1
|
Zhou X, Zhou Z, Qin X, Cheng J, Fu Y, Wang Y, Wang J, Qin P, Zhang D. Amino Acid Metabolism Subtypes in Neuroblastoma Identifying Distinct Prognosis and Therapeutic Vulnerabilities. J Proteome Res 2024. [PMID: 39442086 DOI: 10.1021/acs.jproteome.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongcheng Fu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanyuan Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingyue Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Medvedev KE, Schaeffer RD, Pei J, Grishin NV. Pathogenic mutation hotspots in protein kinase domain structure. Protein Sci 2023; 32:e4750. [PMID: 37572333 PMCID: PMC10464295 DOI: 10.1002/pro.4750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Control of eukaryotic cellular function is heavily reliant on the phosphorylation of proteins at specific amino acid residues, such as serine, threonine, tyrosine, and histidine. Protein kinases that are responsible for this process comprise one of the largest families of evolutionarily related proteins. Dysregulation of protein kinase signaling pathways is a frequent cause of a large variety of human diseases including cancer, autoimmune, neurodegenerative, and cardiovascular disorders. In this study, we mapped all pathogenic mutations in 497 human protein kinase domains from the ClinVar database to the reference structure of Aurora kinase A (AURKA) and grouped them by the relevance to the disease type. Our study revealed that the majority of mutation hotspots associated with cancer are situated within the catalytic and activation loops of the kinase domain, whereas non-cancer-related hotspots tend to be located outside of these regions. Additionally, we identified a hotspot at residue R371 of the AURKA structure that has the highest number of exclusively non-cancer-related pathogenic mutations (21) and has not been previously discussed.
Collapse
Affiliation(s)
- Kirill E. Medvedev
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jimin Pei
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
3
|
Suthapot P, Chiangjong W, Chaiyawat P, Choochuen P, Pruksakorn D, Sangkhathat S, Hongeng S, Anurathapan U, Chutipongtanate S. Genomics-Driven Precision Medicine in Pediatric Solid Tumors. Cancers (Basel) 2023; 15:cancers15051418. [PMID: 36900212 PMCID: PMC10000495 DOI: 10.3390/cancers15051418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past decades, several study programs have conducted genetic testing in cancer patients to identify potential genetic targets for the development of precision therapeutic strategies. These biomarker-driven trials have demonstrated improved clinical outcomes and progression-free survival rates in various types of cancers, especially for adult malignancies. However, similar progress in pediatric cancers has been slow due to their distinguished mutation profiles compared to adults and the low frequency of recurrent genomic alterations. Recently, increased efforts to develop precision medicine for childhood malignancies have led to the identification of genomic alterations and transcriptomic profiles of pediatric patients which presents promising opportunities to study rare and difficult-to-access neoplasms. This review summarizes the current state of known and potential genetic markers for pediatric solid tumors and provides perspectives on precise therapeutic strategies that warrant further investigations.
Collapse
Affiliation(s)
- Praewa Suthapot
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pongsakorn Choochuen
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (U.A.); or (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (U.A.); or (S.C.)
| |
Collapse
|
4
|
Qiu YF, Song LH, Jiang GL, Zhang Z, Liu XY, Wang G. Hallmarks of Anaplastic Lymphoma Kinase Inhibitors with Its Quick Emergence of Drug Resistance. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is one of the most popular targets for anticancer therapies. In the past decade, the use of anaplastic lymphoma tyrosine kinase inhibitors (ALK-TKIs), including crizotinib and ceritinib, has been a reliable and standard options for patients with lung cancer, particularly for patients with nonsmall cell lung carcinoma. ALK-targeted therapies initially benefit the patients, yet, resistance eventually occurs. Therefore, resistance mechanisms of ALK-TKIs and the solutions have become a formidable challenge in the development of ALK inhibitors. In this review, based on the knowledge of reported ALK inhibitors, we illustrated the crystal structures of ALK, summarized the resistance mechanisms of ALK-targeted drugs, and proposed potential therapeutic strategies to prevent or overcome the resistance.
Collapse
Affiliation(s)
- Yong-Fu Qiu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lian-Hua Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Gang-Long Jiang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Zhen Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, People's Republic of China
| | - Xu-Yan Liu
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Mesquita FP, Souza PFN, da Silva EL, Lima LB, de Oliveira LLB, Moreira-Nunes CA, Zuercher WJ, Burbano RMR, de Moraes MEA, Montenegro RC. Kinase Inhibitor Screening Displayed ALK as a Possible Therapeutic Biomarker for Gastric Cancer. Pharmaceutics 2022; 14:pharmaceutics14091841. [PMID: 36145589 PMCID: PMC9501214 DOI: 10.3390/pharmaceutics14091841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
Despite advances in cancer chemotherapy, gastric cancer (GC) continues to have high recurrence rates and poor prognosis with limited treatment options. Understanding the etiology of GC and developing more effective, less harmful therapeutic approaches are vital and urgent. Therefore, this work describes a novel kinase target in malignant gastric cells as a potential therapeutic strategy. Our results demonstrate that among 147 kinase inhibitors (KI), only three molecules were significantly cytotoxic for the AGP-01 cell line. Hence, these three molecules were further characterized in their cellular mode of action. There was significant cell cycle impairment due to the expression modulation of genes such as TP53, CDKN1A, CDC25A, MYC, and CDK2 with subsequent induction of apoptosis. In fact, the Gene Ontology analysis revealed a significant enrichment of pathways related to cell cycle regulation (GO:1902749 and GO:1903047). Moreover, the three selected KIs significantly reduced cell migration and Vimentin mRNA expression after treatment. Surprisingly, the three KIs share the same target, ALK and INSR, but only the ALK gene was found to have a high expression level in the gastric cancer cell line. Additionally, lower survival rates were observed for patients with high ALK expression in TCGA-STAD analysis. In summary, we hypothesize that ALK gene overexpression can be a promising biomarker for prognosis and therapeutic management of gastric adenocarcinoma.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Pedro Filho Noronha Souza
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Emerson Lucena da Silva
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Luina Benevides Lima
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Lais Lacerda Brasil de Oliveira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Correspondence: (C.A.M.-N.); (R.C.M.)
| | - William J. Zuercher
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rommel Mario Rodríguez Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66073-005, PA, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém 66073-005, PA, Brazil
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
| | - Raquel Carvalho Montenegro
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil
- Correspondence: (C.A.M.-N.); (R.C.M.)
| |
Collapse
|
6
|
Nédélec A, Guérit EM, Dachy G, Lenglez S, Wong LS, Arts FA, Demoulin JB. Penttinen syndrome-associated PDGFRB Val665Ala variant causes aberrant constitutive STAT1 signalling. J Cell Mol Med 2022; 26:3902-3912. [PMID: 35689379 PMCID: PMC9279580 DOI: 10.1111/jcmm.17427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022] Open
Abstract
Penttinen syndrome is a rare progeroid disorder caused by mutations in platelet‐derived growth factor (PDGF) receptor beta (encoded by the PDGFRB proto‐oncogene) and characterized by a prematurely aged appearance with lipoatrophy, skin lesions, thin hair and acro‐osteolysis. Activating mutations in PDGFRB have been associated with other human diseases, including Kosaki overgrowth syndrome, infantile myofibromatosis, fusiform aneurysms, acute lymphoblastic leukaemia and myeloproliferative neoplasms associated with eosinophilia. The goal of the present study was to characterize the PDGFRB p.Val665Ala variant associated with Penttinen syndrome at the molecular level. This substitution is located in a conserved loop of the receptor tyrosine kinase domain. We observed that the mutant receptor was expressed at a lower level but showed constitutive activity. In the absence of ligand, the mutant activated STAT1 and elicited an interferon‐like transcriptional response. Phosphorylation of STAT3, STAT5, AKT and phospholipase Cγ was weak or undetectable. It was devoid of oncogenic activity in two cell proliferation assays, contrasting with classical PDGF receptor oncogenic mutants. STAT1 activation was not sensitive to ruxolitinib and did not rely on interferon‐JAK2 signalling. Another tyrosine kinase inhibitor, imatinib, blocked signalling by the p.Val665Ala variant at a higher concentration compared with the wild‐type receptor. Importantly, this concentration remained in the therapeutic range. Dasatinib, nilotinib and ponatinib also inhibited the mutant receptor. In conclusion, the p.Val665Ala variant confers unique features to PDGF receptor β compared with other characterized gain‐of‐function mutants, which may in part explain the particular set of symptoms associated with Penttinen syndrome.
Collapse
Affiliation(s)
- Audrey Nédélec
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Emilie M Guérit
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume Dachy
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Lenglez
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Lok San Wong
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Florence A Arts
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Experimental Medicine Unit, De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
7
|
Treis D, Umapathy G, Fransson S, Guan J, Mendoza-García P, Siaw JT, Wessman S, Gordon Murkes L, Stenman JJE, Djos A, Elfman LHM, Johnsen JI, Hallberg B, Palmer RH, Martinsson T, Kogner P. Sustained Response to Entrectinib in an Infant With a Germline ALKAL2 Variant and Refractory Metastatic Neuroblastoma With Chromosomal 2p Gain and Anaplastic Lymphoma Kinase and Tropomyosin Receptor Kinase Activation. JCO Precis Oncol 2022; 6:e2100271. [PMID: 35085006 PMCID: PMC8830523 DOI: 10.1200/po.21.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Personalized molecular workup enabled successful ALK inhibitor treatment in a child with resistant neuroblastoma.![]()
Collapse
Affiliation(s)
- Diana Treis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Patricia Mendoza-García
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Gordon Murkes
- Department of Pediatric Radiology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob J. E. Stenman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lotta H. M. Elfman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Per Kogner, MD, PhD; Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet , Tomtebodavägen 18A, 171 77 Stockholm, Sweden;
| |
Collapse
|
8
|
Heregger R, Huemer F, Hutarew G, Hecht S, Cheveresan L, Kotzot D, Schamschula E, Rinnerthaler G, Melchardt T, Weiss L, Greil R. Sustained response to brigatinib in a patient with refractory metastatic pheochromocytoma harboring R1192P anaplastic lymphoma kinase mutation: a case report from the Austrian Group Medical Tumor Therapy next-generation sequencing registry and discussion of the literature. ESMO Open 2021; 6:100233. [PMID: 34371380 PMCID: PMC8358412 DOI: 10.1016/j.esmoop.2021.100233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Metastatic pheochromocytoma and paraganglioma (PPGL) are rare diseases with dismal prognosis and standard therapies are lacking. We herein report the first case of a germline anaplastic lymphoma kinase (ALK) mutation in a patient with chemorefractory metastatic pheochromocytoma in the absence of mutations of known PPGL-associated predisposing genes. Therapy with the ALK inhibitor (ALKi) brigatinib led to dramatic and durable disease remission, despite previous disease progression on the ALKi alectinib. This case underscores the potential clinical use of molecular profiling in rare diseases with limited treatment options and suggests that the ALK-R1192P point mutation might predict sensitivity to brigatinib. First case of a germline ALK mutation in a patient with metastatic pheochromocytoma. Durable response to the ALKi brigatinib after disease progression on combination chemotherapy and alectinib. A germline ALK mutation in a patient with pheochromocytoma in the absence of mutations of known PPGL-associated genes.
Collapse
Affiliation(s)
- R Heregger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - F Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - G Hutarew
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - S Hecht
- Institute of Radiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - L Cheveresan
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - D Kotzot
- Clinical Genetics Unit, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - E Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - G Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; Austrian Group Medical Tumor Therapy, Vienna, Austria
| | - T Melchardt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria; Austrian Group Medical Tumor Therapy, Vienna, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria
| | - L Weiss
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; Austrian Group Medical Tumor Therapy, Vienna, Austria
| | - R Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; Austrian Group Medical Tumor Therapy, Vienna, Austria; Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg, Austria.
| |
Collapse
|
9
|
Liu T, Merguerian MD, Rowe SP, Pratilas CA, Chen AR, Ladle BH. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006064. [PMID: 34210658 PMCID: PMC8327881 DOI: 10.1101/mcs.a006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small-cell lung cancer and anaplastic large cell lymphoma in which wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first-generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 mo of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1 and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance.
Collapse
Affiliation(s)
- Tingting Liu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Matthew D Merguerian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | - Christine A Pratilas
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Allen R Chen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Brian H Ladle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| |
Collapse
|
10
|
Shen Y, Zhang Y, Xue W, Yue Z. dbMCS: A Database for Exploring the Mutation Markers of Anti-Cancer Drug Sensitivity. IEEE J Biomed Health Inform 2021; 25:4229-4237. [PMID: 34314366 DOI: 10.1109/jbhi.2021.3100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The identification of mutation markers and the selection of appropriate treatment for patients with specific genome mutations are important steps in the development of targeted therapies and the realization of precision medicine for human cancers. To investigate the baseline characteristics of drug sensitivity markers and develop computational methods of mutation effect prediction, we presented a manually curated online- based database of mutation Markers for anti-Cancer drug Sensitivity (dbMCS). Currently, dbMCS contains 1271 mutations and 4427 mutation-disease-drug associations (3151 and 1276 for sensitivity and resistance, respectively) with their PubMed indexed articles. By comparing the mutations in dbMCS with the putative neutral polymorphisms, we investigated the characteristics of drug sensitivity markers. We found that the mutation markers tend to significantly impact on high-conservative regions both in DNA sequences and protein domains. And some of them presented pleiotropic effects depending on the tumor context, appearing concurrently in the sensitivity and resistance categories. In addition, we preliminarily explored the machine learning-based methods for identifying mutation markers of anti-cancer drug sensitivity and produced optimistic results, which suggests that a reliable dataset may provide new insights and essential clues for future cancer pharmacogenomics studies. dbMCS is available at http://bioinfo.aielab.cc/dbMCS/.
Collapse
|
11
|
Identification of the Wallenda JNKKK as an Alk suppressor reveals increased competitiveness of Alk-expressing cells. Sci Rep 2020; 10:14954. [PMID: 32917927 PMCID: PMC7486895 DOI: 10.1038/s41598-020-70890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a receptor tyrosine kinase of the insulin receptor super-family that functions as oncogenic driver in a range of human cancers such as neuroblastoma. In order to investigate mechanisms underlying Alk oncogenic signaling, we conducted a genetic suppressor screen in Drosophila melanogaster. Our screen identified multiple loci important for Alk signaling, including members of Ras/Raf/ERK-, Pi3K-, and STAT-pathways as well as tailless (tll) and foxo whose orthologues NR2E1/TLX and FOXO3 are transcription factors implicated in human neuroblastoma. Many of the identified suppressors were also able to modulate signaling output from activated oncogenic variants of human ALK, suggesting that our screen identified targets likely relevant in a wide range of contexts. Interestingly, two misexpression alleles of wallenda (wnd, encoding a leucine zipper bearing kinase similar to human DLK and LZK) were among the strongest suppressors. We show that Alk expression leads to a growth advantage and induces cell death in surrounding cells. Our results suggest that Alk activity conveys a competitive advantage to cells, which can be reversed by over-expression of the JNK kinase kinase Wnd.
Collapse
|
12
|
Roncarati R, Lupini L, Miotto E, Saccenti E, Mascetti S, Morandi L, Bassi C, Rasio D, Callegari E, Conti V, Rinaldi R, Lanza G, Gafà R, Papi A, Frassoldati A, Sabbioni S, Ravenna F, Casoni GL, Negrini M. Molecular testing on bronchial washings for the diagnosis and predictive assessment of lung cancer. Mol Oncol 2020; 14:2163-2175. [PMID: 32441866 PMCID: PMC7463327 DOI: 10.1002/1878-0261.12713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cytopathological analyses of bronchial washings (BWs) collected during fibre‐optic bronchoscopy are often inconclusive for lung cancer diagnosis. To address this issue, we assessed the suitability of conducting molecular analyses on BWs, with the aim to improve the diagnosis and outcome prediction of lung cancer. The methylation status of RASSF1A, CDH1, DLC1 and PRPH was analysed in BW samples from 91 lung cancer patients and 31 controls, using a novel two‐colour droplet digital methylation‐specific PCR (ddMSP) technique. Mutations in ALK, BRAF, EGFR, ERBB2, KRAS, MAP2K1, MET, NRAS, PIK3CA, ROS1 and TP53 and gene fusions of ALK, RET and ROS1 were also investigated, using next‐generation sequencing on 73 lung cancer patients and 14 tumour‐free individuals. Our four‐gene methylation panel had significant diagnostic power, with 97% sensitivity and 74% specificity (relative risk, 7.3; odds ratio, 6.1; 95% confidence interval, 12.7–127). In contrast, gene mutation analysis had a remarkable value for predictive, but not for diagnostic, purposes. Actionable mutations in EGFR, HER2 and ROS1 as well as in other cancer genes (KRAS, PIK3CA and TP53) were detected. Concordance with gene mutations uncovered in tumour biopsies was higher than 90%. In addition, bronchial‐washing analyses permitted complete patient coverage and the detection of additional actionable mutations. In conclusion, BWs are a useful material on which to perform molecular tests based on gene panels: aberrant gene methylation and mutation analyses could be performed as approaches accompanying current diagnostic and predictive assays during the initial workup phase. This study establishes the grounds for further prospective investigation.
Collapse
Affiliation(s)
- Roberta Roncarati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,CNR, Institute of Genetics and Biomedical Research, National Research Council of Italy, Milano, Italy
| | - Laura Lupini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Miotto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Elena Saccenti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Susanna Mascetti
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Luca Morandi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, Sant' Andrea Hospital, University "La Sapienza", Rome, Italy
| | - Elisa Callegari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Valentina Conti
- Pneumology Division, State Hospital, San Marino, Republic of San Marino
| | - Rosa Rinaldi
- Division of Anatomic Pathology, Carlo Poma Hospital, Mantova, Italy
| | - Giovanni Lanza
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Division of Anatomic Pathology, S. Anna Hospital, Cona, Italy
| | - Alberto Papi
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy.,Department of Medical Sciences, University of Ferrara, Italy
| | - Antonio Frassoldati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Azienda Ospedaliero-Universitaria di Ferrara, Medical Oncology Unit, S. Anna Hospital, Cona, Italy
| | - Silvia Sabbioni
- Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy.,Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - Franco Ravenna
- Division of Pneumology and Intensive Respiratory Unit, Carlo Poma Hospital, Mantova, Italy
| | - Gian L Casoni
- Azienda Ospedaliero-Universitaria di Ferrara, Division of Respiratory Endoscopy, S. Anna Hospital, Cona, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy.,Laboratorio per le Tecnologie delle Terapie Avanzate, Tecnopolo, University of Ferrara, Italy
| |
Collapse
|
13
|
Wang J, Wang JQ, Cai CY, Cui Q, Yang Y, Wu ZX, Dong X, Zeng L, Zhao L, Yang DH, Chen ZS. Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Front Oncol 2020; 10:228. [PMID: 32175279 PMCID: PMC7056829 DOI: 10.3389/fonc.2020.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Failure of cancer chemotherapy is mostly due to multidrug resistance (MDR). Overcoming MDR mediated by overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a big challenge. In this study, we explore whether NVP-TAE684, a novel ALK inhibitor which has the potential to inhibit the function of ABC transport, could reverse ABC transporter-mediated MDR. MTT assay was carried out to determine cell viability and reversal effect of NVP-TAE684 in parental and drug resistant cells. Drug accumulation and efflux assay was performed to examine the effect of NVP-TAE684 on the cellular accumulation and efflux of chemotherapeutic drugs. The ATPase activity of ABCG2 transporter in the presence or absence of NVP-TAE684 was conducted to determine the impact of NVP-TAE684 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate protein molecules related to MDR. In addition, the interaction between NVP-TAE684 and ABCG2 transporter was investigated via in silico analysis. MTT assay showed that NVP-TAE684 significantly decreased MDR caused byABCG2-, but not ABCC1-transporter. Drug accumulation and efflux tests indicated that the effect of NVP-TAE684 in decreasing MDR was due to the inhibition of efflux function of ABCG2 transporter. However, NVP-TAE684 did not alter the expression or change the subcellular localization of ABCG2 protein. Furthermore, ATPase activity analysis indicated that NVP-TAE684 could stimulate ABCG2 ATPase activity. Molecular in silico analysis showed that NVP-TAE684 interacts with the substrate binding sites of the ABCG2 transporter. Taken together, our study indicates that NVP-TAE684 could reduce the resistance of MDR cells to chemotherapeutic agents, which provides a promising strategy to overcome MDR.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
14
|
Mus LM, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, Umapathy G, Vaapil M, Bartenhagen C, Laureys G, De Wever O, Bexell D, Fischer M, Hallberg B, Schulte J, De Wilde B, Durinck K, Denecker G, De Preter K, Speleman F. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep 2020; 10:218. [PMID: 31937834 PMCID: PMC6959226 DOI: 10.1038/s41598-019-57076-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
Neuroblastoma is an aggressive childhood cancer arising from sympatho-adrenergic neuronal progenitors. The low survival rates for high-risk disease point to an urgent need for novel targeted therapeutic approaches. Detailed molecular characterization of the neuroblastoma genomic landscape indicates that ALK-activating mutations are present in 10% of primary tumours. Together with other mutations causing RAS/MAPK pathway activation, ALK mutations are also enriched in relapsed cases and ALK activation was shown to accelerate MYCN-driven tumour formation through hitherto unknown ALK-driven target genes. To gain further insight into how ALK contributes to neuroblastoma aggressiveness, we searched for known oncogenes in our previously reported ALK-driven gene signature. We identified ETV5, a bona fide oncogene in prostate cancer, as robustly upregulated in neuroblastoma cells harbouring ALK mutations, and show high ETV5 levels downstream of the RAS/MAPK axis. Increased ETV5 expression significantly impacted migration, invasion and colony formation in vitro, and ETV5 knockdown reduced proliferation in a murine xenograft model. We also established a gene signature associated with ETV5 knockdown that correlates with poor patient survival. Taken together, our data highlight ETV5 as an intrinsic component of oncogenic ALK-driven signalling through the MAPK axis and propose that ETV5 upregulation in neuroblastoma may contribute to tumour aggressiveness.
Collapse
Affiliation(s)
- Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Irina Lambertz
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Shana Claeys
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Candy Kumps
- Department of Uro-gynaecology, Ghent University Hospital, Ghent, Belgium
| | - Wouter Van Loocke
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Christophe Van Neste
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marica Vaapil
- Translational Cancer Research, Lund University, Lund, Sweden
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Genevieve Laureys
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Department of Paediatric Haematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Laboratory of Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Daniel Bexell
- Translational Cancer Research, Lund University, Lund, Sweden
| | - Matthias Fischer
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany.,Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Schulte
- Department of Paediatric Oncology and Haematology, University Children's Hospital Essen, Essen, Germany.,Department of Paediatric Oncology and Haematology, Charité University Medical Centre Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.,Department of Paediatric Haematology and Oncology, Ghent University Hospital, Ghent, Belgium
| | - Kaat Durinck
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geertrui Denecker
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
15
|
Cervantes-Madrid D, Szydzik J, Lind DE, Borenäs M, Bemark M, Cui J, Palmer RH, Hallberg B. Repotrectinib (TPX-0005), effectively reduces growth of ALK driven neuroblastoma cells. Sci Rep 2019; 9:19353. [PMID: 31852910 PMCID: PMC6920469 DOI: 10.1038/s41598-019-55060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is the most commonly diagnosed extracranial tumor in the first year of life. Approximately 9% of neuroblastoma patients present germline or somatic aberrations in the gene encoding for anaplastic lymphoma kinase (ALK). This increases in high-risk neuroblastomas, which have a 14% frequency of ALK aberrations at the time of diagnosis and show increasing numbers at relapse. Abrogating ALK activity with kinase inhibitors is employed as clinical therapy in malignancies such as non-small cell lung cancer and has shown good results in pediatric inflammatory myofibroblastic tumors and anaplastic large cell lymphomas. A phase I clinical trial of the first generation ALK inhibitor, crizotinib, in neuroblastoma patients showed modest results and suggested that further investigation was needed. Continuous development of ALK inhibitors has resulted in the third generation inhibitor repotrectinib (TPX-0005), which targets the active kinase conformations of ALK, ROS1 and TRK receptors. In the present study we investigated the effects of repotrectinib in a neuroblastoma setting in vitro and in vivo. Neuroblastoma cell lines were treated with repotrectinib to investigate inhibition of ALK and to determine its effect on proliferation. PC12 cells transfected with different ALK mutant variants were used to study the efficacy of repotrectinib to block ALK activation/signaling. The in vivo effect of repotrectinib was also analyzed in a neuroblastoma xenograft model. Our results show that repotrectinib is capable of inhibiting signaling activity of a range of ALK mutant variants found in neuroblastoma patients and importantly it exhibits strong antitumor effects in a xenograft model of neuroblastoma.
Collapse
Affiliation(s)
- Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Mats Bemark
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Jean Cui
- Turning Point Therapeutics, Inc. 10628 Science Center Drive, Suite 200, San Diego, California, 92121, United States
| | - Ruth Helen Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
16
|
Alam MW, Borenäs M, Lind DE, Cervantes-Madrid D, Umapathy G, Palmer RH, Hallberg B. Alectinib, an Anaplastic Lymphoma Kinase Inhibitor, Abolishes ALK Activity and Growth in ALK-Positive Neuroblastoma Cells. Front Oncol 2019; 9:579. [PMID: 31334113 PMCID: PMC6625372 DOI: 10.3389/fonc.2019.00579] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
Oncogenic receptor tyrosine kinases including anaplastic lymphoma kinase (ALK) are implicated in numerous solid and hematologic cancers. ALK mutations are reported in an estimated 9% of neuroblastoma and recent reports indicate that the percentage of ALK-positive cases increases in the relapsed patient population. Initial clinical trial results have shown that it is difficult to inhibit growth of ALK positive neuroblastoma with crizotinib, motivating investigation of next generation ALK inhibitors with higher affinity for ALK. Here, alectinib, a potent next generation ALK inhibitor with antitumor activity was investigated in ALK-driven neuroblastoma models. Employing neuroblastoma cell lines and mouse xenografts we show a clear and efficient inhibition of ALK activity by alectinib. Inhibition of ALK activity was observed in vitro employing a set of different constitutively active ALK variants in biochemical assays. The results suggest that alectinib is an effective inhibitor of ALK kinase activity in ALK addicted neuroblastoma and should be considered as a potential future therapeutic option for ALK-positive neuroblastoma patients alone or in combination with other treatments.
Collapse
Affiliation(s)
- Muhammad Wasi Alam
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS 2019; 127:288-302. [PMID: 30803032 PMCID: PMC6850425 DOI: 10.1111/apm.12940] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full‐length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high‐risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10–15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK‐driven cancers. ALK TKIs bind differently within the ATP‐binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK‐fusion positive non‐small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Van den Eynden J, Umapathy G, Ashouri A, Cervantes-Madrid D, Szydzik J, Ruuth K, Koster J, Larsson E, Guan J, Palmer RH, Hallberg B. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11:11/557/eaar5680. [PMID: 30459281 DOI: 10.1126/scisignal.aar5680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in ALK trigger the activation of the encoded receptor and its downstream signaling pathways. ALK mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy. Tyrosine kinase inhibitors (TKIs) that target ALK are currently in clinical use for the treatment of patients with ALK-positive non-small cell lung cancer. However, monotherapy with the ALK inhibitor crizotinib has been less encouraging in neuroblastoma patients with ALK alterations, raising the question of whether combinatorial therapy would be more effective. In this study, we established both phosphoproteomic and gene expression profiles of ALK activity in neuroblastoma cells exposed to first- and third-generation ALK TKIs, to identify the underlying molecular mechanisms and identify relevant biomarkers, signaling networks, and new therapeutic targets. This analysis has unveiled various important leads for novel combinatorial treatment strategies for patients with neuroblastoma and an increased understanding of ALK signaling involved in this disease.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Kristina Ruuth
- Institution for Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Children's Hospital affiliated with Zhengzhou University, 450018 Zhengzhou, China
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
19
|
Baglivo S, Ricciuti B, Ludovini V, Metro G, Siggillino A, De Giglio A, Chiari R. Dramatic Response to Lorlatinib in a Heavily Pretreated Lung Adenocarcinoma Patient Harboring G1202R Mutation and a Synchronous Novel R1192P ALK Point Mutation. J Thorac Oncol 2018; 13:e145-e147. [DOI: 10.1016/j.jtho.2018.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022]
|
20
|
Guan J, Fransson S, Siaw JT, Treis D, Van den Eynden J, Chand D, Umapathy G, Ruuth K, Svenberg P, Wessman S, Shamikh A, Jacobsson H, Gordon L, Stenman J, Svensson PJ, Hansson M, Larsson E, Martinsson T, Palmer RH, Kogner P, Hallberg B. Clinical response of the novel activating ALK-I1171T mutation in neuroblastoma to the ALK inhibitor ceritinib. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002550. [PMID: 29907598 PMCID: PMC6071567 DOI: 10.1101/mcs.a002550] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tumors with anaplastic lymphoma kinase (ALK) fusion rearrangements, including non-small-cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. Although mutations in ALK are heavily implicated in childhood neuroblastoma, response to the ALK TKI crizotinib has been disappointing. Embryonal tumors in patients with DNA repair defects such as Fanconi anemia (FA) often have a poor prognosis, because of lack of therapeutic options. Here we report a child with underlying FA and ALK mutant high-risk neuroblastoma responding strongly to precision therapy with the ALK TKI ceritinib. Conventional chemotherapy treatment caused severe, life-threatening toxicity. Genomic analysis of the initial biopsy identified germline FANCA mutations as well as a novel ALK-I1171T variant. ALK-I1171T generates a potent gain-of-function mutant, as measured in PC12 cell neurite outgrowth and NIH3T3 transformation. Pharmacological inhibition profiling of ALK-I1171T in response to various ALK TKIs identified an 11-fold improved inhibition of ALK-I1171T with ceritinib when compared with crizotinib. Immunoaffinity-coupled LC-MS/MS phosphoproteomics analysis indicated a decrease in ALK signaling in response to ceritinib. Ceritinib was therefore selected for treatment in this child. Monotherapy with ceritinib was well tolerated and resulted in normalized catecholamine markers and tumor shrinkage. After 7.5 mo treatment, the residual primary tumor shrunk, was surgically removed, and exhibited hallmarks of differentiation together with reduced Ki67 levels. Clinical follow-up after 21 mo treatment revealed complete clinical remission including all metastatic sites. Therefore, ceritinib presents a viable therapeutic option for ALK-positive neuroblastoma.
Collapse
Affiliation(s)
- Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden.,Children's Hospital Affiliated to Zhengzhou University, 450018 Zhengzhou, China
| | - Susanne Fransson
- Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Diana Treis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, and Pediatric Oncology Program Karolinska University Hospital, Stockholm 17176, Sweden
| | - Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Damini Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kristina Ruuth
- Institute of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Petter Svenberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, and Pediatric Oncology Program Karolinska University Hospital, Stockholm 17176, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Alia Shamikh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Hans Jacobsson
- Department of Radiology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Lena Gordon
- Department of Pediatric Radiology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Jakob Stenman
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Pär-Johan Svensson
- Department of Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Magnus Hansson
- Department of Pediatrics and Pathology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Tommy Martinsson
- Department of Pathology and Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| | - Per Kogner
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm 17176, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 40530, Sweden
| |
Collapse
|
21
|
Lee SH, Kim JS, Zheng S, Huse JT, Bae JS, Lee JW, Yoo KH, Koo HH, Kyung S, Park WY, Sung KW. ARID1B alterations identify aggressive tumors in neuroblastoma. Oncotarget 2018; 8:45943-45950. [PMID: 28521285 PMCID: PMC5542239 DOI: 10.18632/oncotarget.17500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/11/2017] [Indexed: 12/01/2022] Open
Abstract
Targeted panel sequencing was performed to determine molecular targets and biomarkers in 72 children with neuroblastoma. Frequent genetic alterations were detected in ALK (16.7%), BRCA1 (13.9%), ATM (12.5%), and PTCH1 (11.1%) in an 83-gene panel. Molecular targets for targeted therapy were identified in 16 of 72 patients (22.2%). Two-thirds of ALK mutations were known to increase sensitivity to ALK inhibitors. Sequence alterations in ARID1B were identified in 5 of 72 patients (6.9%). Four of five ARID1B alterations were detected in tumors of high-risk patients. Two of five patients with ARID1B alterations died of disease progression. Relapse-free survival was lower in patients with ARID1B alterations than in those without (p = 0.01). In analysis confined to high-risk patients, 3-year overall survival was lower in patients with an ARID1B alteration (33.3 ± 27.2%) or MYCN amplification (30.0 ± 23.9%) than in those with neither ARID1B alteration nor MYCN amplification (90.5 ± 6.4%, p = 0.05). These results provide possibilities for targeted therapy and a new biomarker identifying a subgroup of neuroblastoma patients with poor prognosis.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jung-Sun Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Siyuan Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joon Seol Bae
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sungkyu Kyung
- Department of Bioinformatics, Sungsil University, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ki W Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
ALK in Neuroblastoma: Biological and Therapeutic Implications. Cancers (Basel) 2018; 10:cancers10040113. [PMID: 29642598 PMCID: PMC5923368 DOI: 10.3390/cancers10040113] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common and deadly solid tumour in children. Despite the development of new treatment options for high-risk NB, over half of patients relapse and five-year survival remains at 40-50%. Therefore, novel treatment strategies aimed at providing long-term disease remission are urgently sought. ALK, encoding the anaplastic lymphoma kinase receptor, is altered by gain-of-function point mutations in around 14% of high-risk NB and represents an ideal therapeutic target given its low or absent expression in healthy tissue postnatally. Small-molecule inhibitors of Anaplastic Lymphoma Kinase (ALK) approved in ALK fusion-positive lung cancer are currently undergoing clinical assessment in patients with ALK-mutant NB. Parallel pre-clinical studies are demonstrating the efficacy of ALK inhibitors against common ALK variants in NB; however, a complex picture of therapeutic resistance is emerging. It is anticipated that long-term use of these compounds will require combinatorial targeting of pathways downstream of ALK, functionally-related 'bypass' mechanisms and concomitant oncogenic pathways.
Collapse
|
23
|
Ritenour LE, Randall MP, Bosse KR, Diskin SJ. Genetic susceptibility to neuroblastoma: current knowledge and future directions. Cell Tissue Res 2018; 372:287-307. [PMID: 29589100 DOI: 10.1007/s00441-018-2820-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.
Collapse
Affiliation(s)
- Laura E Ritenour
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
A kinome-wide RNAi screen identifies ALK as a target to sensitize neuroblastoma cells for HDAC8-inhibitor treatment. Cell Death Differ 2018. [PMID: 29515255 PMCID: PMC6261943 DOI: 10.1038/s41418-018-0080-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prognosis of advanced stage neuroblastoma patients remains poor and, despite intensive therapy, the 5-year survival rate remains less than 50%. We previously identified histone deacetylase (HDAC) 8 as an indicator of poor clinical outcome and a selective drug target for differentiation therapy in vitro and in vivo. Here, we performed kinome-wide RNAi screening to identify genes that are synthetically lethal with HDAC8 inhibitors. These experiments identified the neuroblastoma predisposition gene ALK as a candidate gene. Accordingly, the combination of the ALK/MET inhibitor crizotinib and selective HDAC8 inhibitors (3–6 µM PCI-34051 or 10 µM 20a) efficiently killed neuroblastoma cell lines carrying wildtype ALK (SK-N-BE(2)-C, IMR5/75), amplified ALK (NB-1), and those carrying the activating ALK F1174L mutation (Kelly), and, in cells carrying the activating R1275Q mutation (LAN-5), combination treatment decreased viable cell count. The effective dose of crizotinib in neuroblastoma cell lines ranged from 0.05 µM (ALK-amplified) to 0.8 µM (wildtype ALK). The combinatorial inhibition of ALK and HDAC8 also decreased tumor growth in an in vivo zebrafish xenograft model. Bioinformatic analyses revealed that the mRNA expression level of HDAC8 was significantly correlated with that of ALK in two independent patient cohorts, the Academic Medical Center cohort (n = 88) and the German Neuroblastoma Trial cohort (n = 649), and co-expression of both target genes identified patients with very poor outcome. Mechanistically, HDAC8 and ALK converge at the level of receptor tyrosine kinase (RTK) signaling and their downstream survival pathways, such as ERK signaling. Combination treatment of HDAC8 inhibitor with crizotinib efficiently blocked the activation of growth receptor survival signaling and shifted the cell cycle arrest and differentiation phenotype toward effective cell death of neuroblastoma cell lines, including sensitization of resistant models, but not of normal cells. These findings reveal combined targeting of ALK and HDAC8 as a novel strategy for the treatment of neuroblastoma.
Collapse
|
25
|
Amin AD, Li L, Rajan SS, Gokhale V, Groysman MJ, Pongtornpipat P, Tapia EO, Wang M, Schatz JH. TKI sensitivity patterns of novel kinase-domain mutations suggest therapeutic opportunities for patients with resistant ALK+ tumors. Oncotarget 2018; 7:23715-29. [PMID: 27009859 PMCID: PMC5029658 DOI: 10.18632/oncotarget.8173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 03/02/2016] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) protein drives tumorigenesis in subsets of several tumors through chromosomal rearrangements that express and activate its C-terminal kinase domain. In addition, germline predisposition alleles and acquired mutations are found in the full-length protein in the pediatric tumor neuroblastoma. ALK-specific tyrosine kinase inhibitors (TKIs) have become important new drugs for ALK-driven lung cancer, but acquired resistance via multiple mechanisms including kinase-domain mutations eventually develops, limiting median progression-free survival to less than a year. Here we assess the impact of several kinase-domain mutations that arose during TKI resistance selections of ALK+ anaplastic large-cell lymphoma (ALCL) cell lines. These include novel variants with respect to ALK-fusion cancers, R1192P and T1151M, and with respect to ALCL, F1174L and I1171S. We assess the effects of these mutations on the activity of six clinical inhibitors in independent systems engineered to depend on either the ALCL fusion kinase NPM-ALK or the lung-cancer fusion kinase EML4-ALK. Our results inform treatment strategies with a likelihood of bypassing mutations when detected in resistant patient samples and highlight differences between the effects of particular mutations on the two ALK fusions.
Collapse
Affiliation(s)
- Amit Dipak Amin
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lingxiao Li
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Soumya S Rajan
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vijay Gokhale
- BIO5 Institute, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Matthew J Groysman
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | | | - Edgar O Tapia
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Mengdie Wang
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Jonathan H Schatz
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Janoueix-Lerosey I, Lopez-Delisle L, Delattre O, Rohrer H. The ALK receptor in sympathetic neuron development and neuroblastoma. Cell Tissue Res 2018; 372:325-337. [PMID: 29374774 DOI: 10.1007/s00441-017-2784-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
The ALK gene encodes a tyrosine kinase receptor characterized by an expression pattern mainly restricted to the developing central and peripheral nervous systems. In 2008, the discovery of ALK activating mutations in neuroblastoma, a tumor of the sympathetic nervous system, represented a breakthrough in the understanding of the pathogenesis of this pediatric cancer and established mutated ALK as a tractable therapeutic target for precision medicine. Subsequent studies addressed the identity of ALK ligands, as well as its physiological function in the sympathoadrenal lineage, its role in neuroblastoma development and the signaling pathways triggered by mutated ALK. This review focuses on these different aspects of the ALK biology and summarizes the various therapeutic strategies relying on ALK inhibition in neuroblastoma, either as monotherapies or combinatory treatments.
Collapse
Affiliation(s)
- Isabelle Janoueix-Lerosey
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France. .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France.
| | - Lucille Lopez-Delisle
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,Laboratory of Developmental Genomics, EPFL SV ISREC UPDUB, SV 2843, CH-1015, Lausanne, Switzerland
| | - Olivier Delattre
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée Ligue contre le Cancer, F-75005, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France
| | - Hermann Rohrer
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Siaw JT, Wan H, Pfeifer K, Rivera VM, Guan J, Palmer RH, Hallberg B. Brigatinib, an anaplastic lymphoma kinase inhibitor, abrogates activity and growth in ALK-positive neuroblastoma cells, Drosophila and mice. Oncotarget 2018; 7:29011-22. [PMID: 27049722 PMCID: PMC5045374 DOI: 10.18632/oncotarget.8508] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor which has been implicated in numerous solid and hematologic cancers. ALK mutations are reported in about 5-7% of neuroblastoma cases but the ALK-positive percentage increases significantly in the relapsed patient population. Crizotinib, the first clinically approved ALK inhibitor for the treatment of ALK-positive lung cancer has had less dramatic responses in neuroblastoma. Here we investigate the efficacy of a second-generation ALK inhibitor, brigatinib, in a neuroblastoma setting. Employing neuroblastoma cell lines, mouse xenograft and Drosophila melanogaster model systems expressing different constitutively active ALK variants, we show clear and efficient inhibition of ALK activity by brigatinib. Similar abrogation of ALK activity was observed in vitro employing a set of different constitutively active ALK variants in biochemical assays. These results suggest that brigatinib is an effective inhibitor of ALK kinase activity in ALK addicted neuroblastoma that should be considered as a potential future therapeutic option for ALK-positive neuroblastoma patients alone or in combination with other treatments.
Collapse
Affiliation(s)
- Joachim T Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Haiying Wan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Umapathy G, Guan J, Gustafsson DE, Javanmardi N, Cervantes-Madrid D, Djos A, Martinsson T, Palmer RH, Hallberg B. MEK inhibitor trametinib does not prevent the growth of anaplastic lymphoma kinase (ALK)-addicted neuroblastomas. Sci Signal 2017; 10:10/507/eaam7550. [PMID: 29184034 DOI: 10.1126/scisignal.aam7550] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of the RAS-RAF-MEK-ERK signaling pathway is implicated in driving the initiation and progression of multiple cancers. Several inhibitors targeting the RAS-MAPK pathway are clinically approved as single- or polyagent therapies for patients with specific types of cancer. One example is the MEK inhibitor trametinib, which is included as a rational polytherapy strategy for treating EML4-ALK-positive, EGFR-activated, or KRAS-mutant lung cancers and neuroblastomas that also contain activating mutations in the RAS-MAPK pathway. In addition, in neuroblastoma, a heterogeneous disease, relapse cases display an increased rate of mutations in ALK, NRAS, and NF1, leading to increased activation of RAS-MAPK signaling. Co-targeting ALK and the RAS-MAPK pathway is an attractive option, because monotherapies have not yet produced effective results in ALK-addicted neuroblastoma patients. We evaluated the response of neuroblastoma cell lines to MEK-ERK pathway inhibition by trametinib. In contrast to RAS-MAPK pathway-mutated neuroblastoma cell lines, ALK-addicted neuroblastoma cells treated with trametinib showed increased activation (inferred by phosphorylation) of the kinases AKT and ERK5. This feedback response was mediated by the mammalian target of rapamycin complex 2-associated protein SIN1, resulting in increased survival and proliferation that depended on AKT signaling. In xenografts in mice, trametinib inhibited the growth of EML4-ALK-positive non-small cell lung cancer and RAS-mutant neuroblastoma but not ALK-addicted neuroblastoma. Thus, our results advise against the seemingly rational option of using MEK inhibitors to treat ALK-addicted neuroblastoma.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Dan E Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Niloufar Javanmardi
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Anna Djos
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Tommy Martinsson
- Department of Clinical Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
29
|
|
30
|
Abstract
A vast array of oncogenic variants has been identified for anaplastic lymphoma kinase (ALK). Therefore, there is a need to better understand the role of ALK in cancer biology in order to optimise treatment strategies. This review summarises the latest research on the receptor tyrosine kinase ALK, and how this information can guide the management of patients with cancer that is ALK-positive. A variety of ALK gene alterations have been described across a range of tumour types, including point mutations, deletions and rearrangements. A wide variety of ALK fusions, in which the kinase domain of ALK and the amino-terminal portion of various protein partners are fused, occur in cancer, with echinoderm microtubule-associated protein-like 4 (EML4)-ALK being the most prevalent in non-small-cell lung cancer (NSCLC). Different ALK fusion proteins can mediate different signalling outputs, depending on properties such as subcellular localisation and protein stability. The ALK fusions found in tumours lack spatial and temporal regulation, which can also affect dimerisation and substrate specificity. Two ALK tyrosine kinase inhibitors (TKIs), crizotinib and ceritinib, are currently approved in Europe for use in ALK-positive NSCLC and several others are in development. These ALK TKIs bind slightly differently within the ATP-binding pocket of the ALK kinase domain and are associated with the emergence of different resistance mutation patterns during therapy. This emphasises the need to tailor the sequence of ALK TKIs according to the ALK signature of each patient. Research into the oncogenic functions of ALK, and fast paced development of ALK inhibitors, has substantially improved outcomes for patients with ALK-positive NSCLC. Limited data are available surrounding the physiological ligand-stimulated activation of ALK signalling and further research is needed. Understanding the role of ALK in tumour biology is key to further optimising therapeutic strategies for ALK-positive disease.
Collapse
Affiliation(s)
- B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Novel Mechanisms of ALK Activation Revealed by Analysis of the Y1278S Neuroblastoma Mutation. Cancers (Basel) 2017; 9:cancers9110149. [PMID: 29084134 PMCID: PMC5704167 DOI: 10.3390/cancers9110149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Numerous mutations have been observed in the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK) in both germline and sporadic neuroblastoma. Here, we have investigated the Y1278S mutation, observed in four patient cases, and its potential importance in the activation of the full length ALK receptor. Y1278S is located in the 1278-YRASYY-1283 motif of the ALK activation loop, which has previously been reported to be important in the activation of the ALK kinase domain. In this study, we have characterized activation loop mutations within the context of the full length ALK employing cell culture and Drosophila melanogaster model systems. Our results show that the Y1278S mutant observed in patients with neuroblastoma harbors gain-of-function activity. Secondly, we show that the suggested interaction between Y1278 and other amino acids might be of less importance in the activation process of the ALK kinase than previously proposed. Thirdly, of the three individual tyrosines in the 1278-YRASYY-1283 activation loop, we find that Y1283 is the critical tyrosine in the activation process. Taken together, our observations employing different model systems reveal new mechanistic insights on how the full length ALK receptor is activated and highlight differences with earlier described activation mechanisms observed in the NPM-ALK fusion protein, supporting a mechanism of activation more in line with those observed for the Insulin Receptor (InR).
Collapse
|
32
|
Anaplastic lymphoma kinase L1198F and G1201E mutations identified in anaplastic thyroid cancer patients are not ligand-independent. Oncotarget 2017; 8:11566-11578. [PMID: 28030793 PMCID: PMC5355286 DOI: 10.18632/oncotarget.14141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/21/2016] [Indexed: 01/07/2023] Open
Abstract
Activating mutations in full length anaplastic lymphoma kinase (ALK) have been reported in neuroblastoma and in anaplastic thyroid cancer. ALK-L1198F and ALK-G1201E mutations were originally identified in anaplastic thyroid cancer (ATC) and characterized as constitutively activating mutations. In this study, we employed in vitro cell culture assays together with biochemical and in vivo Drosophila analyses to characterize their sensitivity to either activation by the FAM150A (AUG-β) and FAM150B (AUG-α) ALK ligands or inhibition by ALK inhibitors. Here we report that neither ALK-L1198F nor ALK-G1201E mutations result in ligand independent gain-of-function (GOF) activity in either in vitro biochemical analysis or the various model systems employed. ALK-L1198F is activated by the FAM150 (AUG) ligands and its ligand-dependant activity is similar to the wild type full length ALK receptor. ALK-G1201E is only very weakly activated by the FAM150 (AUG) ligands, most likely due to impaired protein stability. We conclude that neither ALK-L1198F nor ALK-G1201E displays ligand independent kinase activity, with ALK-L1198F belonging to the class of ligand dependent ALK mutations which are not constitutively active but that responds to ligand activation, while the ALK-G1201E mutation generates an unstable receptor with very low levels of kinase activity.
Collapse
|
33
|
A patient with germ-line gain-of-function PDGFRB p.N666H mutation and marked clinical response to imatinib. Genet Med 2017; 20:142-150. [PMID: 28726812 DOI: 10.1038/gim.2017.104] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/24/2017] [Indexed: 12/25/2022] Open
Abstract
PurposeHeterozygous germ-line activating mutations in PDGFRB cause Kosaki and Penttinen syndromes and myofibromatosis. We describe a 10-year-old child with a germ-line PDGFRB p.N666H mutation who responded to the tyrosine kinase inhibitor imatinib by inhibition of PDGFRB.MethodsThe impact of p.N666H on PDGFRB function and sensitivity to imatinib was studied in cell culture.ResultsCells expressing the p.N666H mutation showed constitutive PDGFRB tyrosine phosphorylation. PDGF-independent proliferation was abolished by imatinib at 1 μM concentration. Patient fibroblasts showed constitutive receptor tyrosine phosphorylation that was also abrogated by imatinib with reduced proliferation of treated cells.This led to patient treatment with imatinib at 400 mg daily (340 mg/m2) for a year with objective improvement of debilitating hand and foot contractures, reduced facial coarseness, and significant improvement in quality of life. New small subcutaneous nodules developed, but remained stable. Transient leukopenia, neutropenia, and fatigue resolved without intervention; however, mildly decreased growth velocity resulted in reducing imatinib dose to 200 mg daily (170 mg/m2). The patient continues treatment with ongoing clinical response.ConclusionTo our knowledge, this is one of the first personalized treatments of a congenital disorder caused by a germ-line PDGF receptor mutation with a PDGFRB inhibitor.
Collapse
|
34
|
Tolbert VP, Coggins GE, Maris JM. Genetic susceptibility to neuroblastoma. Curr Opin Genet Dev 2017; 42:81-90. [PMID: 28458126 DOI: 10.1016/j.gde.2017.03.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/11/2022]
Abstract
Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma.
Collapse
Affiliation(s)
- Vanessa P Tolbert
- University of California San Francisco School of Medicine, United States
| | | | - John M Maris
- University of Pennsylvania, United States; Children's Hospital of Philadelphia, United States.
| |
Collapse
|
35
|
Dovrolis N, Kolios G, Spyrou G, Maroulakou I. Laying in silico pipelines for drug repositioning: a paradigm in ensemble analysis for neurodegenerative diseases. Drug Discov Today 2017; 22:805-813. [PMID: 28363518 DOI: 10.1016/j.drudis.2017.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/17/2017] [Accepted: 03/21/2017] [Indexed: 12/22/2022]
Abstract
When faced with time- and money-consuming problems, new practices in pharmaceutical R&D arose when trying to alleviate them. Drug repositioning has great promise and when combined with today's computational power and intelligence it becomes more precise and potent. This work showcases current approaches of creating a computational pipeline for drug repositioning, along with an extensive example of how researchers can influence therapeutic approaches and further understanding, through either single or multiple disease studies. This paradigm is based on three neurodegenerative diseases with pathophysiological similarities. It is our goal to provide the readers with all the information needed to enrich their research and note expectations along the way.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Greece
| | - George Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Ioanna Maroulakou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Greece.
| |
Collapse
|
36
|
Arts FA, Sciot R, Brichard B, Renard M, de Rocca Serra A, Dachy G, Noël LA, Velghe AI, Galant C, Debiec-Rychter M, Van Damme A, Vikkula M, Helaers R, Limaye N, Poirel HA, Demoulin JB. PDGFRB gain-of-function mutations in sporadic infantile myofibromatosis. Hum Mol Genet 2017; 26:1801-1810. [DOI: 10.1093/hmg/ddx081] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Florence A. Arts
- de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven and KU Leuven, Leuven BE-3000, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Marleen Renard
- Department of Pediatric Hemato-oncology, University Hospitals Leuven, Leuven BE-3000, Belgium
| | | | - Guillaume Dachy
- de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Laura A. Noël
- de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Amélie I. Velghe
- de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Christine Galant
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels BE-1200, Belgium
| | - Maria Debiec-Rychter
- Department of Human Genetics, KU Leuven and University Hospitals, Leuven BE-3000, Belgium
| | - An Van Damme
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO)
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Nisha Limaye
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | - Hélène A. Poirel
- Human Molecular Genetics, de Duve Institute, Université Catholique de Louvain, Brussels BE-1200, Belgium
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels BE-1200, Belgium
| | | |
Collapse
|
37
|
Holla VR, Elamin YY, Bailey AM, Johnson AM, Litzenburger BC, Khotskaya YB, Sanchez NS, Zeng J, Shufean MA, Shaw KR, Mendelsohn J, Mills GB, Meric-Bernstam F, Simon GR. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harb Mol Case Stud 2017; 3:a001115. [PMID: 28050598 PMCID: PMC5171696 DOI: 10.1101/mcs.a001115] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations.
Collapse
Affiliation(s)
- Vijaykumar R Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yasir Y Elamin
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ann Marie Bailey
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amber M Johnson
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yekaterina B Khotskaya
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nora S Sanchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jia Zeng
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Md Abu Shufean
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Kenna R Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - John Mendelsohn
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Funda Meric-Bernstam
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - George R Simon
- Department of Thoracic/Head and Neck, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Zhao Z, Verma V, Zhang M. Anaplastic lymphoma kinase: Role in cancer and therapy perspective. Cancer Biol Ther 2016; 16:1691-701. [PMID: 26529396 DOI: 10.1080/15384047.2015.1095407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is correlated with oncogenesis in different types of cancers, such as anaplastic large cell lymphoma, lung cancer, neuroblastoma, and even breast cancer, by abnormal fusion of ALK or non-fusion ALK activation. ALK is a receptor tyrosine kinase, with a single transmembrane domain, that plays an important role in development. Upon ligand binding to the extracellular domain, the receptor undergoes dimerization and subsequent autophosphorylation of the intracellular kinase domain. In recent years, ALK inhibitors have been developed for cancer treatment. These inhibitors target ALK activity and show effectiveness in ALK-positive non-small cell lung cancer. However, acquired treatment resistance makes the future of this therapy unclear; new strategies are underway to overcome the limitations of current ALK inhibitors.
Collapse
Affiliation(s)
- Zhihong Zhao
- a Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Vivek Verma
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| | - Mutian Zhang
- b Department of Radiation Oncology ; University of Nebraska Medical Center ; Omaha , NE , USA
| |
Collapse
|
39
|
Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, El Wakil A, Witek B, Jamin Y, Umapathy G, Robinson SP, Johnson TW, Smeal T, Martinsson T, Chesler L, Palmer RH, Hallberg B. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech 2016; 9:941-52. [PMID: 27483357 PMCID: PMC5047689 DOI: 10.1242/dmm.024448] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALK(F1174L)/MYCN Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients.
Collapse
Affiliation(s)
- J Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - E R Tucker
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - H Wan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - D Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L S Danielson
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - K Ruuth
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - A El Wakil
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - B Witek
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden Department of Molecular Biology, Building 6L, Umeå University, Umeå 901 87, Sweden
| | - Y Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - G Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - S P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - T W Johnson
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Smeal
- La Jolla Laboratories, Pfizer Worldwide Research and Development, San Diego, CA 92121, USA
| | - T Martinsson
- Department of Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - L Chesler
- Division of Clinical Studies Cancer Therapeutics, The Institute of Cancer Research, London and Royal Marsden NHS Foundation Trust, Sutton SM2 5NG, UK
| | - R H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
40
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
41
|
Li T, LoRusso P, Maitland ML, Ou SHI, Bahceci E, Ball HA, Park JW, Yuen G, Tolcher A. First-in-human, open-label dose-escalation and dose-expansion study of the safety, pharmacokinetics, and antitumor effects of an oral ALK inhibitor ASP3026 in patients with advanced solid tumors. J Hematol Oncol 2016; 9:23. [PMID: 26966027 PMCID: PMC4786998 DOI: 10.1186/s13045-016-0254-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/03/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND ASP3026 is a second-generation anaplastic lymphoma kinase (ALK) inhibitor that has potent in vitro activity against crizotinib-resistant ALK-positive tumors. This open-label, multicenter, first-in-human phase I study ( NCT01284192 ) assessed the safety, pharmacokinetic profile, and antitumor activity of ASP3026. METHODS Advanced solid tumor patients received oral ASP3026 in 3 + 3 dose-escalation cohorts at doses of 25-800 mg once daily in 28-day cycles. The endpoints were to identify the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), and the pharmacokinetic profile of ASP3026. A phase Ib expansion cohort enrolled patients with metastatic, crizotinib-resistant ALK-positive solid tumors at the RP2D, and response was evaluated by RECIST 1.1. RESULTS The dose-escalation cohort enrolled 33 patients, including three crizotinib-resistant, ALK-positive patients, and the dose-expansion cohort enrolled another 13 crizotinib-resistant, ALK-positive non-small cell lung cancer (NSCLC) patients. ASP3026 demonstrated both linear pharmacokinetics and dose-proportional exposure for area under the plasma concentration-time curve and maximum concentration observed with a median terminal half-life of 35 h, supporting the daily dosing. Grade 3 rash and elevated transaminase concentrations were dose-limiting toxicities observed at 800 mg; hence, 525 mg daily was the MTD and RP2D. The most common treatment-related adverse events were nausea (38%), fatigue (35%), and vomiting (35 %). Among the 16 patients with crizotinib-resistant ALK-positive tumors (15 NSCLC, 1 neuroblastoma), eight patients achieved partial response (overall response rate 50%; 95% confidence interval 25-75%) and seven patients (44%) achieved stable disease. CONCLUSIONS ASP3026 was well tolerated and had therapeutic activity in patients with crizotinib-resistant ALK-positive advanced tumors. TRIAL REGISTRATION ClinTrials.gov: NCT01284192.
Collapse
Affiliation(s)
- Tianhong Li
- Division of Hematology/Oncology, University of California Davis Comprehensive Cancer Center, 4501 X St #3016, Sacramento, CA, 95817, USA.
| | - Patricia LoRusso
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Present address: Yale Smilow Cancer Center, New Haven, CT, USA
| | - Michael L Maitland
- Section of Hematology/Oncology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago Medicine, Chicago, IL, USA
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine School of Medicine, Orange, CA, USA
| | - Erkut Bahceci
- Astellas Pharma Global Development, Northbrook, IL, USA
| | - Howard A Ball
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | - Geoffrey Yuen
- Astellas Pharma Global Development, Northbrook, IL, USA
| | - Anthony Tolcher
- South Texas Accelerated Research Therapies (START) Center for Cancer Care, San Antonio, TX, USA
| |
Collapse
|
42
|
Wang Y, Wang L, Guan S, Cao W, Wang H, Chen Z, Zhao Y, Yu Y, Zhang H, Pang JC, Huang SL, Akiyama Y, Yang Y, Sun W, Xu X, Shi Y, Zhang H, Kim ES, Muscal JA, Lu F, Yang J. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis. Sci Rep 2016; 6:19423. [PMID: 26786851 PMCID: PMC4726162 DOI: 10.1038/srep19423] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB.
Collapse
Affiliation(s)
- Yongfeng Wang
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Long Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenming Cao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Hao Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Hepatopancreatobiliary Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhenghu Chen
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jonathan C Pang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sophia L Huang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yo Akiyama
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yifan Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Wenjing Sun
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yan Shi
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hong Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Eugene S Kim
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jodi A Muscal
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fengmin Lu
- Department of Microbiology, Peking University Health Science Center, Beijing 100191, China
| | - Jianhua Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Regairaz M, Munier F, Sartelet H, Castaing M, Marty V, Renauleaud C, Doux C, Delbé J, Courty J, Fabre M, Ohta S, Vielh P, Michiels S, Valteau-Couanet D, Vassal G. Mutation-Independent Activation of the Anaplastic Lymphoma Kinase in Neuroblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:435-45. [PMID: 26687816 DOI: 10.1016/j.ajpath.2015.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/28/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
Abstract
Activating mutations of anaplastic lymphoma kinase (ALK) have been identified as important players in neuroblastoma development. Our goal was to evaluate the significance of overall ALK activation in neuroblastoma. Expression of phosphorylated ALK, ALK, and its putative ligands, pleiotrophin and midkine, was screened in 289 neuroblastomas and 56 paired normal tissues. ALK was expressed in 99% of tumors and phosphorylated in 48% of cases. Pleiotrophin and midkine were expressed in 58% and 79% of tumors, respectively. ALK activation was significantly higher in tumors than in paired normal tissues, together with ALK and midkine expression. ALK activation was largely independent of mutations and correlated with midkine expression in tumors. ALK activation in tumors was associated with favorable features, including a younger age at diagnosis, hyperdiploidy, and detection by mass screening. Antitumor activity of the ALK inhibitor TAE684 was evaluated in wild-type or mutated ALK neuroblastoma cell lines and xenografts. TAE684 was cytotoxic in vitro in all cell lines, especially those harboring an ALK mutation. TAE684 efficiently inhibited ALK phosphorylation in vivo in both F1174I and R1275Q xenografts but demonstrated antitumor activity only against the R1275Q xenograft. In conclusion, ALK activation occurs frequently during neuroblastoma oncogenesis, mainly through mutation-independent mechanisms. However, ALK activation is not associated with a poor outcome and is not always a driver of cell proliferation and/or survival in neuroblastoma.
Collapse
Affiliation(s)
- Marie Regairaz
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France.
| | - Fabienne Munier
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Hervé Sartelet
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France; Sainte Justine University Hospital Center, University of Montréal, Montréal, Québec, Canada
| | - Marine Castaing
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - Virginie Marty
- Histocytopathology Unit, Laboratory of Translational Research, Gustave Roussy, Villejuif, France
| | - Céline Renauleaud
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Camille Doux
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France
| | - Jean Delbé
- Research on Cell Growth, Tissue Repair and Regeneration (CRRET), Centre National de la Recherche Scientifique, University Paris-Est Créteil, Créteil, France
| | - José Courty
- Research on Cell Growth, Tissue Repair and Regeneration (CRRET), Centre National de la Recherche Scientifique, University Paris-Est Créteil, Créteil, France
| | - Monique Fabre
- Department of Pathology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Shigeru Ohta
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Philippe Vielh
- Histocytopathology Unit, Laboratory of Translational Research, Gustave Roussy, Villejuif, France; Department of Pathology and Biobank, Gustave Roussy, Villejuif, France
| | - Stefan Michiels
- Department of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | | | - Gilles Vassal
- Laboratory for Vectorology and Anticancer Therapeutics, Gustave Roussy, Paris-Sud University, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8203, Villejuif, France.
| |
Collapse
|
44
|
Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 2015; 5:1210-23. [PMID: 26482930 DOI: 10.1158/2159-8290.cd-15-0235] [Citation(s) in RCA: 501] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). SIGNIFICANCE We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses.
Collapse
Affiliation(s)
| | - Matthew G Rees
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Jaime H Cheah
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Murat Cokol
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Edmund V Price
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Matthew E Coletti
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Victor Jones
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nicole E Bodycombe
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Christian K Soule
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua Gould
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benjamin Alexander
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ava Li
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Philip Montgomery
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Mathias J Wawer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Nurdan Kuru
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Joanne D Kotz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - C Suk-Yee Hon
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Benito Munoz
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Ted Liefeld
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Vlado Dančík
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Joshua A Bittker
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - Michelle Palmer
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts. Cancer Biology and Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Alykhan F Shamji
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Paul A Clemons
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts.
| | - Stuart L Schreiber
- Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
45
|
Arts FA, Chand D, Pecquet C, Velghe AI, Constantinescu S, Hallberg B, Demoulin JB. PDGFRB mutants found in patients with familial infantile myofibromatosis or overgrowth syndrome are oncogenic and sensitive to imatinib. Oncogene 2015; 35:3239-48. [PMID: 26455322 DOI: 10.1038/onc.2015.383] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/27/2015] [Accepted: 09/04/2015] [Indexed: 12/26/2022]
Abstract
Recently, germline and somatic heterozygous mutations in the platelet-derived growth factor receptor β (PDGFRB) have been associated with familial infantile myofibromatosis (IM), which is characterized by soft tissue tumors, and overgrowth syndrome, a disease that predisposes to cancer. These mutations have not been functionally characterized. In the present study, the activity of three PDGFRB mutants associated with familial IM (R561C, P660T and N666K) and one PDGFRB mutant found in patients with overgrowth syndrome (P584R) was tested in various models. The P660T mutant showed no difference with the wild-type receptor, suggesting that it might represent a polymorphic variant unrelated to the disease. By contrast, the three other mutants were constitutively active and able to transform NIH3T3 and Ba/F3 cells to different extents. In particular, the germline mutant identified in overgrowth syndrome, P584R, was a stronger oncogene than the germline R561C mutant associated with myofibromatosis. The distinct phenotypes associated with these two mutations could be related to this difference of potency. Importantly, all activated mutants were sensitive to tyrosine kinase inhibitors such as imatinib, nilotinib and ponatinib. In conclusion, the PDGFRB mutations previously identified in familial IM and overgrowth syndrome activate the receptor in the absence of ligand, supporting the hypothesis that these mutations cause the diseases. Moreover, imatinib seems to be a promising treatment for patients carrying these mutations. To our knowledge, these are the first confirmed gain-of-function point mutations of PDGFRB in human cancer.
Collapse
Affiliation(s)
- F A Arts
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - D Chand
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - C Pecquet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium
| | - A I Velghe
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - S Constantinescu
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium
| | - B Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - J-B Demoulin
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
46
|
Guan J, Umapathy G, Yamazaki Y, Wolfstetter G, Mendoza P, Pfeifer K, Mohammed A, Hugosson F, Zhang H, Hsu AW, Halenbeck R, Hallberg B, Palmer RH. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 2015; 4:e09811. [PMID: 26418745 PMCID: PMC4658194 DOI: 10.7554/elife.09811] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) has been described in a range of human cancers, including non-small cell lung cancer and neuroblastoma (Hallberg and Palmer, 2013). Vertebrate ALK has been considered to be an orphan receptor and the identity of the ALK ligand(s) is a critical issue. Here we show that FAM150A and FAM150B are potent ligands for human ALK that bind to the extracellular domain of ALK and in addition to activation of wild-type ALK are able to drive 'superactivation' of activated ALK mutants from neuroblastoma. In conclusion, our data show that ALK is robustly activated by the FAM150A/B ligands and provide an opportunity to develop ALK-targeted therapies in situations where ALK is overexpressed/activated or mutated in the context of the full length receptor. DOI:http://dx.doi.org/10.7554/eLife.09811.001 Cells have receptor proteins on their surface that enable them to detect changes in their environment and communicate with other cells. Signal molecules bind to a segment of the receptor called the extracellular domain that faces out from the cell. This can result in the activation of another domain in the receptor that is just inside the cell, which, in turn, activates signaling pathways that relay the information around the cell. However, these communication systems are often disrupted in cancer cells. This helps the cells to override the strict growth controls imposed upon them by other (healthy) cells in the body. The gene that encodes a receptor protein called Anaplastic Lymphoma Kinase (or ALK for short) is often mutated in some types of human cancer so that the protein is always active. However, we still do not know what signal molecules bind to the ALK protein to activate it in normal cells. Guan, Umapathy et al. used a variety of cell biology and biochemical techniques to study the role of ALK. The experiments show that when either of two proteins called FAM150A and FAM150B are produced in rat nerve cells alongside ALK, the nerve cells rapidly respond and form outgrowths. Experiments using cancer cells derived from human nerve cells also yielded similar results. Guan, Umapathy et al. found that the extracellular domain of ALK can physically interact with FAM150A and FAM150B. The eyes of fruit flies that had been genetically modified to produce the human ALK protein alongside either FAM150A or FAM150B grew more than normal, giving the eyes an abnormal "rough" appearance. Further experiments showed that FAM150A and FAM150B are also able to increase the level of activation of an ALK mutant protein that is already active. Therefore, in future, the development of drugs that stop FAM150A and FAM150B from binding to ALK may be useful for treating cancers that are driven by high levels of ALK activity. Many challenging questions lie ahead to better understand how FAM150A and FAM150B interact with ALK. DOI:http://dx.doi.org/10.7554/eLife.09811.002
Collapse
Affiliation(s)
- Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yasuo Yamazaki
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Mendoza
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ateequrrahman Mohammed
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Hugosson
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hongbing Zhang
- Five Prime Therapeutics Inc., South San Francisco, United States
| | - Amy W Hsu
- Five Prime Therapeutics Inc., South San Francisco, United States
| | - Robert Halenbeck
- Five Prime Therapeutics Inc., South San Francisco, United States
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Instititute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
Devarakonda S, Ganesh B, Mann J, Govindan R. Crizotinib: an orphan drug for treating non-small-cell lung cancer. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1086334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Tucker ER, Danielson LS, Innocenti P, Chesler L. Tackling Crizotinib Resistance: The Pathway from Drug Discovery to the Pediatric Clinic. Cancer Res 2015; 75:2770-4. [PMID: 26122839 PMCID: PMC4539575 DOI: 10.1158/0008-5472.can-14-3817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/24/2015] [Indexed: 01/23/2023]
Abstract
Neuroblastoma is a childhood malignancy that has not yet benefitted from the rapid progress in the development of small-molecule therapeutics for cancer. An opportunity to take advantage of pharmaceutical innovation in this area arose when the identification of ALK fusion proteins in non-small cell lung cancer (NSCLC) occurred in parallel to the discovery of point mutations of ALK in neuroblastomas. ALK is now known to be a marker of poor outcome in neuroblastoma, and therefore, urgent development of specific ALK inhibitors to treat this devastating disease is a necessity. However, the translation of small molecules from adult directly into pediatric practice has thus far been challenging, due to mutation-specific structural variances in the ALK kinase domain. We discuss how the most recent structural and biological characterizations of ALK are directing preclinical and clinical studies of ALK inhibitors for both NSCLC and neuroblastoma.
Collapse
Affiliation(s)
- Elizabeth R Tucker
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Laura S Danielson
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Paolo Innocenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Louis Chesler
- Paediatric Solid Tumour Biology and Therapeutics Team, Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
49
|
Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, Yan P, Delattre O, Sommer L, Joseph JM, Janoueix-Lerosey I, Gross N, Mühlethaler-Mottet A. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget 2015; 5:4452-66. [PMID: 24947326 PMCID: PMC4147337 DOI: 10.18632/oncotarget.2036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC-1 parental cells in nude mice generated various tumor types, such as NB, osteo/chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.
Collapse
|
50
|
Lovisa F, Cozza G, Cristiani A, Cuzzolin A, Albiero A, Mussolin L, Pillon M, Moro S, Basso G, Rosolen A, Bonvini P. ALK kinase domain mutations in primary anaplastic large cell lymphoma: consequences on NPM-ALK activity and sensitivity to tyrosine kinase inhibitors. PLoS One 2015; 10:e0121378. [PMID: 25874976 PMCID: PMC4395299 DOI: 10.1371/journal.pone.0121378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/31/2015] [Indexed: 12/18/2022] Open
Abstract
ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.
Collapse
Affiliation(s)
- Federica Lovisa
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Giorgio Cozza
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| | - Andrea Cristiani
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy
| | - Alberto Cuzzolin
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy
| | | | - Lara Mussolin
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy; Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Marta Pillon
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Stefano Moro
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy
| | - Giuseppe Basso
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Angelo Rosolen
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Paolo Bonvini
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy; Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| |
Collapse
|