh
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Prakash Pillai
- Zoology
Department, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara, 390 001, India
| | - Mange Ram Yadav
- Faculty
of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| |
Collapse
|
24
|
Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C. Inhibition of Aβ(1-40) fibril formation by cyclophilins. Biochem J 2016; 473:1355-68. [PMID: 26994210 DOI: 10.1042/bcj20160098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Collapse
Affiliation(s)
- Marten Villmow
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Rolf Sachs
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Marcus Fändrich
- Institute for Pharmaceutical Biotechnology, Ulm University, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| |
Collapse
|
25
|
Aitken L, Quinn SD, Perez-Gonzalez C, Samuel IDW, Penedo JC, Gunn-Moore FJ. Morphology-Specific Inhibition of β-Amyloid Aggregates by 17β-Hydroxysteroid Dehydrogenase Type 10. Chembiochem 2016; 17:1029-37. [PMID: 26991863 DOI: 10.1002/cbic.201600081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 11/08/2022]
Abstract
A major hallmark of Alzheimer's disease (AD) is the formation of toxic aggregates of the β-amyloid peptide (Aβ). Given that Aβ peptides are known to localise within mitochondria and interact with 17β-HSD10, a mitochondrial protein expressed at high levels in AD brains, we investigated the inhibitory potential of 17β-HSD10 against Aβ aggregation under a range of physiological conditions. Fluorescence self-quenching (FSQ) of Aβ(1-42) labelled with HiLyte Fluor 555 was used to evaluate the inhibitory effect under conditions established to grow distinct Aβ morphologies. 17β-HSD10 preferentially inhibits the formation of globular and fibrillar-like structures but has no effect on the growth of amorphous plaque-like aggregates at endosomal pH 6. This work provides insights into the dependence of the Aβ-17β-HSD10 interaction with the morphology of Aβ aggregates and how this impacts enzymatic function.
Collapse
Affiliation(s)
- Laura Aitken
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, KY16 9TF, UK
| | - Steven D Quinn
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Cibran Perez-Gonzalez
- SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK.,Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, KY16 9ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK
| | - J Carlos Penedo
- SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, UK. .,Biomedical Sciences Research Complex, University of St. Andrews, Biomolecular Sciences Building, North Haugh, St. Andrews, Fife, KY16 9ST, UK.
| | - Frank J Gunn-Moore
- School of Biology, University of St. Andrews, Medical and Biological Sciences Building, North Haugh, St. Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|
26
|
Moskovitz J, Du F, Bowman CF, Yan SS. Methionine sulfoxide reductase A affects β-amyloid solubility and mitochondrial function in a mouse model of Alzheimer's disease. Am J Physiol Endocrinol Metab 2016; 310:E388-93. [PMID: 26786779 PMCID: PMC4796266 DOI: 10.1152/ajpendo.00453.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice (APP(+)/MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP(+) mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP(+)/MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.
Collapse
Affiliation(s)
- Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Fang Du
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Connor F Bowman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| | - Shirley S Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas
| |
Collapse
|
27
|
Machhi J, Sinha A, Patel P, Kanhed AM, Upadhyay P, Tripathi A, Parikh ZS, Chruvattil R, Pillai PP, Gupta S, Patel K, Giridhar R, Yadav MR. Neuroprotective Potential of Novel Multi-Targeted Isoalloxazine Derivatives in Rodent Models of Alzheimer's Disease Through Activation of Canonical Wnt/β-Catenin Signalling Pathway. Neurotox Res 2016; 29:495-513. [PMID: 26797524 DOI: 10.1007/s12640-016-9598-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 01/04/2023]
Abstract
Previous reports suggest that Alzheimer's disease is protected by cholinesterase inhibitors. We synthesized some isoalloxazine derivatives and evaluated them using in vitro cholinesterase inhibition assay. Two of the compounds (7m and 7q) were figured out as potent cholinesterase inhibitors. They further showed anti-Aβ aggregatory activity in the in vitro assay. The current study deals with the evaluation of neuroprotective potentials of the potent compounds (7m and 7q) using different in vitro and in vivo experiments. The compounds were first assessed for their tendency to cross blood-brain barrier using in vitro permeation assay. They were evaluated using scopolamine-induced amnesic mice model. Additionally, ROS scavenging and anti-apoptotic properties of 7m and 7q were established against Aβ1-42-induced toxicity in rat hippocampal neuronal cells. 7m and 7q were also evaluated using Aβ1-42-induced Alzheimer's rat model. Lastly, their involvement in Wnt/β-catenin pathway was also demonstrated. The results indicated good CNS penetration for 7m and 7q. The neuroprotective effects of 7m and 7q were evidenced by improved cognitive ability in both scopolamine and Aβ1-42-induced Alzheimer's-like condition in rodents. The in vivo results also confirmed their anti-cholinesterase and anti-oxidant potential. Immunoblot results showed that treatment with 7m and 7q decreased Aβ1-42, p-tau, cleaved caspase-3, and cleaved PARP levels in Aβ1-42-induced Alzheimer's rat brain. Additionally, immunoblot results demonstrated that 7m and 7q activated the Wnt/β-catenin pathway as evidenced by increased p-GSK-3, β-catenin, and neuroD1 levels in Aβ1-42-induced Alzheimer's rat brain. These findings have shown that isoalloxazine derivatives (7m and 7q) could be the potential leads for developing effective drugs for the treatment of AD.
Collapse
Affiliation(s)
- Jatin Machhi
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pratik Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashish M Kanhed
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Pragnesh Upadhyay
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ragitha Chruvattil
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Sarita Gupta
- Department of Biochemistry, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kirti Patel
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Rajani Giridhar
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan, The M. S. University of Baroda, Vadodara, Gujarat, 390001, India.
| |
Collapse
|
28
|
Chang CP, Liu YF, Lin HJ, Hsu CC, Cheng BC, Liu WP, Lin MT, Hsu SF, Chang LS, Lin KC. Beneficial Effect of Astragaloside on Alzheimer's Disease Condition Using Cultured Primary Cortical Cells Under β-amyloid Exposure. Mol Neurobiol 2015; 53:7329-7340. [PMID: 26696494 DOI: 10.1007/s12035-015-9623-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 12/08/2015] [Indexed: 01/27/2023]
Abstract
β-amyloid (Aβ)-mediated neuronal apoptosis contributes to the pathogenesis of Alzheimer's disease (AD). This study aimed to investigate whether astragalosides (AST) could inhibit Aβ-induced apoptosis in vivo and in vitro and to explore the underlying mechanisms. Amyloid β-protein fragment 25-35 (Aβ25-35) was administered to cerebral lateral ventricle of rats to make the AD models in vivo. AST was able to attenuate both cortical cell degeneration and memory deficits in the AD rats. AST also inhibited Aβ25-35-induced cytotoxicity (e.g., decreased cell viability); apoptosis (e.g., increased caspase-3 expression, increased DNA fragmentation, and Tau hyperphosphorylation); synaptotoxicity (e.g., increased loss of both a dendritic marker, microtubule-associated protein 2 (MAP-2) and synaptic proteins, synaptophysins); and mitochondrial dysfunction (e.g., increased mitochondrial membrane potential) in cultured primary rat cortical cells. The beneficial effect of AST in reducing Aβ-induced cytotoxicity, apoptosis, and mitochondrial dysfunction in cortical cells were blocked by inhibition of phosphoinositide 3-kinase (PI3K)-dependent protein kinase B (PKB, as known as AKT) activation with LY294002. In addition, inhibition of extracellular protein kinase (ERK) with U0126 shared with the AST the same beneficial effects in reducing Aβ-induced apoptosis. Our data suggest that the cortical PI3K/AKT and MAPK (or ERK) pathways as appealing therapeutic targets in treating AD, and AST may have a positive impact on AD treatment via modulation of both PI3K/AKT and ERK pathways.
Collapse
Affiliation(s)
- Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Fan Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Hung-Jung Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Chien-Chin Hsu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Surgery, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Mao-Tsun Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Shu-Fen Hsu
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 821, Taiwan
| | - Li-Sheng Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, 710, Taiwan
| | - Kao-Chang Lin
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, 710, Taiwan.
- Department of Neurology, Chi Mei Medical Center, Tainan, 710, Taiwan.
| |
Collapse
|
29
|
Sun X, Chen WD, Wang YD. β-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Front Pharmacol 2015; 6:221. [PMID: 26483691 PMCID: PMC4588032 DOI: 10.3389/fphar.2015.00221] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a critical initiator that triggers the progression of Alzheimer's Disease (AD) via accumulation and aggregation, of which the process may be caused by Aβ overproduction or perturbation clearance. Aβ is generated from amyloid precursor protein through sequential cleavage of β- and γ-secretases while Aβ removal is dependent on the proteolysis and lysosome degradation system. Here, we overviewed the biogenesis and toxicity of Aβ as well as the regulation of Aβ production and clearance. Moreover, we also summarized the animal models correlated with Aβ that are essential in AD research. In addition, we discussed current immunotherapeutic approaches targeting Aβ to give some clues for exploring the more potentially efficient drugs for treatment of AD.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
30
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
31
|
Arrázola MS, Silva-Alvarez C, Inestrosa NC. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 2015; 9:166. [PMID: 25999816 PMCID: PMC4419851 DOI: 10.3389/fncel.2015.00166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/14/2015] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Carmen Silva-Alvarez
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Facultad de Ciencias Biológicas, Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile Santiago, Chile ; Center for Healthy Brain Aging, School of Psychiatry, Faculty of Medicine, University of New South Wales Sydney, NSW, Australia ; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes Punta Arenas, Chile ; Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
32
|
Methylene Blue Improves Brain Mitochondrial ABAD Functions and Decreases Aβ in a Neuroinflammatory Alzheimer’s Disease Mouse Model. Mol Neurobiol 2015; 53:1220-1228. [DOI: 10.1007/s12035-014-9088-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
33
|
Prakash A, Kumar A. Implicating the role of lycopene in restoration of mitochondrial enzymes and BDNF levels in β-amyloid induced Alzheimer׳s disease. Eur J Pharmacol 2014; 741:104-11. [DOI: 10.1016/j.ejphar.2014.07.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/15/2014] [Accepted: 07/14/2014] [Indexed: 01/20/2023]
|
34
|
TL-2 attenuates β-amyloid induced neuronal apoptosis through the AKT/GSK-3β/β-catenin pathway. Int J Neuropsychopharmacol 2014; 17:1511-9. [PMID: 24641999 DOI: 10.1017/s1461145714000315] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
β-amyloid (Aβ)-mediated neuronal apoptosis contributes to the progression of Alzheimer's disease (AD), although the exact mechanism remains unclear. This study aimed to investigate whether Dalesconol B (TL-2), a potent immunosuppressive agent with an unusual carbon skeleton, could inhibit Aβ-induced apoptosis in vitro and in vivo and to explore the underlying mechanisms. Aβ(1-42) was injected to bilateral hippocampus of mice to make the AD models in vivo. TL-2 was able to cross the blood-brain barrier and attenuate memory deficits in the AD mice. TL-2 also inhibited Aβ(1-42)-induced neuronal apoptosis in vitro and in vivo. In addition, TL-2 could activate the AKT/GSK-3β pathway, and inhibition of AKT and activation of GSK-3β partially eliminated the neuroprotective effects of TL-2. Furthermore, TL-2 induced the nuclear translocation of β-catenin and enhanced its transcriptional activity through the AKT/GSK-3β pathway to promote neuronal survival. These results suggest that TL-2 might be a potential drug for AD treatment.
Collapse
|
35
|
Yang SY, He XY, Isaacs C, Dobkin C, Miller D, Philipp M. Roles of 17β-hydroxysteroid dehydrogenase type 10 in neurodegenerative disorders. J Steroid Biochem Mol Biol 2014; 143:460-72. [PMID: 25007702 DOI: 10.1016/j.jsbmb.2014.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/24/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 10 (17β-HSD10) is encoded by the HSD17B10 gene mapping at Xp11.2. This homotetrameric mitochondrial multifunctional enzyme catalyzes the oxidation of neuroactive steroids and the degradation of isoleucine. This enzyme is capable of binding to other peptides, such as estrogen receptor α, amyloid-β, and tRNA methyltransferase 10C. Missense mutations of the HSD17B10 gene result in 17β-HSD10 deficiency, an infantile neurodegeneration characterized by progressive psychomotor regression and alteration of mitochondria morphology. 17β-HSD10 exhibits only a negligible alcohol dehydrogenase activity, and is not localized in the endoplasmic reticulum or plasma membrane. Its alternate name - Aβ binding alcohol dehydrogenase (ABAD) - is a misnomer predicated on the mistaken belief that this enzyme is an alcohol dehydrogenase. Misconceptions about the localization and function of 17β-HSD10 abound. 17β-HSD10's proven location and function must be accurately identified to properly assess this enzyme's important role in brain metabolism, especially the metabolism of allopregnanolone. The brains of individuals with Alzheimer's disease (AD) and of animals in an AD mouse model exhibit abnormally elevated levels of 17β-HSD10. Abnormal expression, as well as mutations of the HSD17B10 gene leads to impairment of the structure, function, and dynamics of mitochondria. This may underlie the pathogenesis of the synaptic and neuronal deficiency exhibited in 17β-HSD10 related diseases, including 17β-HSD10 deficiency and AD. Restoration of steroid homeostasis could be achieved by the supplementation of neuroactive steroids with a proper dosing and treatment regimen or by the adjustment of 17β-HSD10 activity to protect neurons. The discovery of this enzyme's true function has opened a new therapeutic avenue for treating AD.
Collapse
Affiliation(s)
- Song-Yu Yang
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA; Neuroscience Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA.
| | - Xue-Ying He
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Charles Isaacs
- Department of Developmental Biochemistry, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Carl Dobkin
- Department of Molecular Genetics, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA; Neuroscience Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
| | - David Miller
- Department of Molecular Biology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Manfred Philipp
- Department of Chemistry, Lehman College of CUNY, 250 Bedford Park Boulevard West, Bronx, NY 10468, USA; Biochemistry Doctoral Program, Graduate Center of the City University of New York, 365 Fifth Avenue, NY 10016, USA
| |
Collapse
|
36
|
Fancelli D, Abate A, Amici R, Bernardi P, Ballarini M, Cappa A, Carenzi G, Colombo A, Contursi C, Di Lisa F, Dondio G, Gagliardi S, Milanesi E, Minucci S, Pain G, Pelicci PG, Saccani A, Storto M, Thaler F, Varasi M, Villa M, Plyte S. Cinnamic Anilides as New Mitochondrial Permeability Transition Pore Inhibitors Endowed with Ischemia-Reperfusion Injury Protective Effect in Vivo. J Med Chem 2014; 57:5333-47. [DOI: 10.1021/jm500547c] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Fancelli
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Agnese Abate
- Genextra Group, DAC s.r.l., ,
Via Adamello 16, 20139 Milan, Italy
| | - Raffaella Amici
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Paolo Bernardi
- Department
of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, 35121 Padua, Italy
| | - Marco Ballarini
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
- Department
of Experimental Oncology, European Institute of Oncology IEO, Via
Adamello 16, 20139 Milan, Italy
| | - Anna Cappa
- Genextra Group, DAC s.r.l., ,
Via Adamello 16, 20139 Milan, Italy
| | - Giacomo Carenzi
- Genextra Group, DAC s.r.l., ,
Via Adamello 16, 20139 Milan, Italy
| | - Andrea Colombo
- NiKem Research s.r.l., Via
Zambeletti 25, 20021 Baranzate, MI, Italy
| | - Cristina Contursi
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Fabio Di Lisa
- Department
of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131 Padua, Italy
| | - Giulio Dondio
- NiKem Research s.r.l., Via
Zambeletti 25, 20021 Baranzate, MI, Italy
| | | | - Eva Milanesi
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Department
of Experimental Oncology, European Institute of Oncology IEO, Via
Adamello 16, 20139 Milan, Italy
- Department
of Biosciences, University of Milan, 20100 Milan, Italy
| | - Gilles Pain
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department
of Experimental Oncology, European Institute of Oncology IEO, Via
Adamello 16, 20139 Milan, Italy
| | | | - Mariangela Storto
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
- Department
of Experimental Oncology, European Institute of Oncology IEO, Via
Adamello 16, 20139 Milan, Italy
| | - Florian Thaler
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Mario Varasi
- Genextra Group, DAC s.r.l., ,
Via Adamello 16, 20139 Milan, Italy
| | - Manuela Villa
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| | - Simon Plyte
- Genextra Group, Congenia s.r.l., Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
37
|
Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons. Biochem Biophys Res Commun 2014; 448:89-94. [PMID: 24755072 DOI: 10.1016/j.bbrc.2014.04.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 01/21/2023]
Abstract
As one of the most important hallmarks of Alzheimer's disease (AD), β-amyloid (Aβ) plays important roles in inducing reactive oxygen species (ROS) generation, mitochondrial dysfunction and apoptotic cell death in neurons. Curcumin extracted from the yellow pigments spice plant turmeric shows multiplied bioactivities such as antioxidant and anti-apoptosis properties in vitro and in vivo. In the present study, the neuroprotective effect of curcumin against Aβ25-35-induced cell death in cultured cortical neurons was investigated. We found that pretreatment of curcumin prevented the cultured cortical neurons from Aβ25-35-induced cell toxicity. In addition, curcumin improved mitochondrial membrane potential (ΔΨm), decreased ROS generation and inhibited apoptotic cell death in Aβ25-35 treated neurons. Furthermore, we found that application of curcumin activated the expression of SIRT1 and subsequently decreased the expression of Bax in the presence of Aβ25-35. The protective effect of curcumin was blocked by SIRT1 siRNA. Taken together, our results suggest that activation of SIRT1 is involved in the neuroprotective action of curcumin.
Collapse
|
38
|
Choi SS, Lee SR, Kim SU, Lee HJ. Alzheimer's disease and stem cell therapy. Exp Neurobiol 2014; 23:45-52. [PMID: 24737939 PMCID: PMC3984956 DOI: 10.5607/en.2014.23.1.45] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 02/28/2014] [Accepted: 02/28/2014] [Indexed: 12/19/2022] Open
Abstract
The loss of neuronal cells in the central nervous system may occur in many neurodegenerative diseases. Alzheimer's disease is a common senile disease in people over 65 years, and it causes impairment characterized by the decline of mental function, including memory loss and cognitive impairment, and affects the quality of life of patients. However, the current therapeutic strategies against AD are only to relieve symptoms, but not to cure it. Because there are only a few therapeutic strategies against Alzheimer's disease, we need to understand the pathogenesis of this disease. Cell therapy may be a powerful tool for the treatment of Alzheimer's disease. This review will discuss the characteristics of Alzheimer's disease and various available therapeutic strategies.
Collapse
Affiliation(s)
- Sung S Choi
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 363-883, Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver 317-2194, Canada
| | - Hong J Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul 156-756, Korea
| |
Collapse
|
39
|
Sekine S, Kimura T, Motoyama M, Shitara Y, Wakazono H, Oida H, Horie T. The role of cyclophilin D in interspecies differences in susceptibility to hepatotoxic drug-induced mitochondrial injury. Biochem Pharmacol 2013; 86:1507-14. [PMID: 24012842 DOI: 10.1016/j.bcp.2013.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Test compound A ((5Z)-6-[(2R,3S)-3-({[(4-Chloro-2-methylphenyl)sulfonyl]amino}methyl) bicyclo[2.2.2]oct-2-yl]hex-5-enoic acid) was withdrawn from premarketing clinical trials due to severe liver injury. Intracellular accumulation of lipids (steatosis) has been observed in human-derived cells and may account for the severe hepatotoxicity. Mitochondrial β-oxidation and ketogenesis play a fundamental role in energy homeostasis. Mitochondrial dysfunction can therefore cause severe deficiency in fatty acid oxidation and apoptosis which finally triggers the hepatocellular injury. Some of hepatotoxic drugs (e.g., salicylic acid, diclofenac and troglitazone) are known to induce mitochondrial dysfunction. This study therefore examined the effect of compound A on the mitochondrial permeability transition (MPT) and membrane potential in mitochondria isolated from mouse, rat and monkey livers. The incubation of rat and monkey mitochondria energized by succinate in the presence of Ca(2+) (20μM) and compound A (2.5-10μM) resulted in cyclosporin A (CsA)-sensitive MPT pore opening and a decline in mitochondrial membrane potential in a concentration-dependent manner. However, mouse mitochondria showed low susceptibility to compound A-induced dysfunction. Rat mitochondrial expression of cyclophilin D (CyPD) was about twice that of mouse mitochondria, but the expression levels of other MPT pore proteins (adenine nucleotide translocator and voltage-dependent anion channel) were comparable in both species. An assessment of the effect of compound A on CyPD knockdown cells demonstrated that mitochondrial susceptibility to compound A was attenuated in CyPD knockdown cells. These results suggest that an interspecies difference in the susceptibility to mitochondrial dysfunction induced by compound A exists as a result of species-specific discrepancies in CyPD expression.
Collapse
Affiliation(s)
- Shuichi Sekine
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Camilleri A, Zarb C, Caruana M, Ostermeier U, Ghio S, Högen T, Schmidt F, Giese A, Vassallo N. Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2532-43. [PMID: 23817009 DOI: 10.1016/j.bbamem.2013.06.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Song XY, Hu JF, Sun MN, Li ZP, Wu DH, Ji HJ, Yuan YH, Zhu ZX, Han N, Liu G, Chen NH. IMM-H004, a novel coumarin derivative compound, protects against amyloid beta-induced neurotoxicity through a mitochondrial-dependent pathway. Neuroscience 2013; 242:28-38. [PMID: 23523945 DOI: 10.1016/j.neuroscience.2013.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 11/25/2022]
Abstract
We have investigated the effect of IMM-H004 (7-hydroxy-5-methoxy-4-methyl-3-(4-methylpiperazin-1-yl)-2H-chromen-2-one), a coumarin derivative, on the amyloid beta (Aβ)-induced neurotoxicity in primary culture cortical neurons and pheochromocytoma (PC12) cells. Our results showed that treatment with IMM-H004 markedly reduced the number of apoptotic cells after exposure to Aβ25-35 or Aβ1-42, determined by MTT, TUNEL staining and Flow cytometry. Further study indicated that IMM-H004 significantly inhibited Aβ-induced cytotoxicity and apoptosis by reversing Aβ-induced mitochondrial dysfunction, including MMP (mitochondrial membrane potential) decrease, reactive oxygen species production, and mitochondrial release of cytochrome c. IMM-H004 can regulate the interaction between Bax and Bcl-2, decreased levels of p53 and active caspase-3 protein induced by Aβ25-35. Furthermore, IMM-H004 also reduced translocation of AIF (apoptosis-inducing factor) induced by Aβ25-35. These results demonstrated that IMM-H004 was capable of protecting neuronal cells from Aβ-induced degeneration through a mitochondrial-dependent apoptotic pathway. The results of this study lend further credence to the notion that IMM-H004 is a 'multipotent therapeutic agrent' that reduces toxic levels of brain Aβ, and holds the potential to protect neuronal mitochondrial function in Alzheimer's disease.
Collapse
Affiliation(s)
- X Y Song
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhu X, Ye L, Ge H, Chen L, Jiang N, Qian L, Li L, Liu R, Ji S, Zhang S, Jin J, Guan D, Fang W, Tan R, Xu Y. Hopeahainol A attenuates memory deficits by targeting β-amyloid in APP/PS1 transgenic mice. Aging Cell 2013; 12:85-92. [PMID: 23107435 DOI: 10.1111/acel.12022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 11/29/2022] Open
Abstract
Increasing evidence demonstrates that amyloid beta (Aβ) elicits mitochondrial dysfunction and oxidative stress, which contributes to the pathogenesis of Alzheimer's disease (AD). Identification of the molecules targeting Aβ is thus of particular significance in the treatment of AD. Hopeahainol A (HopA), a polyphenol with a novel skeleton obtained from Hopea hainanensis, is potentially acetylcholinesterase-inhibitory and anti-oxidative in H(2)O(2)-treated PC12 cells. In this study, we reported that HopA might bind to Aβ(1-42) directly and inhibit the Aβ(1-42) aggregation using a combination of molecular dynamics simulation, binding assay, transmission electron microscopic analysis and staining technique. We also demonstrated that HopA decreased the interaction between Aβ(1-42) and Aβ-binding alcohol dehydrogenase, which in turn reduced mitochondrial dysfunction and oxidative stress in vivo and in vitro. In addition, HopA was able to rescue the long-term potentiation induction by protecting synaptic function and attenuate memory deficits in APP/PS1 mice. Our data suggest that HopA might be a promising drug for therapeutic intervention in AD.
Collapse
Affiliation(s)
| | - Lan Ye
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Huiming Ge
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing; China
| | - Ling Chen
- Department of Physiology; Nanjing Medical University; Nanjing; China
| | | | - Lai Qian
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Lingling Li
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Rong Liu
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Shen Ji
- Department of Traditional Chinese Medicine; Shanghai Institute of Food & Drug Controls; Shanghai; China
| | - Su Zhang
- Department of Traditional Chinese Medicine; Shanghai Institute of Food & Drug Controls; Shanghai; China
| | - Jiali Jin
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Dening Guan
- Department of Neurology; Affiliated Drum Tower Hospital of Nanjing University Medical School; Nanjing; China
| | - Wei Fang
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing; China
| | - Renxiang Tan
- Institute of Functional Biomolecules; State Key Laboratory of Pharmaceutical Biotechnology; Nanjing University; Nanjing; China
| | | |
Collapse
|
43
|
Wang X, Yang Y, Jia M, Ma C, Wang M, Che L, Yang Y, Wu J. The novel amyloid-beta peptide aptamer inhibits intracellular amyloid-beta peptide toxicity. Neural Regen Res 2013; 8:39-48. [PMID: 25206370 PMCID: PMC4107502 DOI: 10.3969/j.issn.1673-5374.2013.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/07/2012] [Indexed: 12/29/2022] Open
Abstract
Amyloid β peptide binding alcohol dehydrogenase (ABAD) decoy peptide (DP) can competitively antagonize binding of amyloid β peptide to ABAD and inhibit the cytotoxic effects of amyloid β peptide. Based on peptide aptamers, the present study inserted ABAD-DP into the disulfide bond of human thioredoxin (TRX) using molecular cloning technique to construct a fusion gene that can express the TRX1-ABAD-DP-TRX2 aptamer. Moreover, adeno-associated virus was used to allow its stable expression. Immunofluorescent staining revealed the co-expression of the transduced fusion gene TRX1-ABAD-DP-TRX2 and amyloid β peptide in NIH-3T3 cells, indicating that the TRX1-ABAD-DP-TRX2 aptamer can bind amyloid β peptide within cells. In addition, cell morphology and MTT results suggested that TRX1-ABAD-DP-TRX2 attenuated amyloid β peptide-induced SH-SY5Y cell injury and improved cell viability. These findings confirmed the possibility of constructing TRX-based peptide aptamer using ABAD-DP. Moreover, TRX1-ABAD-DP-TRX2 inhibited the cytotoxic effect of amyloid β peptide.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yi Yang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Mingyue Jia
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Chi Ma
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Mingyu Wang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lihe Che
- Department of Infection, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yu Yang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jiang Wu
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
44
|
Ciregna D, Monzani E, Thiabaud G, Pizzocaro S, Casella L. Copper–β-amyloid peptides exhibit neither monooxygenase nor superoxide dismutase activities. Chem Commun (Camb) 2013; 49:4027-9. [DOI: 10.1039/c3cc41297k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Coskun P, Wyrembak J, Schriner S, Chen HW, Marciniack C, LaFerla F, Wallace DC. A mitochondrial etiology of Alzheimer and Parkinson disease. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:553-64. [PMID: 21871538 PMCID: PMC3270155 DOI: 10.1016/j.bbagen.2011.08.008] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/10/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The genetics and pathophysiology of Alzheimer Disease (AD) and Parkinson Disease (PD) appears complex. However, mitochondrial dysfunction is a common observation in these and other neurodegenerative diseases. SCOPE OF REVIEW We argue that the available data on AD and PD can be incorporated into a single integrated paradigm based on mitochondrial genetics and pathophysiology. MAJOR CONCLUSIONS Rare chromosomal cases of AD and PD can be interpreted as affecting mitochondrial function, quality control, and mitochondrial DNA (mtDNA) integrity. mtDNA lineages, haplogroups, such haplogroup H5a which harbors the mtDNA tRNA(Gln) A8336G variant, are important risk factors for AD and PD. Somatic mtDNA mutations are elevated in AD, PD, and Down Syndrome and Dementia (DSAD) both in brains and also systemically. AD, DS, and DSAD brains also have reduced mtDNA ND6 mRNA levels, altered mtDNA copy number, and perturbed Aβ metabolism. Classical AD genetic changes incorporated into the 3XTg-AD (APP, Tau, PS1) mouse result in reduced forebrain size, life-long reduced mitochondrial respiration in 3XTg-AD males, and initially elevated respiration and complex I and IV activities in 3XTg-AD females which markedly declines with age. GENERAL SIGNIFICANCE Therefore, mitochondrial dysfunction provides a unifying genetic and pathophysiology explanation for AD, PD, and other neurodegenerative diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.
Collapse
Affiliation(s)
- Pinar Coskun
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, School of Biological Sciences, 3212 Biological Sciences III, University of California, Irvine, Irvine, CA 92697-4545
| | - Joanne Wyrembak
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Sam Schriner
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Hsiao-Wen Chen
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Christine Marciniack
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
| | - Frank LaFerla
- Institute for Memory Impairments and Neurological Disorders, Department of Neurobiology and Behavior, School of Biological Sciences, 3212 Biological Sciences III, University of California, Irvine, Irvine, CA 92697-4545
| | - Douglas C. Wallace
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), Department of Biological Chemistry, Hewitt Hall, Irvine, CA 92697-3940
- Center of Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, 3501 Civic Center Boulevard, CTRB 6060, Philadelphia, PA 19104-4302
| |
Collapse
|
46
|
Lax NZ, Turnbull DM, Reeve AK. Mitochondrial mutations: newly discovered players in neuronal degeneration. Neuroscientist 2012; 17:645-58. [PMID: 22130639 PMCID: PMC3757997 DOI: 10.1177/1073858411385469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in mitochondrial DNA cause a number of neurological diseases with defined neuropathology; however, mutations in this genome have also been found to be important in a number of more common neurodegenerative diseases. In this review, the authors discuss the importance of mitochondrial DNA mutations in a number of different diseases and speculate how such mutations could lead to cell loss. Increasing our understanding of how mitochondrial DNA mutations affect mitochondrial metabolism and subsequently result in neurodegenerative disease will prove vital to the development of targeted therapies and treatments.
Collapse
Affiliation(s)
- Nichola Z Lax
- Centre for Brain Ageing and Vitality, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
47
|
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol 2011; 9:559-73. [PMID: 22654716 PMCID: PMC3263452 DOI: 10.2174/157015911798376190] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer's disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer's disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer's disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Collapse
Affiliation(s)
- Shelley J Allen
- Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
48
|
Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? J Neurochem 2011; 120 Suppl 1:167-185. [PMID: 22122230 DOI: 10.1111/j.1471-4159.2011.07510.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
: The amyloid cascade hypothesis of Alzheimer's disease envisages that the initial elevation of amyloid β-peptide (Aβ) levels, especially of Aβ(1-42) , is the primary trigger for the neuronal cell death specific to onset of Alzheimer's disease. There is now substantial evidence that brain amyloid levels are manipulable because of a dynamic equilibrium between their synthesis from the amyloid precursor protein and their removal by amyloid-degrading enzymes (ADEs) providing a potential therapeutic strategy. Since the initial reports over a decade ago that two zinc metallopeptidases, insulin-degrading enzyme and neprilysin (NEP), contributed to amyloid degradation in the brain, there is now an embarras de richesses in relation to this category of enzymes, which currently number almost 20. These now include serine and cysteine proteinases, as well as numerous zinc peptidases. The experimental validation for each of these enzymes, and which to target, varies enormously but up-regulation of several of them individually in mouse models of Alzheimer's disease has proved effective in amyloid and plaque clearance, as well as cognitive enhancement. The relative status of each of these enzymes will be critically evaluated. NEP and its homologues, as well as insulin-degrading enzyme, remain as principal ADEs and recently discovered mechanisms of epigenetic regulation of NEP expression potentially open new avenues in manipulation of AD-related genes, including ADEs.
Collapse
Affiliation(s)
- Natalia N Nalivaeva
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, St. Petersburg, Russia
| | - Caroline Beckett
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nikolai D Belyaev
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Anthony J Turner
- Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
49
|
Abstract
It is well established that the intracellular accumulation of Aβ (amyloid β-peptide) is associated with AD (Alzheimer's disease) and that this accumulation is toxic to neurons. The precise mechanism by which this toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step towards developing treatments for AD. One intracellular location where the accumulation of Aβ can have a major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding sites for Aβ, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression in the brain cortex, following Aβ accumulation within mitochondria. Specifically, we have identified two proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of human sufferers. The increased expression of these proteins demonstrates the complex and counteracting pathways that are activated in AD. Previous studies have identified approximate contact sites between ABAD and Aβ; on basis of these observations, we have shown that by using a modified peptide approach it is possible to reverse the expression of these two proteins in living transgenic animals and also to recover mitochondrial and behavioural deficits. This indicates that the ABAD–Aβ interaction is potentially an interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments that bind to ABAD, using a thermal shift assay.
Collapse
|
50
|
Abstract
Alzheimer's disease is associated with synapse loss, memory dysfunction, and pathological accumulation of amyloid-β (Aβ) in plaques. However, an exclusively pathological role for Aβ is being challenged by new evidence for an essential function of Aβ at the synapse. Aβ protein exists in different assembly states in the central nervous system and plays distinct roles ranging from synapse and memory formation to memory loss and neuronal cell death. Aβ is present in the brain of symptom-free people where it likely performs important physiological roles. New evidence indicates that synaptic activity directly evokes the release of Aβ at the synapse. At physiological levels, Aβ is a normal, soluble product of neuronal metabolism that regulates synaptic function beginning early in life. Monomeric Aβ40 and Aβ42 are the predominant forms required for synaptic plasticity and neuronal survival. With age, some assemblies of Aβ are associated with synaptic failure and Alzheimer's disease pathology, possibly targeting the N-methyl-D-aspartic acid receptor through the nicotinic acetylcholine receptor, mitochondrial Aβ alcohol dehydrogenase, and cyclophilin D. But emerging data suggests a distinction between age effects on the target response in contrast to the assembly state or the accumulation of the peptide. Both aging and Aβ independently decrease neuronal plasticity. Our laboratory has reported that Aβ, glutamate, and lactic acid are each increasingly toxic with neuron age. The basis of the age-related toxicity partly resides in age-related mitochondrial dysfunction and an oxidative shift in mitochondrial and cytoplasmic redox potential. In turn, signaling through phosphorylated extracellular signal-regulated protein kinases is affected along with an age-independent increase in phosphorylated cAMP response element-binding protein. This review examines the long-awaited functional impact of Aβ on synaptic plasticity.
Collapse
Affiliation(s)
- Mordhwaj S Parihar
- School of Studies in Biotechnology & Zoology, Vikram University, Ujjain, MP, India
| | | |
Collapse
|