1
|
Roy S, Saha S, Dhar D, Chakraborty P, Singha Roy K, Mukherjee C, Gupta A, Bhattacharyya S, Roy A, Sengupta S, Roychoudhury S, Nath S. Molecular crosstalk between CUEDC2 and ERα influences the clinical outcome by regulating mitosis in breast cancer. Cancer Gene Ther 2022; 29:1697-1706. [PMID: 35732909 DOI: 10.1038/s41417-022-00494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Development of endocrine resistance in hormone-receptor-positive (HR+ve) subtype and lack of definitive target in triple-negative subtype challenge breast cancer management. Contributing to such endocrine resistance is a protein called CUEDC2. It degrades hormone receptors, estrogen receptor-α (ERα) and progesterone receptor. Higher level of CUEDC2 in ERα+ve breast cancer corresponded to poorer disease prognosis. It additionally influences mitotic progression. However, the crosstalk of these two CUEDC2-driven functions in the outcome of breast cancer remained elusive. We showed that CUEDC2 degrades ERα during mitosis, utilising the mitotic-ubiquitination-machinery. We elucidated the importance of mitosis-specific phosphorylation of CUEDC2 in this process. Furthermore, upregulated CUEDC2 overrode mitotic arrest, increasing aneuploidy. Finally, recruiting a prospective cohort of breast cancer, we found significantly upregulated CUEDC2 in HR-ve cases. Moreover, individuals with higher CUEDC2 levels showed a poorer progression-free-survival. Together, our data confirmed that CUEDC2 up-regulation renders ERα+ve malignancies to behave essentially as HR-ve tumors with the prevalence of aneuploidy. This study finds CUEDC2 as a potential prognostic marker and a therapeutic target in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Stuti Roy
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Suryendu Saha
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Debanil Dhar
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Puja Chakraborty
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Kumar Singha Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Arnab Gupta
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Samir Bhattacharyya
- Department of Surgery, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India
| | - Anup Roy
- Department of Pathology, Nil Ratan Sircar Medical College and Hospital, Kolkata, India
| | | | - Susanta Roychoudhury
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.,CSIR-Indian Institute of Chemical Biology, CN-06, CN Block, Sector V, Kolkata, India
| | - Somsubhra Nath
- Department of Basic and Translational Research, Saroj Gupta Cancer Centre and Research Institute, Thakurpukur, Kolkata, India.
| |
Collapse
|
2
|
Xu L, Li YH, Zhao WJ, Sang YF, Chen JJ, Li DJ, Du MR. RhoB Promotes Endometrial Stromal Cells Decidualization Via Semaphorin3A/PlexinA4 Signaling in Early Pregnancy. Endocrinology 2022; 163:6679730. [PMID: 36047434 DOI: 10.1210/endocr/bqac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Endometrial decidualization refers to a series of morphological changes and functional remodeling of the uterine endometrium to accept the embryo under the effect of estrogen and progesterone secreted by ovaries after ovulation. During decidualization, endometrial stromal cells (ESCs) proliferate and differentiate into decidual stromal cells, undergoing cytoskeletal rearrangement-mediated morphological changes and expressing decidualization markers, such as insulin-like growth factor-binding protein-1 and prolactin. Ras homology (Rho) proteins, a family of small G proteins, are well known as regulators of cellular morphology and involved in multiple other cellular processes. In this study, we found ras homolog family member B (RHOB) was the most significantly upregulated gene in the Rho protein family after the in vitro decidualization of human primary ESCs. RhoB expression was induced mainly by 3',5'-cyclic adenosine 5'-monophosphate (cAMP) / protein kinase A (PKA) / cyclic adenosine monophosphate-response element binding protein signaling and partly by progesterone signaling. Knockdown of RhoB in ESCs greatly inhibited actin cytoskeletal rearrangement, cell morphological transformation, and upregulation of insulin-like growth factor-binding protein-1, suggesting an indispensable role of RhoB in decidualization. Mechanistically, the downstream target of RhoB was semaphorin3A (Sema3A), which mediated its signaling via interacting with the receptor, plexinA4. More importantly, decreased expression of RhoB, Sema3A, and plexinA4 were detected in deciduas from patients with unexplained spontaneous miscarriage. Collectively, our results indicate that RhoB/Sema3A/plexinA4 signaling plays a positive role in endometrial decidualization and relates to unexplained spontaneous miscarriage, which is worthy of further exploration so as to provide new insights into therapeutic strategies for pregnancy diseases associated with poor decidualization.
Collapse
Affiliation(s)
- Ling Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yan-Hong Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei-Jie Zhao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yi-Fei Sang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jia-Jia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | - Mei-Rong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
3
|
Wang L, Yang H, Hu L, Hu D, Ma S, Sun X, Jiang L, Song J, Ji L, Masau JF, Zhang H, Qian K. CDKN1C (P57): one of the determinants of human endometrial stromal cell decidualization. Biol Reprod 2019; 98:277-285. [PMID: 29325014 DOI: 10.1093/biolre/iox187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023] Open
Abstract
Decidualization is regulated by crosstalk of progesterone and the cAMP pathway. It involves extensive reprogramming of gene expression and includes a wide range of functions. To investigate how cell cycle regulatory genes drive the human endometrial stromal cell (ESC) exit cell cycle and enter differentiation, primary cultured ESC was treated with 8-Br-cAMP and MPA and cell cycle distribution was investigated by flow cytometry. High-throughput cell cycle regulatory gene expression was also studied by microarray. To validate the results of microarray chip, immunohistochemistry and semi-quantitative method of optical density were used to analyze the expression of cell cycle regulator proteins in proliferative phase of endometrium (n = 6) and early pregnancy decidua (n = 6). In addition, we selected cyclin-dependent kinase inhibitor 1c (CDKN1C, also known as P57) and cyclin-dependent kinase inhibitor 2b (CDKN2B, also known as P15) in order to study their role in the process of decidualization by the RNAi method. ESC was arrested at G0/G1 checkpoints during decidualization. Cell cycle regulatory genes P57 and P15 were upregulated, while cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), and cell division cycle protein 2 homolog (CDC2) were downregulated during ESC differentiation both in vitro and vivo. P57 siRNA impaired ESC decidualization and caused different morphological and ultrastructural changes as well as a relatively low secretion of prolactin, but P15 siRNA had no effects. We concluded that P15, CCND1, CDK2, and CDC2 may participate in ESC withdraw from the cell cycle and go into differentiation both in vitro and in vivo. P57 is one of the key determinants of ESC differentiation due to its effect on the cell cycle distribution, but its association with the decidua-specific transcription factor needs further investigation.
Collapse
Affiliation(s)
- Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Yang
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linli Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuxia Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuejiao Sun
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liu Jiang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianyuan Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Licheng Ji
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jackson Ferdinand Masau
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
4
|
Differential regulation of mTORC1 and mTORC2 is critical for 8-Br-cAMP-induced decidualization. Exp Mol Med 2018; 50:1-11. [PMID: 30374127 PMCID: PMC6206090 DOI: 10.1038/s12276-018-0165-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 12/20/2022] Open
Abstract
Human endometrium decidualization, a differentiation process involving biochemical and morphological changes, is a prerequisite for embryo implantation and successful pregnancy. Here, we show that the mammalian target of rapamycin (mTOR) is a crucial regulator of 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)-induced decidualization in human endometrial stromal cells. The level of mSin1 in mTOR complex 2 (mTORC2) and DEPTOR in mTOR complex 1 (mTORC1) decreases during 8-Br-cAMP-induced decidualization, resulting in decreased mTORC2 activity and increased mTORC1 activity. Notably, DEPTOR displacement increases the association between raptor and insulin receptor substrate-1 (IRS-1), facilitating IRS-1 phosphorylation at serine 636/639. Finally, both S473 and T308 phosphorylation of Akt are reduced during decidualization, followed by a decrease in forkhead box O1 (FOXO1) phosphorylation and an increase in the mRNA levels of the decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1). Taken together, our findings reveal a critical role for mTOR in decidualization, involving the differential regulation of mTORC1 and mTORC2.
Collapse
|
5
|
Datta A, Kim H, Lal M, McGee L, Johnson A, Moustafa AA, Jones JC, Mondal D, Ferrer M, Abdel-Mageed AB. Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Lett 2017; 408:73-81. [PMID: 28844715 DOI: 10.1016/j.canlet.2017.08.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 01/30/2023]
Abstract
Emerging evidence links exosomes to cancer progression by the trafficking of oncogenic factors and neoplastic reprogramming of stem cells. This necessitates identification and integration of functionally validated exosome-targeting therapeutics into current cancer management regimens. We employed quantitative high throughput screen on two libraries to identify exosome-targeting drugs; a commercially available collection of 1280 pharmacologically active compounds and a collection of 3300 clinically approved compounds. Manumycin-A (MA), a natural microbial metabolite, was identified as an inhibitor of exosome biogenesis and secretion by castration-resistant prostate cancer (CRPC) C4-2B, but not the normal RWPE-1, cells. While no effect was observed on cell growth, MA attenuated ESCRT-0 proteins Hrs, ALIX and Rab27a and exosome biogenesis and secretion by CRPC cells. The MA inhibitory effect is primarily mediated via targeted inhibition of the Ras/Raf/ERK1/2 signaling. The Ras-dependent MA suppression of exosome biogenesis and secretion is partly mediated by ERK-dependent inhibition of the oncogenic splicing factor hnRNP H1. Our findings suggest that MA is a potential drug candidate to suppress exosome biogenesis and secretion by CRPC cells.
Collapse
Affiliation(s)
- Amrita Datta
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Madhu Lal
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, United States
| | - Lauren McGee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, United States
| | - Adedoyin Johnson
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Ahmed A Moustafa
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, United States; Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt
| | - Jennifer C Jones
- Molecular Immunogenetics and Vaccine Research Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, United States
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, United States; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, United States
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Cancer Institute, National Institutes of Health, Bethesda, MD 20850, United States
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, United States; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, United States; Department of Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, United States.
| |
Collapse
|
6
|
Lee SY, Lee YY, Choi JS, Yoon MS, Han JS. Phosphatidic acid induces decidualization by stimulating Akt-PP2A binding in human endometrial stromal cells. FEBS J 2016; 283:4163-4175. [PMID: 27696687 DOI: 10.1111/febs.13914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/29/2016] [Indexed: 12/19/2022]
Abstract
Decidualization of human endometrial stromal cells (hESCs) is crucial for successful uterine implantation and maintaining pregnancy. We previously reported that phospholipase D1 (PLD1) is required for cAMP-induced decidualization of hESCs. However, the mechanism by which phosphatidic acid (PA), the product of PLD1 action, might regulate decidualization is not known. We confirmed that PA induced decidualization of hESCs by observing morphological changes and measuring increased levels of decidualization markers such as IGFBP1 and prolactin transcripts (P < 0.05). Treatment with PA reduced phosphorylation of Akt and consequently that of FoxO1, which led to the increased IGFBP1 and prolactin mRNA levels (P < 0.05). Conversely, PLD1 knockdown rescued Akt phosphorylation. Binding of PP2A and Akt increased in response to cAMP or PA, suggesting that their binding is directly responsible for the inactivation of Akt during decidualization. Consistent with this observation, treatment with okadaic acid, a PP2A inhibitor, also inhibited cAMP-induced decidualization by blocking Akt dephosphorylation.
Collapse
Affiliation(s)
- So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Yun Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Joong Sub Choi
- Department of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Korea
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| |
Collapse
|
7
|
Vargas-Pinilla P, Babb P, Nunes L, Paré P, Rosa G, Felkl A, Longo D, Salzano FM, Paixão-Côrtes VR, Gonçalves GL, Bortolini MC. Progesterone Response Element Variation in the OXTR Promoter Region and Paternal Care in New World Monkeys. Behav Genet 2016; 47:77-87. [DOI: 10.1007/s10519-016-9806-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/10/2016] [Indexed: 01/25/2023]
|
8
|
Cecrdlova E, Petrickova K, Kolesar L, Petricek M, Sekerkova A, Svachova V, Striz I. Manumycin A downregulates release of proinflammatory cytokines from TNF alpha stimulated human monocytes. Immunol Lett 2015; 169:8-14. [PMID: 26602157 DOI: 10.1016/j.imlet.2015.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/24/2015] [Accepted: 11/13/2015] [Indexed: 01/02/2023]
Abstract
Macrolide antibiotics such as azithromycin or clarithromycin are known to have potent anti-inflammatory and immunomodulatory effects but these properties cannot be widely used due to a risk of bacterial resistance. We studied another polyketide antibiotic, structurally related manumycin A known as a streptomycete derived farnesyltransferase inhibitor with limited antibacterial effects, with respect to its potential regulation of mRNA expression of several genes associated with proinflammatory responses. Downregulation of mRNA for IL-6, TLR-8, IL-1 beta and IL-10 was found in THP-1 cells after 4h stimulation with TNF alpha in the presence of manumycin A and downregulated TLR-8 and EGR-1 genes were observed after 8h. Among the genes upregulated in response to manumycin were HMOX-1, TNFRSF10A, IL-1R1, TICAM2, NLRP12 after 4h and only IL-1R1 after 8h. Furthermore, manumycin A was found to inhibit IL-1beta, IL-6, and IL-8 production in TNF alpha stimulated THP-1 cells and peripheral blood monocytes in a dose dependent manner (0.25-1 μM of manumycin A) without affecting cell viability. Cell viability of blood monocytes decreased by about 30% at manumycin A doses of 2-5 μM. Manumycin A also inhibited IL-18 release from THP-1 cells, while in cultures of blood monocytes, this cytokine was not detectable. That manumycin A mediated downregulation of proinflammatory genes in human monocytes confirmed by a measurement of cytokine levels in culture supernatants, together with a very limited effect on cell viability, might suggest potential anti-inflammatory properties of this polyketide antibiotic.
Collapse
Affiliation(s)
- Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958, 14021 Prague, Czech Republic
| | - Katerina Petrickova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - Libor Kolesar
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958, 14021 Prague, Czech Republic
| | - Miroslav Petricek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | - Alena Sekerkova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958, 14021 Prague, Czech Republic
| | - Veronika Svachova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958, 14021 Prague, Czech Republic
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Videnska 1958, 14021 Prague, Czech Republic.
| |
Collapse
|
9
|
Cocco L, Follo MY, Manzoli L, Suh PG. Phosphoinositide-specific phospholipase C in health and disease. J Lipid Res 2015; 56:1853-60. [PMID: 25821234 DOI: 10.1194/jlr.r057984] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 12/20/2022] Open
Abstract
Phospholipases are widely occurring and can be found in several different organisms, including bacteria, yeast, plants, animals, and viruses. Phospholipase C (PLC) is a class of phospholipases that cleaves phospholipids on the diacylglycerol (DAG) side of the phosphodiester bond producing DAGs and phosphomonoesters. Among PLCs, phosphoinositide-specific PLC (PI-PLC) constitutes an important step in the inositide signaling pathways. The structures of PI-PLC isozymes show conserved domains as well as regulatory specific domains. This is important, as most PI-PLCs share a common mechanism, but each of them has a peculiar role and can have a specific cell distribution that is linked to a specific function. More importantly, the regulation of PLC isozymes is fundamental in health and disease, as there are several PLC-dependent molecular mechanisms that are associated with the activation or inhibition of important physiopathological processes. Moreover, PI-PLC alternative splicing variants can play important roles in complex signaling networks, not only in cancer but also in other diseases. That is why PI-PLC isozymes are now considered as important molecules that are essential for better understanding the molecular mechanisms underlying both physiology and pathogenesis, and are also potential molecular targets useful for the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pann-Ghill Suh
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| |
Collapse
|
10
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G, Fang H, Wang S, Zhao J, Li X, Zheng D, Tao S, Liao W, Han X, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 2014; 16:491-501. [PMID: 24637030 DOI: 10.1016/j.micinf.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rentao Yu
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China; Patent Examination Cooperation Center of the Patent Office, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Gaige Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Haiqin Fang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xianping Li
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zheng
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Logan PC, Ponnampalam AP, Steiner M, Mitchell MD. Effect of cyclic AMP and estrogen/progesterone on the transcription of DNA methyltransferases during the decidualization of human endometrial stromal cells. Mol Hum Reprod 2013; 19:302-12. [PMID: 23233487 DOI: 10.1093/molehr/gas062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progesterone, estrogen and cyclic adenosine monophosphate (cAMP) together regulate the decidualization of human endometrial stromal cells in a time-dependent manner. The role of DNA methylation and the three active DNA methyltransferases (DNMTs) in the regulation of decidualization is gaining interest but the exact role of this epigenetic mechanism during decidualization is largely unknown. We aimed to understand the effect of the main regulators of decidualization on the expression of the DNMTs and in turn on the expression of steroid hormone receptors during the decidualization. We conducted a time-course analysis from 6 h to 10 days to examine the change in gene expression of the DNMTs and the steroid hormone receptors over time in response to estradiol, medroxy-progesterone acetate (MPA) and dibutyryl-cAMP (db-cAMP) in a human endometrial stromal cells (HESC) cell line. Only the combination treatment with MPA-mix (estradiol + MPA + db-cAMP) up-regulated ERα, PGR, progesterone receptor B (PRB) and androgen receptor at 24 h. Both decidualization pathways of db-cAMP and estradiol/MPA, independently and combined, consistently down-regulated DNMT3B mRNA expression from 6 h till 10 days, whereas DNMT1 and DNMT3A mRNA expression were down-regulated transiently. Forced expression of DNMT3B in HESC for 10 days attenuated IGFBP1 mRNA and protein expression; and forced expression of DNMT3B combined with MPA-mix treatment synergistically increased the expression of PRB at 24 h. The HESC morphology and proliferation remained unchanged in response to forced expression of DNMT3B. In conclusion, mRNA expression of the DNMTs during decidualization is dynamic, so that expression varies according to the cAMP or estradiol/MPA pathway treatments that regulate them in a time-dependent manner. Although forced expression of DNMT3B by itself is insufficient to inhibit decidualization, forced expression of DNMT3B in combination with MPA-mix synergistically up-regulated PRB, as well as attenuated the expression of IGFBP1, the decidualization marker.
Collapse
Affiliation(s)
- Philip C Logan
- The Liggins Institute, University of Auckland, 85 Park Road, Private Bag 92019, Auckland 1023, New Zealand.
| | | | | | | |
Collapse
|
12
|
Bany BM, Scott CA, Eckstrum KS. Analysis of uterine gene expression in interleukin-15 knockout mice reveals uterine natural killer cells do not play a major role in decidualization and associated angiogenesis. Reproduction 2011; 143:359-75. [PMID: 22187674 DOI: 10.1530/rep-11-0325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During decidualization, uterine natural killer (uNK) cells are the most abundant immune cell types found in the uterus. Although it is well known that they play key roles in spiral arteriole modification and the maintenance of decidual integrity seen after mid-pregnancy, their roles in the differentiation of decidual cells and accompanying angiogenesis during the process of decidualization is less well characterized. To address this, we used whole-genome Illumina BeadChip analysis to compare the gene expression profiles in implantation segments of the uterus during decidualization on day 7.5 of pregnancy between wild-type and uNK cell-deficient (interleukin-15-knockout) mice. We found almost 300 differentially expressed genes and verified the differential expression of ~60 using quantitative RT-PCR. Notably, there was a lack of differential expression of genes involved in decidualization and angiogenesis and this was also verified by quantitative RT-PCR. Similar endothelial cell densities and proliferation indices were also found in the endometrium between the implantation site tissues of wild-type and knockout mice undergoing decidualization. Overall, the results of this study reveal that uNK cells likely do not play a major role in decidualization and accompanying angiogenesis during implantation. In addition, the study identifies a large number of genes whose expression in implantation-site uterine tissue during decidualization depends on interleukin-15 expression in mice.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|