1
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
2
|
Ashraf MA, Liu L, Facette MR. A polarized nuclear position specifies the correct division plane during maize stomatal development. PLANT PHYSIOLOGY 2023; 193:125-139. [PMID: 37300534 DOI: 10.1093/plphys/kiad329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Asymmetric cell division generates different cell types and is a feature of development in multicellular organisms. Prior to asymmetric cell division, cell polarity is established. Maize (Zea mays) stomatal development serves as an excellent plant model system for asymmetric cell division, especially the asymmetric division of the subsidiary mother cell (SMC). In SMCs, the nucleus migrates to a polar location after the accumulation of polarly localized proteins but before the appearance of the preprophase band. We examined a mutant of an outer nuclear membrane protein that is part of the LINC (linker of nucleoskeleton and cytoskeleton) complex that localizes to the nuclear envelope in interphase cells. Previously, maize linc kash sine-like2 (mlks2) was observed to have abnormal stomata. We confirmed and identified the precise defects that lead to abnormal asymmetric divisions. Proteins that are polarly localized in SMCs prior to division polarized normally in mlks2. However, polar localization of the nucleus was sometimes impaired, even in cells that have otherwise normal polarity. This led to a misplaced preprophase band and atypical division planes. MLKS2 localized to mitotic structures; however, the structure of the preprophase band, spindle, and phragmoplast appeared normal in mlks2. Time-lapse imaging revealed that mlks2 has defects in premitotic nuclear migration toward the polarized site and unstable position at the division site after formation of the preprophase band. Overall, our results show that nuclear envelope proteins promote premitotic nuclear migration and stable nuclear position and that the position of the nucleus influences division plane establishment in asymmetrically dividing cells.
Collapse
Affiliation(s)
- M Arif Ashraf
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Le Liu
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Plant Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Ashraf MA. A nuclear Pandora's box: functions of nuclear envelope proteins in cell division. AOB PLANTS 2023; 15:plac065. [PMID: 36779223 PMCID: PMC9910035 DOI: 10.1093/aobpla/plac065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The nucleus is characteristic of eukaryotic cells and nuclear envelope proteins are conserved across the kingdoms. Over the years, the function of these proteins was studied in the intact nuclear envelope. Knowledge regarding the localization and function of nuclear envelope proteins during mitosis, after the nuclear envelope breaks down, is limited. Until recently, the localization of nuclear envelope proteins during mitosis has been observed with the mitotic apparatus. In this context, research in plant cell biology is more advanced compared to non-plant model systems. Although current studies shed light on the localization of nuclear envelope proteins, further experiments are required to determine what, if any, functional role different nuclear envelope proteins play during mitosis. This review will highlight our current knowledge about the role of nuclear envelope proteins and point out the unanswered questions as future direction.
Collapse
|
4
|
Tamura K, Ueda H, Hara-Nishimura I. In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus 2021; 12:82-89. [PMID: 34030583 PMCID: PMC8158034 DOI: 10.1080/19491034.2021.1930681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of the nucelar envelope (NE) reassembly during cell division is an essential event. However, there is little information on the molecular components involved in NE assembly in plant cells. Here we developed an in vitro assay of NE assembly using tobacco BY-2 cultured cells. To start the NE assembly reaction, the demembranated nuclei and the S12 fraction (cytosol and microsomes) were mixed in the presence of GTP and ATP nucleotides. Time-course analysis indicated that tubule structures were extended from the microsomal vesicles that accumulated on the demembranated nuclei, and finally sealed the NE. Immunofluorescence confirmed that the assembled membrane contains a component of nuclear pore complex. The efficiency of the NE assembly is significantly inhibited by GTPγS that suppresses membrane fusion. This in-vitro assay system may elucidate the role of specific proteins and provide important insights into the molecular machinery of NE assembly in plant cells.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | |
Collapse
|
5
|
Evans DE, Mermet S, Tatout C. Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus 2021; 11:347-363. [PMID: 33295233 PMCID: PMC7746251 DOI: 10.1080/19491034.2020.1838697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we explore recent advances in knowledge of the structure and dynamics of the plant nuclear envelope. As a paradigm, we focused our attention on the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, a structurally conserved bridging complex comprising SUN domain proteins in the inner nuclear membrane and KASH domain proteins in the outer nuclear membrane. Studies have revealed that this bridging complex has multiple functions with structural roles in positioning the nucleus within the cell, conveying signals across the membrane and organizing chromatin in the 3D nuclear space with impact on gene transcription. We also provide an up-to-date survey in nuclear dynamics research achieved so far in the model plant Arabidopsis thaliana that highlights its potential impact on several key plant functions such as growth, seed maturation and germination, reproduction and response to biotic and abiotic stress. Finally, we bring evidences that most of the constituents of the LINC Complex and associated components are, with some specificities, conserved in monocot and dicot crop species and are displaying very similar functions to those described for Arabidopsis. This leads us to suggest that a better knowledge of this system and a better account of its potential applications will in the future enhance the resilience and productivity of crop plants.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University , Oxford, UK
| | - Sarah Mermet
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| | - Christophe Tatout
- GReD, CNRS, INSERM, Université Clermont Auvergne , Clermont-Ferrand, France
| |
Collapse
|
6
|
Fernández-Jiménez N, Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5148-5159. [PMID: 32589712 DOI: 10.1093/jxb/eraa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
7
|
Pradillo M, Evans D, Graumann K. The nuclear envelope in higher plant mitosis and meiosis. Nucleus 2019; 10:55-66. [PMID: 30879391 PMCID: PMC6527396 DOI: 10.1080/19491034.2019.1587277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
Mitosis and meiosis in higher plants involve significant reconfiguration of the nuclear envelope and the proteins that interact with it. The dynamic series of events involves a range of interactions, movement, breakdown, and reformation of this complex system. Recently, progress has been made in identifying and characterizing the protein and membrane interactome that performs these complex tasks, including constituents of the nuclear envelope, the cytoskeleton, nucleoskeleton, and chromatin. This review will present the current understanding of these interactions and advances in knowledge of the processes for the breakdown and reformation of the nuclear envelope during cell divisions in plants.
Collapse
Affiliation(s)
- Monica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - David Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
8
|
Abstract
The eukaryotic nucleus is enclosed by the nuclear envelope, which is perforated by the nuclear pores, the gateways of macromolecular exchange between the nucleoplasm and cytoplasm. The nucleoplasm is organized in a complex three-dimensional fashion that changes over time and in response to stimuli. Within the cell, the nucleus must be viewed as an organelle (albeit a gigantic one) that is a recipient of cytoplasmic forces and capable of morphological and positional dynamics. The most dramatic reorganization of this organelle occurs during mitosis and meiosis. Although many of these aspects are less well understood for the nuclei of plants than for those of animals or fungi, several recent discoveries have begun to place our understanding of plant nuclei firmly into this broader cell-biological context.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| | | | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
9
|
Pawar V, Poulet A, Détourné G, Tatout C, Vanrobays E, Evans DE, Graumann K. A novel family of plant nuclear envelope-associated proteins. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5699-5710. [PMID: 27630107 DOI: 10.1093/jxb/erw332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This paper describes the characterisation of a new family of higher plant nuclear envelope-associated proteins (NEAPs) that interact with other proteins of the nuclear envelope. In the model plant Arabidopsis thaliana, the family consists of three genes expressed ubiquitously (AtNEAP1-3) and a pseudogene (AtNEAP4). NEAPs consist of extensive coiled-coil domains, followed by a nuclear localisation signal and a C-terminal predicted transmembrane domain. Domain deletion mutants confirm the presence of a functional nuclear localisation signal and transmembrane domain. AtNEAP proteins localise to the nuclear periphery as part of stable protein complexes, are able to form homo- and heteromers, and interact with the SUN domain proteins AtSUN1 and AtSUN2, involved in the linker of nucleoskeleton and cytoskeleton (LINC) complex. An A. thaliana cDNA library screen identified a putative transcription factor called AtbZIP18 as a novel interactor of AtNEAP1, which suggest a connection between NEAP and chromatin. An Atneap1 Atneap3 double-knockout mutant showed reduced root growth, and altered nuclear morphology and chromatin structure. Thus AtNEAPs are suggested as inner nuclear membrane-anchored coiled-coil proteins with roles in maintaining nuclear morphology and chromatin structure.
Collapse
Affiliation(s)
- Vidya Pawar
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, Avenue des Landais 63171 Aubière Cedex, France
| | - Axel Poulet
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, Avenue des Landais 63171 Aubière Cedex, France
| | - Gwénaëlle Détourné
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, Avenue des Landais 63171 Aubière Cedex, France
| | - Christophe Tatout
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, Avenue des Landais 63171 Aubière Cedex, France
| | - Emmanuel Vanrobays
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, Avenue des Landais 63171 Aubière Cedex, France
| | - David E Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
10
|
Meier I. LINCing the eukaryotic tree of life - towards a broad evolutionary comparison of nucleocytoplasmic bridging complexes. J Cell Sci 2016; 129:3523-3531. [PMID: 27591260 DOI: 10.1242/jcs.186700] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope is much more than a simple barrier between nucleoplasm and cytoplasm. Nuclear envelope bridging complexes are protein complexes spanning both the inner and outer nuclear envelope membranes, thus directly connecting the cytoplasm with the nucleoplasm. In metazoans, they are involved in connecting the cytoskeleton with the nucleoskeleton, and act as anchoring platforms at the nuclear envelope for the positioning and moving of both nuclei and chromosomes. Recently, nucleocytoplasmic bridging complexes have also been identified in more evolutionarily diverse organisms, including land plants. Here, I discuss similarities and differences among and between eukaryotic supergroups, specifically of the proteins forming the cytoplasmic surface of these complexes. I am proposing a structure and function for a hypothetical ancestral nucleocytoplasmic bridging complex in the last eukaryotic common ancestor, with the goal to stimulate research in more diverse emerging model organisms.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Pontvianne F, Carpentier MC, Durut N, Pavlištová V, Jaške K, Schořová Š, Parrinello H, Rohmer M, Pikaard CS, Fojtová M, Fajkus J, Sáez-Vásquez J. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome. Cell Rep 2016; 16:1574-1587. [PMID: 27477271 PMCID: PMC5279810 DOI: 10.1016/j.celrep.2016.07.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 07/03/2016] [Indexed: 11/27/2022] Open
Abstract
The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance.
Collapse
Affiliation(s)
- Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Marie-Christine Carpentier
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Nathalie Durut
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| | - Veronika Pavlištová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Karin Jaške
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Šárka Schořová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | | | | | - Craig S Pikaard
- Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA; Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Miloslava Fojtová
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Fajkus
- Central European Institute of Technology and Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France; Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, 66860 Perpignan, France
| |
Collapse
|
12
|
Evans DE, Graumann K. Dynamics of the Plant Nuclear Envelope During Cell Division. Methods Mol Biol 2016; 1370:115-26. [PMID: 26659958 DOI: 10.1007/978-1-4939-3142-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The use of suspension cultures synchronised by aphidicolin provides a method to study cell division in living plant cells. This chapter describes the use of this technique in tobacco suspension cultures expressing nuclear and nuclear envelope proteins that have been fused to fluorescent proteins. The protocol provides advice on optimizing synchrony and on real-time imaging by confocal microscopy.
Collapse
Affiliation(s)
- David E Evans
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
13
|
Verna C, Sawchuk MG, Linh NM, Scarpella E. Control of vein network topology by auxin transport. BMC Biol 2015; 13:94. [PMID: 26560462 PMCID: PMC4641347 DOI: 10.1186/s12915-015-0208-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background Tissue networks such as the vascular networks of plant and animal organs transport signals and nutrients in most multicellular organisms. The transport function of tissue networks depends on topological features such as the number of networks’ components and the components’ connectedness; yet what controls tissue network topology is largely unknown, partly because of the difficulties in quantifying the effects of genes on tissue network topology. We address this problem for the vein networks of plant leaves by introducing biologically motivated descriptors of vein network topology; we combine these descriptors with cellular imaging and molecular genetic analysis; and we apply this combination of approaches to leaves of Arabidopsis thaliana that lack function of, overexpress or misexpress combinations of four PIN-FORMED (PIN) genes—PIN1, PIN5, PIN6, and PIN8—which encode transporters of the plant signal auxin and are known to control vein network geometry. Results We find that PIN1 inhibits vein formation and connection, and that PIN6 acts redundantly to PIN1 in these processes; however, the functions of PIN6 in vein formation are nonhomologous to those of PIN1, while the functions of PIN6 in vein connection are homologous to those of PIN1. We further find that PIN8 provides functions redundant and homologous to those of PIN6 in PIN1-dependent inhibition of vein formation, but that PIN8 has no functions in PIN1/PIN6-dependent inhibition of vein connection. Finally, we find that PIN5 promotes vein formation; that all the vein-formation-promoting functions of PIN5 are redundantly inhibited by PIN6 and PIN8; and that these functions of PIN5, PIN6, and PIN8 are independent of PIN1. Conclusions Our results suggest that PIN-mediated auxin transport controls the formation of veins and their connection into networks. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0208-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Tatout C, Evans DE, Vanrobays E, Probst AV, Graumann K. The plant LINC complex at the nuclear envelope. Chromosome Res 2015; 22:241-52. [PMID: 24801343 DOI: 10.1007/s10577-014-9419-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Significant advances in understanding the plant nuclear envelope have been made over the past few years; indeed, knowledge of the protein network at the nuclear envelope is rapidly growing. One such network, the linker of nucleoskeleton and cytoskeleton (LINC) complex, is known in animals to connect chromatin to the cytoskeleton through the nuclear envelope. The LINC complex is made of Sad1/Unc84 (SUN) and Klarsicht/Anc1/Syne1 homology (KASH) proteins which have been recently characterized in plants. SUN proteins are located within the inner nuclear membrane, while the KASH proteins are included into the outer nuclear membrane. SUN and KASH domains interact and bridge the two nuclear membranes. In Arabidopsis, KASH proteins also interact with the tryptophan-proline-proline (WPP) domain-interacting tail-anchored protein 1 (WIT1), associated with the nuclear pore complex and with myosin XI-i which directly interacts with the actin cytoskeleton. Although evidence for a plant LINC complex connecting the nucleus to the cytoskeleton is growing, its interaction with chromatin is still unknown, but knowledge gained from animal models strongly suggests its existence in plants. Possible functions of the plant LINC complex in cell division, nuclear shape, and chromatin organization are discussed.
Collapse
Affiliation(s)
- Christophe Tatout
- Genetic reproduction and Development (GReD), UMR CNRS 6293 - Clermont Université - INSERM U 1103, 24 avenue des Landais, BP80026, 63171, Aubière CEDEX, France,
| | | | | | | | | |
Collapse
|
16
|
Wang P, Hussey PJ. Interactions between plant endomembrane systems and the actin cytoskeleton. FRONTIERS IN PLANT SCIENCE 2015; 6:422. [PMID: 26106403 PMCID: PMC4460326 DOI: 10.3389/fpls.2015.00422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/25/2015] [Indexed: 05/04/2023]
Abstract
Membrane trafficking, organelle movement, and morphogenesis in plant cells are mainly controlled by the actin cytoskeleton. Not all proteins that regulate the cytoskeleton and membrane dynamics in animal systems have functional homologs in plants, especially for those proteins that form the bridge between the cytoskeleton and membrane; the membrane-actin adaptors. Their nature and function is only just beginning to be elucidated and this field has been greatly enhanced by the recent identification of the NETWORKED (NET) proteins, which act as membrane-actin adaptors. In this review, we will summarize the role of the actin cytoskeleton and its regulatory proteins in their interaction with endomembrane compartments and where they potentially act as platforms for cell signaling and the coordination of other subcellular events.
Collapse
Affiliation(s)
| | - Patrick J. Hussey
- *Correspondence: Patrick J. Hussey, School of Biological and Biomedical Science, Durham University, South Road, Durham DH1 3LE, UK,
| |
Collapse
|
17
|
Varas J, Graumann K, Osman K, Pradillo M, Evans DE, Santos JL, Armstrong SJ. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:329-46. [PMID: 25412930 DOI: 10.1111/tpj.12730] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 05/21/2023]
Abstract
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC-84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force-generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun1-1 Atsun2-2 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock-like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.
Collapse
Affiliation(s)
- Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Graumann K. Evidence for LINC1-SUN associations at the plant nuclear periphery. PLoS One 2014; 9:e93406. [PMID: 24667841 PMCID: PMC3965549 DOI: 10.1371/journal.pone.0093406] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 03/05/2014] [Indexed: 12/15/2022] Open
Abstract
Sad1/UNC84 (SUN) domain proteins are a highly conserved family of inner nuclear membrane localised proteins in eukaryotes. One of their main functions is as key components of nucleo-cytoskeletal bridging complexes, in which SUN proteins associate with nucleoskeletal elements. In metazoans these are the lamins, which form a supportive structural network termed the lamina. Plants lack sequence homologs of lamins but have a similar nucleoplasmic structural network to support the plant NE. Putative components of this plant lamina-like structure are Little Nuclei (LINC) proteins, which bear structural resemblance to lamins and fulfil similar functions. This work explores the associations between AtLINC1, AtSUN1 and AtSUN2. AtLINC1 is recruited to the NE by SUN proteins and is immobilised therein. This recruitment and the immobile properties are likely due to AtSUN1/2-AtLINC1 protein interactions occurring in planta. In addition, the SUN N-terminus appears to play an important role in mediating these interactions. The associations between AtLINC1 and plant SUN proteins are a first indicator of how the nucleoskeleton may be anchored to the nuclear membrane in plants. Building on the previous characterisation of Klarsicht/Anc1/Syne1 homology (KASH) like proteins in plants, this study advances the identification and characterisation of nucleo-cytoskeletal bridging complexes in plants.
Collapse
Affiliation(s)
- Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Jaiswal DK, Mishra P, Subba P, Rathi D, Chakraborty S, Chakraborty N. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Sci Rep 2014; 4:4177. [PMID: 24577507 PMCID: PMC3937784 DOI: 10.1038/srep04177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 02/07/2014] [Indexed: 12/22/2022] Open
Abstract
Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.
Collapse
Affiliation(s)
- Dinesh Kumar Jaiswal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Poonam Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pratigya Subba
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Divya Rathi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
20
|
Kimura Y, Fujino K, Ogawa K, Masuda K. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain. FRONTIERS IN PLANT SCIENCE 2014; 5:62. [PMID: 24616728 PMCID: PMC3935212 DOI: 10.3389/fpls.2014.00062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/07/2014] [Indexed: 05/24/2023]
Abstract
Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS) motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1) and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1.
Collapse
Affiliation(s)
- Yuta Kimura
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kaien Fujino
- Laboratory of Crop Physiology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kana Ogawa
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| | - Kiyoshi Masuda
- Laboratory of Plant Functional Biology, Chair of Botany and Agronomy, Graduate School of Agriculture, Hokkaido UniversityHokkaido, Japan
| |
Collapse
|
21
|
Batzenschlager M, Herzog E, Houlné G, Schmit AC, Chabouté ME. GIP/MZT1 proteins orchestrate nuclear shaping. FRONTIERS IN PLANT SCIENCE 2014; 5:29. [PMID: 24570680 PMCID: PMC3916773 DOI: 10.3389/fpls.2014.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/22/2014] [Indexed: 05/28/2023]
Abstract
The functional organization of the nuclear envelope (NE) is only just emerging in plants with the recent characterization of NE protein complexes and their molecular links to the actin cytoskeleton. The NE also plays a role in microtubule nucleation by recruiting γ-Tubulin Complexes (γ-TuCs) which contribute to the establishment of a robust mitotic spindle. γ-tubulin Complex Protein 3 (GCP3)-interacting proteins (GIPs) have been identified recently as integral components of γ-TuCs. GIPs have been conserved throughout evolution and are also named MZT1 (mitotic-spindle organizing protein 1). This review focuses on recent data investigating the role of GIP/MZT1 at the NE, including insights from the study of GIP partners. It also uncovers new functions for GIP/MZT1 during interphase and highlights a current view of NE-associated components which are critical for nuclear shaping during both cell division and differentiation.
Collapse
Affiliation(s)
| | | | | | - Anne-Catherine Schmit
- *Correspondence: Anne-Catherine Schmit, Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, 12 rue du Gl Zimmer, 67084 Strasbourg, France e-mail:
| | | |
Collapse
|
22
|
Evans DE, Pawar V, Smith SJ, Graumann K. Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex. FRONTIERS IN PLANT SCIENCE 2014; 5:183. [PMID: 24847341 PMCID: PMC4019843 DOI: 10.3389/fpls.2014.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
Following the description of SAD1/UNC84 (SUN) domain proteins in higher plants, evidence has rapidly increased that plants contain a functional linker of nucleoskeleton and cytoskeleton (LINC) complex bridging the nuclear envelope (NE). While the SUN domain proteins appear to be highly conserved across kingdoms, other elements of the complex are not and some key components and interactions remain to be identified. This mini review examines components of the LINC complex, including proteins of the SUN domain family and recently identified plant Klarsicht/Anc/Syne-1 homology (KASH) domain proteins. First of these to be described were WIPs (WPP domain interacting proteins), which act as protein anchors in the outer NE. The plant KASH homologs are C-terminally anchored membrane proteins with the extreme C-terminus located in the nuclear periplasm; AtWIPs contain a highly conserved X-VPT motif at the C-terminus in contrast to PPPX in opisthokonts. The role of the LINC complex in organisms with a cell wall, and description of further LINC complex components will be considered, together with other potential plant-specific functions.
Collapse
Affiliation(s)
- David E. Evans
- *Correspondence: David E. Evans, Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK e-mail:
| | | | | | | |
Collapse
|
23
|
Masoud K, Herzog E, Chabouté ME, Schmit AC. Microtubule nucleation and establishment of the mitotic spindle in vascular plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:245-257. [PMID: 23521421 DOI: 10.1111/tpj.12179] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/25/2013] [Accepted: 03/12/2013] [Indexed: 06/01/2023]
Abstract
The microtubular cytoskeleton plays a major role in cellular organization and proliferation. The first step in construction of a microtubule is microtubule nucleation. Individual microtubules then participate in organization of more complex microtubule arrays. A strong body of evidence suggests that the underlying molecular mechanisms involve protein complexes that are conserved among eukaryotes. However, plant cell specificities, mainly characterized by the presence of a cell wall and the absence of centrosomes, must be taken into account to understand their mitotic processes. The goal of this review is to summarize and discuss current knowledge regarding the mechanisms involved in plant spindle assembly during early mitotic events. The functions of the proteins currently characterized at microtubule nucleation sites and involved in spindle assembly are considered during cell-cycle progression from G2 phase to metaphase.
Collapse
Affiliation(s)
- Kinda Masoud
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du Centre National de la Recherche Scientifique (UPR 2357) Conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | |
Collapse
|
24
|
Abstract
Linkers of the nucleoskeleton to the cytoskeleton (LINC) complexes formed by SUN and KASH proteins are conserved eukaryotic protein complexes that bridge the nuclear envelope (NE) via protein-protein interactions in the NE lumen. Revealed by opisthokont studies, LINC complexes are key players in multiple cellular processes, such as nuclear and chromosomal positioning and nuclear shape determination, which in turn influence the generation of gametes and several aspects of development. Although comparable processes have long been known in plants, the first plant nuclear envelope bridging complexes were only recently identified. WPP domain-interacting proteins at the outer NE have little homology to known opisthokont KASH proteins, but form complexes with SUN proteins at the inner NE that have plant-specific properties and functions. In this review, we will address the importance of LINC complex-regulated processes, describe the plant NE bridging complexes and compare them to opisthokont LINC complexes.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
25
|
Sakamoto Y, Takagi S. LITTLE NUCLEI 1 and 4 regulate nuclear morphology in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2013; 54:622-33. [PMID: 23396599 DOI: 10.1093/pcp/pct031] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The morphology of plant nuclei varies among different species, organs, tissues and cell types. However, mechanisms and factors involved in the maintenance of nuclear morphology are poorly understood. Because nuclei retain their shapes even after cytoskeletal inhibitor treatments both in vivo and in vitro, we assumed involvement of the nuclear lamina, which plays a critical role in the regulation of nuclear morphology in animals. The crude nuclear lamina fraction isolated from Arabidopsis thaliana leaves was analyzed by mass spectrometry, and putative nuclear lamina proteins were identified. Among their T-DNA insertion lines, nuclei of little nuclei1 (linc1) and linc4 disruptants were more spherical than those of wild-type plants. Because A. thaliana harbors four LINC genes, we prepared all single and linc1/4 and linc2/3 double disruptants. In leaf epidermal cells, the circularity index of the nucleus in all linc disruptants except linc3 was significantly higher than that in the wild-type plants. The extent of the effects of LINC1 and/or LINC4 disruption was significantly higher than that of the effects of LINC2 disruption. The nuclear area was significantly smaller in the linc1, linc4 and linc1/4 disruptants than in the wild-type plants. Regardless of the defects in nuclear morphology, all linc disruptants exhibited a normal ploidy level. In interphase cells, LINC1 and LINC4 were mainly localized to the nuclear periphery, whereas LINC2 was in the nucleoplasm and LINC3 was detected in both regions. From prometaphase to anaphase in mitotic root tip cells, LINC1 was co-localized with chromosomes, whereas other LINCs were dispersed in the cytoplasm.
Collapse
Affiliation(s)
- Yuki Sakamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043 Japan.
| | | |
Collapse
|
26
|
Cook GS, Grønlund AL, Siciliano I, Spadafora N, Amini M, Herbert RJ, Bitonti MB, Graumann K, Francis D, Rogers HJ. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2093-106. [PMID: 23536609 PMCID: PMC3638832 DOI: 10.1093/jxb/ert066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 interacting partner 1 (SKIP1). Furthermore, the AtWEE1-green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1-YFP(C) (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1-YFP(N) negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome.
Collapse
Affiliation(s)
- Gemma S. Cook
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Anne Lentz Grønlund
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Biopharm R&D, GlaxoSmithKline, Stevenage, Herts SG1 2NY, UK
| | - Ilario Siciliano
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
| | - Natasha Spadafora
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
- Department of Ecology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Maryam Amini
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Robert J. Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester, UK
| | - M. Beatrice Bitonti
- Department of Ecology, University of Calabria, Arcavacata di Rende (Cosenza), Italy
| | - Katja Graumann
- Plant Nuclear Envelope Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Dennis Francis
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| |
Collapse
|
27
|
Sawchuk MG, Edgar A, Scarpella E. Patterning of leaf vein networks by convergent auxin transport pathways. PLoS Genet 2013; 9:e1003294. [PMID: 23437008 PMCID: PMC3578778 DOI: 10.1371/journal.pgen.1003294] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.
Collapse
Affiliation(s)
- Megan G. Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Edgar
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wozny M, Schattat MH, Mathur N, Barton K, Mathur J. Color recovery after photoconversion of H2B::mEosFP allows detection of increased nuclear DNA content in developing plant cells. PLANT PHYSIOLOGY 2012; 158:95-106. [PMID: 22108524 PMCID: PMC3252088 DOI: 10.1104/pp.111.187062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/21/2011] [Indexed: 05/10/2023]
Abstract
Many higher plants are polysomatic whereby different cells possess variable amounts of nuclear DNA. The conditional triggering of endocycles results in higher nuclear DNA content (C value) that in some cases has been correlated to increased cell size. While numerous multicolored fluorescent protein (FP) probes have revealed the general behavior of the nucleus and intranuclear components, direct visualization and estimation of changes in nuclear-DNA content in live cells during their development has not been possible. Recently, monomeric Eos fluorescent protein (mEosFP) has emerged as a useful photoconvertible protein whose color changes irreversibly from a green to a red fluorescent form upon exposure to violet-blue light. The stability and irreversibility of red fluorescent mEosFP suggests that detection of green color recovery would be possible as fresh mEosFP is produced after photoconversion. Thus a ratiometric evaluation of the red and green forms of mEosFP following photoconversion could be used to estimate production of a core histone such as H2B during its concomitant synthesis with DNA in the synthesis phase of the cell cycle. Here we present proof of concept observations on transgenic tobacco (Nicotiana tabacum) Bright Yellow 2 cells and Arabidopsis (Arabidopsis thaliana) plants stably expressing H2B::mEosFP. In Arabidopsis seedlings an increase in green fluorescence is observed specifically in cells known to undergo endoreduplication. The detection of changes in nuclear DNA content by correlating color recovery of H2B::mEosFP after photoconversion is a novel approach involving a single FP. The method has potential for facilitating detailed investigations on conditions that favor increased cell size and the development of polysomaty in plants.
Collapse
Affiliation(s)
| | | | | | | | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1
| |
Collapse
|
30
|
Boruc J, Zhou X, Meier I. Dynamics of the plant nuclear envelope and nuclear pore. PLANT PHYSIOLOGY 2012; 158:78-86. [PMID: 21949214 PMCID: PMC3252082 DOI: 10.1104/pp.111.185256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|