1
|
Brady K, Liu HC, Hicks J, Long JA, Porter TE. Global gene expression analysis of the turkey hen hypothalamo-pituitary-gonadal axis during the preovulatory hormonal surge. Poult Sci 2023; 102:102547. [PMID: 36878099 PMCID: PMC10006860 DOI: 10.1016/j.psj.2023.102547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The preovulatory hormonal surge (PS) consists of elevated circulating luteinizing hormone (LH) and progesterone levels and serves as the primary trigger for ovarian follicle ovulation. Increased LH and progesterone, produced by the pituitary and the granulosa layer of the largest ovarian follicle (F1), respectively, result from hypothalamic stimulation and steroid hormone feedback on the hypothalamo-pituitary-gonadal (HPG) axis. The hypothalamus, pituitary, F1 granulosa, and granulosa layer of the fifth largest follicle (F5) were isolated from converter turkey hens outside and during the PS and subjected to RNA sequencing (n = 6 per tissue). Differentially expressed genes were subjected to functional annotation using DAVID and IPA. A total of 12, 250, 1235, and 1938 DEGs were identified in the hypothalamus, pituitary, F1 granulosa, and F5 granulosa respectively (q<0.05, |fold change|>1.5, FPKM>1). Gene Ontology (GO) analysis revealed key roles for metabolic processes, steroid hormone feedback, and hypoxia induced gene expression changes. Upstream analysis identified a total of 4, 42, 126, and 393 potential regulators of downstream gene expression in the hypothalamus, pituitary, F1G, and F5G respectively, with a total of 63 potential regulators exhibiting differential expression between samples collected outside and during the PS (|z-score|>2). The results from this study serve to increase the current knowledge base surrounding the regulation of the PS in turkey hens. Through GO analysis, downstream processes and functions associated with the PS were linked to identified DEGs, and through upstream analysis, potential regulators of DEGs were identified for further analysis. Linking upstream regulators to the downstream PS and ovulation events could allow for genetic selection or manipulation of ovulation frequencies in turkey hens.
Collapse
Affiliation(s)
- Kristen Brady
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States.
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Julie A Long
- Animal Biosciences and Biotechnology Laboratory, BARC, ARS, USDA, Beltsville, MD 20705, United States
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
2
|
Molecular characterization of TRIB1 gene and its role in regulation of steroidogenesis in bos grunniens granulosa cells. Theriogenology 2022; 191:1-9. [DOI: 10.1016/j.theriogenology.2022.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/09/2023]
|
3
|
An SY, Zhang GM, Liu ZF, Zhou C, Yang PC, Wang F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene 2019; 710:131-139. [PMID: 31158446 DOI: 10.1016/j.gene.2019.05.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
As a fundamental regulator of mitochondrial function, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) acts as a powerful coactivator of many transcriptional factors that relate to steroidogenesis, while the regulatory mechanism remains unclear. In the present study, testosterone secretion of goat Leydig cells (LCs) mediated by miR-1197-3p via PPARGC1A was investigated. We found PPARGC1A protein was diversely localized in testis, and the expression of PPARGC1A in testis of 9-month-old goat was significantly higher than that in 3-month-old goat. In addition, suppression of PPARGC1A significantly decreased the testosterone secretion in goat LCs, as well as reduced the expressions of key steroidogenesis related genes [steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3 beta-hydroxysteroid dehydrogenase (3BHSD)], and overexpression of PPARGC1A showed the opposite effects. Moreover, we observed suppression of miR-1197-3p increased the synthesis of testosterone and promoted the expressions of PPARGC1A, StAR, CYP11A1, and 3BHSD by directly targeting PPARGC1A in the LCs. Furthermore, overexpression of PPARGC1A could alleviate miR-1197-3p induced aberrant steroidogenesis related gene expressions and testosterone synthesis. Taken together, miR-1197-3p could act as an essential regulator of LC testosterone secretion in goat testis by targeting PPARGC1A. These results provide a novel view of the regulatory mechanisms involved in male sexual maturation and help us to understand the molecular role of PPARGC1A in testosterone synthesis.
Collapse
Affiliation(s)
- Shi-Yu An
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi-Fei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuang Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng-Cheng Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Seron-Ferre M, Torres-Farfan C, Valenzuela FJ, Castillo-Galan S, Rojas A, Mendez N, Reynolds H, Valenzuela GJ, Llanos AJ. Deciphering the Function of the Blunt Circadian Rhythm of Melatonin in the Newborn Lamb: Impact on Adrenal and Heart. Endocrinology 2017; 158:2895-2905. [PMID: 28911179 DOI: 10.1210/en.2017-00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Neonatal lambs, as with human and other neonates, have low arrhythmic endogenous levels of melatonin for several weeks until they start their own pineal rhythm of melatonin production at approximately 2 weeks of life. During pregnancy, daily rhythmic transfer of maternal melatonin to the fetus has important physiological roles in sheep, nonhuman primates, and rats. This melatonin rhythm provides a circadian signal and also participates in adjusting the physiology of several organs in preparation for extrauterine life. We propose that the ensuing absence of a melatonin rhythm plays a role in neonatal adaptation. To test this hypothesis, we studied the effects of imposing a high-amplitude melatonin rhythm in the newborn lamb on (1) clock time-related changes in cortisol and plasma variables and (2) clock time-related changes of gene expression of clock genes and selected functional genes in the adrenal gland and heart. We treated newborn lambs with a daily oral dose of melatonin (0.25 mg/kg) from birth to 5 days of age, recreating a high-amplitude melatonin rhythm. This treatment suppressed clock time-related changes of plasma adrenocorticotropic hormone, cortisol, clock gene expression, and functional genes in the newborn adrenal gland. In the heart, it decreased heart/body weight ratio, increased expression of Anp and Bnp, and resulted in different heart gene expression from control newborns. The interference of this postnatal melatonin treatment with the normal postnatal pattern of adrenocortical function and heart development support a physiological role for the window of flat postnatal melatonin levels during the neonatal transition.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Francisco J Valenzuela
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Sebastian Castillo-Galan
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Auristela Rojas
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Universidad Austral de Chile, Valdivia 7500922, Chile
| | - Henry Reynolds
- Laboratorio de Cronobiología, Universidad de Chile, Santiago 16038, Chile
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
| | - Guillermo J Valenzuela
- Department of Women's Health, Arrowhead Regional Medical Center, San Bernardino, California 92324
| | - Anibal J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 16038, Chile
- International Center for Andean Studies, Universidad de Chile, Santiago 16038, Chile
| |
Collapse
|
5
|
Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Palmisiano ND, Wang M, Jia B, Bayerl M, Schell TD, Hohl RJ, Zeng H, Zheng H. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol 2017. [PMID: 28629373 PMCID: PMC5477125 DOI: 10.1186/s13045-017-0486-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional regulation of TIGIT and PD-1 in AML. Methods Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1 expression and T cell immune response. Results Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and TIGIT and positively regulates their expression. Conclusions Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus, targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0486-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.,Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhong Zhang
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Neil D Palmisiano
- Depatment of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ming Wang
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Michael Bayerl
- Department of Pathology, Penn State Hershey Medical Center, Penn State University College of Medicine, Hershey, PA, 17033, United States
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA.,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA
| | - Raymond J Hohl
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, Beijing, China.
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, USA. .,Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Svensson K, Schnyder S, Cardel B, Handschin C. Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS One 2016; 11:e0158716. [PMID: 27463191 PMCID: PMC4963111 DOI: 10.1371/journal.pone.0158716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
The kidney has a high energy demand and is dependent on oxidative metabolism for ATP production. Accordingly, the kidney is rich in mitochondria, and mitochondrial dysfunction is a common denominator for several renal diseases. While the mitochondrial master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is highly expressed in kidney, its role in renal physiology is so far unclear. Here we show that PGC-1α is a transcriptional regulator of mitochondrial metabolic pathways in the kidney. Moreover, we demonstrate that mice with an inducible nephron-specific inactivation of PGC-1α in the kidney display elevated urinary sodium excretion, exacerbated renal steatosis during metabolic stress but normal blood pressure regulation. Overall, PGC-1α seems largely dispensable for basal renal physiology. However, the role of PGC-1α in renal mitochondrial biogenesis indicates that activation of PGC-1α in the context of renal disorders could be a valid therapeutic strategy to ameliorate renal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Svenia Schnyder
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Bettina Cardel
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Zhu L, Meng Q, Liang S, Ma Y, Li R, Li G, Zeng H. The transcription factor GFI1 negatively regulates NLRP3 inflammasome activation in macrophages. FEBS Lett 2015; 588:4513-9. [PMID: 25447538 DOI: 10.1016/j.febslet.2014.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
Interleukin-1β (IL-1β) secretion downstream of Toll-like receptor (TLR) activation is tightly controlled at the transcriptional and post-translational levels. NLRP3 inflammasome is involved in the maturation of pro-IL-1β, with NLRP3 expression identified as the limiting factor for inflammasome activation. Previously, we had demonstrated that the zinc-finger protein GFI1 inhibits pro-IL-1β transcription. Here, we show that GFI1 inhibits NLRP3 inflammasome activation and IL-1β secretion in macrophages. GFI1 suppressed Nlrp3 transcription via two mechanisms: (1) by binding to the Gli-responsive element 1 (GRE1) in the Nlrp3 promoter; and (2) by antagonizing the nuclear factor-κB (NF-κB) transcriptional activity. Thus, GFI1 negatively regulates TLR-mediated IL-1β production at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Suganuma I, Mori T, Ito F, Tanaka Y, Sasaki A, Matsuo S, Kusuki I, Kitawaki J. Peroxisome proliferator-activated receptor gamma, coactivator 1α enhances local estrogen biosynthesis by stimulating aromatase activity in endometriosis. J Clin Endocrinol Metab 2014; 99:E1191-8. [PMID: 24654751 DOI: 10.1210/jc.2013-2525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Endometriosis is an estrogen-dependent disease, and estrogen is overproduced by abnormally elevated aromatase in endometriotic tissues. Peroxisome proliferator-activated receptor gamma, coactivator 1α (PGC-1α) is a transcriptional coactivator-modulating steroid hormone. OBJECTIVE To investigate the effect of PGC-1α on aromatase activity in endometriosis. DESIGN Specimens from ovarian endometrioma (OE), endometrium with endometriosis (EE), and normal endometrium (NE) were analyzed for PGC-1α and aromatase expression. PGC-1α-dependent changes in aromatase expression in primary cultured stromal cells (SCs) were identified using luciferase and enzymatic assays, exon I-specific RT-PCR, and real-time PCR. Environmental stimulus-induced changes in PGC-1α were also examined. RESULTS PGC-1α was more highly expressed in OE than in EE and NE (P < .01). In OE, PGC-1α was coexpressed with aromatase, and their mRNA expressions were also correlated (r = 0.56, P = .02). PGC-1α was recruited to the nuclear receptor half-site between PI.3 and PII in the aromatase promoter. PGC-1α overexpression enhanced aromatase promoter activity (P < .01), mRNA expression (P < .05), and enzymatic activity (P < .01) in SCs from OE, but not in SCs from EE or NE. The levels of PI.3, PII, and exon II mRNA increased and transcriptional enhancement was abolished by mutation of the PGC-1α-interacting site. PGC-1α expression was enhanced in SCs from OE by tumor necrosis factor (TNF)-α (P < .05) but not by hypoxia or 17β-estradiol. CONCLUSIONS PGC-1α stimulated by TNF-α regulates aromatase expression and activity to promote local estrogen biosynthesis in OE, suggesting that PGC-1α is a promising candidate for novel targeted therapies in endometriosis treatment.
Collapse
Affiliation(s)
- Izumi Suganuma
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu C, Xuan X, Che R, Ding G, Zhao M, Bai M, Jia Z, Huang S, Zhang A. Dysfunction of the PGC-1α-mitochondria axis confers adriamycin-induced podocyte injury. Am J Physiol Renal Physiol 2014; 306:F1410-7. [PMID: 24808537 DOI: 10.1152/ajprenal.00622.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adriamycin (ADR)-induced nephropathy in animals is an experimental analog of human focal segmental glomerulosclerosis, which presents as severe podocyte injury and massive proteinuria and has a poorly understood mechanism. The present study was designed to test the hypothesis that the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α-mitochondria axis is involved in ADR-induced podocyte injury. Using MPC5 immortalized mouse podocytes, ADR dose dependently induced downregulation of nephrin and podocin, cell apoptosis, and mitochondrial dysfunction based on the increase in mitochondrial ROS production, decrease in mitochondrial DNA copy number, and reduction of mitochondrial membrane potential and ATP content. Moreover, ADR treatment also remarkably reduced the expression of PGC-1α, an important regulator of mitochondrial biogenesis and function, in podocytes. Strikingly, PGC-1α overexpression markedly attenuated mitochondrial dysfunction, the reduction of nephrin and podocin, and the apoptotic response in podocytes after ADR treatment. Moreover, downregulation of PGC-1α and mitochondria disruption in podocytes were also observed in rat kidneys with ADR administration, suggesting that the PGC-1α-mitochondria axis is relevant to in vivo ADR-induced podocyte damage. Taken together, these novel findings suggest that dysfunction of the PGC-1α-mitochondria axis is highly involved in ADR-induced podocyte injury. Targeting PGC-1α may be a novel strategy for the treatment of ADR nephropathy and human focal segmental glomerulosclerosis.
Collapse
Affiliation(s)
- Chunhua Zhu
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Xuan
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and
| | - Guixia Ding
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China; and Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, Loscalzo J, Leopold JA. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation 2012; 126:963-74. [PMID: 22787113 DOI: 10.1161/circulationaha.112.094722] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO(·)) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ET(B)), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species generation and decreasing NO(·) levels. We hypothesized that aldosterone modulates PAH by disrupting ET(B)-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. METHODS AND RESULTS In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO(·) metabolites in the absence of left-sided heart failure. In human pulmonary artery endothelial cells, endothelin-1 increased aldosterone levels via peroxisome proliferator-activated receptor gamma coactivator-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased reactive oxygen species production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ET(B) to decrease endothelin-1-stimulated eNOS activity. Substitution of ET(B)-Cys405 with alanine improved ET(B)-dependent NO(·) synthesis under conditions of oxidant stress, confirming that Cys405 is a redox-sensitive thiol that is necessary for ET(B)-eNOS signaling. In human pulmonary artery endothelial cells, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated reactive oxygen species generation and restored ET(B)-dependent NO(·) production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in 2 animal models of PAH in vivo. CONCLUSIONS Our findings demonstrate that aldosterone modulates an ET(B) cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO(·) and promote PAH.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital & Harvard Medical School, 75 Francis St, PBB-1, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:233-47. [PMID: 22531108 DOI: 10.1097/med.0b013e3283542fb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|