1
|
Pathak A, Willis KG, Bankaitis VA, McDermott MI. Mammalian START-like phosphatidylinositol transfer proteins - Physiological perspectives and roles in cancer biology. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159529. [PMID: 38945251 DOI: 10.1016/j.bbalip.2024.159529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
PtdIns and its phosphorylated derivatives, the phosphoinositides, are the biochemical components of a major pathway of intracellular signaling in all eukaryotic cells. These lipids are few in terms of cohort of unique positional isomers, and are quantitatively minor species of the bulk cellular lipidome. Nevertheless, phosphoinositides regulate an impressively diverse set of biological processes. It is from that perspective that perturbations in phosphoinositide-dependent signaling pathways are increasingly being recognized as causal foundations of many human diseases - including cancer. Although phosphatidylinositol transfer proteins (PITPs) are not enzymes, these proteins are physiologically significant regulators of phosphoinositide signaling. As such, PITPs are conserved throughout the eukaryotic kingdom. Their biological importance notwithstanding, PITPs remain understudied. Herein, we review current information regarding PITP biology primarily focusing on how derangements in PITP function disrupt key signaling/developmental pathways and are associated with a growing list of pathologies in mammals.
Collapse
Affiliation(s)
- Adrija Pathak
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Katelyn G Willis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA
| | - Vytas A Bankaitis
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA; Department of Chemistry, Texas A&M University, College Station, Texas 77843 USA
| | - Mark I McDermott
- Department of Cell Biology and Genetics, Texas A&M Health Science Center, College Station, Texas, 77843, USA.
| |
Collapse
|
2
|
Simsek Papur O, Glatz JFC, Luiken JJFP. Protein kinase-D1 and downstream signaling mechanisms involved in GLUT4 translocation in cardiac muscle. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119748. [PMID: 38723678 DOI: 10.1016/j.bbamcr.2024.119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Collapse
Affiliation(s)
- Ozlenen Simsek Papur
- Department of Molecular Medicine, Institute of Health Science, Dokuz Eylül University, Izmir, Turkey
| | - Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center(+), Maastricht, the Netherlands.
| |
Collapse
|
3
|
Angiotensin II type-1 receptor-associated protein interacts with transferrin receptor-1 and promotes its internalization. Sci Rep 2022; 12:17376. [PMID: 36253401 PMCID: PMC9576747 DOI: 10.1038/s41598-022-22343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 01/10/2023] Open
Abstract
Kidney fibrosis is a common pathway that leads to chronic kidney disease. Angiotensin II type-1 receptor (AT1R)-associated protein (ATRAP) was originally identified as an AT1R-binding protein. Previously, we reported that systemic knockout of ATRAP exacerbates kidney fibrosis in aged mice. Although these effects of ATRAP appeared to be AT1R-independent actions, the molecular mechanism remains poorly understood. To elucidate the molecular mechanism of ATRAP independent of AT1R, we explored novel ATRAP-interacting proteins. Mass spectrometric analysis of the immunoprecipitants of a Flag-tagged ATRAP complex revealed 376 candidate proteins that potentially interact with ATRAP. Gene ontology analysis revealed that proteins related to vesicle trafficking, membrane transport, and many membrane proteins, including transferrin receptor 1 (TfR1), were enriched. Because TfR1 promotes cellular iron uptake and iron is a key factor involved in kidney fibrosis, we focused on TfR1 and confirmed that it interacts with ATRAP. In addition, our findings revealed that enhanced ATRAP expression decreased cell-surface TfR1 expression without altering the overall cellular TfR1 expression levels. Furthermore, enhanced ATRAP expression attenuated cellular iron levels. Together, our results highlight the role of ATRAP as a suppressor of TfR1 that functions by facilitating TfR1 internalization, which affects iron metabolism and oxidative stress signaling.
Collapse
|
4
|
ATRAP, a receptor-interacting modulator of kidney physiology, as a novel player in blood pressure and beyond. Hypertens Res 2022; 45:32-39. [PMID: 34642449 DOI: 10.1038/s41440-021-00776-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022]
Abstract
Pathological activation of kidney angiotensin II (Ang II) type 1 receptor (AT1R) signaling stimulates tubular sodium transporters, including epithelial sodium channels, to increase sodium reabsorption and blood pressure. During a search for a means to functionally and selectively modulate AT1R signaling, a molecule directly interacting with the carboxyl-terminal cytoplasmic domain of AT1R was identified and named AT1R-associated protein (ATRAP/Agtrap). We showed that ATRAP promotes constitutive AT1R internalization to inhibit pathological AT1R activation in response to certain stimuli. In the kidney, ATRAP is abundantly distributed in epithelial cells along the proximal and distal tubules. Results from genetically engineered mice with modified ATRAP expression show that ATRAP plays a key role in the regulation of renal sodium handling and the modulation of blood pressure in response to pathological stimuli and further suggest that the function of kidney tubule ATRAP may be different between distal tubules and proximal tubules, implying that ATRAP is a target of interest in hypertension.
Collapse
|
5
|
Ashlin TG, Blunsom NJ, Cockcroft S. Courier service for phosphatidylinositol: PITPs deliver on demand. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158985. [PMID: 34111527 PMCID: PMC8266687 DOI: 10.1016/j.bbalip.2021.158985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.
Collapse
Affiliation(s)
- Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
6
|
Lete MG, Tripathi A, Chandran V, Bankaitis VA, McDermott MI. Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 2020; 78:100740. [PMID: 32992233 PMCID: PMC7986245 DOI: 10.1016/j.jbior.2020.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Cellular membranes are critical platforms for intracellular signaling that involve complex interfaces between lipids and proteins, and a web of interactions between a multitude of lipid metabolic pathways. Membrane lipids impart structural and functional information in this regulatory circuit that encompass biophysical parameters such as membrane thickness and fluidity, as well as chaperoning the interactions of protein binding partners. Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play key roles in intracellular membrane signaling, and these involvements are translated into an impressively diverse set of biological outcomes. The phosphatidylinositol transfer proteins (PITPs) are key regulators of phosphoinositide signaling. Found in a diverse array of organisms from plants, yeast and apicomplexan parasites to mammals, PITPs were initially proposed to be simple transporters of lipids between intracellular membranes. It now appears increasingly unlikely that the soluble versions of these proteins perform such functions within the cell. Rather, these serve to facilitate the activity of intrinsically biologically insufficient inositol lipid kinases and, in so doing, promote diversification of the biological outcomes of phosphoinositide signaling. The central engine for execution of such functions is the lipid exchange cycle that is a fundamental property of PITPs. How PITPs execute lipid exchange remains very poorly understood. Molecular dynamics simulation approaches are now providing the first atomistic insights into how PITPs, and potentially other lipid-exchange/transfer proteins, operate.
Collapse
Affiliation(s)
- Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Institute Biofisika (UPV/EHU, CSIC) and University of the Basque Country, Leioa, Spain
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vijay Chandran
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Mark I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
7
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
8
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
9
|
Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J. Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling. Cell Rep 2020; 24:1389-1396. [PMID: 30089250 PMCID: PMC6092267 DOI: 10.1016/j.celrep.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
The lipid transporters of the phosphatidylinositol transfer protein (PITP) family dictate phosphoinositide compartmentalization, and specific phosphoinositides play crucial roles in signaling cascades, membrane traffic, ion channel regulation, and actin dynamics. Although PITPs are enriched in the brain, their physiological functions in neuronal signaling pathways in vivo remain ill defined. We describe a CRISPR/Cas9-generated zebrafish mutant in a brain-specific, conserved class II PITP member, pitpnc1a. Zebrafish pitpnc1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition of IGF pathways is sufficient to rescue both neuronal and behavioral hyperactivity in pitpnc1a mutants. We propose that Pitpnc1a-expressing neurons alter behavior via modification of neuro-modulatory IGF that acts on downstream wake-promoting circuits. Zebrafish have two orthologs, one brain enriched, of the lipid transporter PITPNC1 CRISPR/Cas9-generated pitpnc1a mutants are hyperactive across the day-night cycle Insulin-like growth factor signaling is dysregulated in pitpnc1a mutants Blocking IGF signaling rescues pitpnc1a mutant behavioral and neuronal hyperactivity
Collapse
Affiliation(s)
- Tim G Ashlin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Nicholas J Blunsom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Peretti D, Kim S, Tufi R, Lev S. Lipid Transfer Proteins and Membrane Contact Sites in Human Cancer. Front Cell Dev Biol 2020; 7:371. [PMID: 32039198 PMCID: PMC6989408 DOI: 10.3389/fcell.2019.00371] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 11/29/2022] Open
Abstract
Lipid-transfer proteins (LTPs) were initially discovered as cytosolic factors that facilitate lipid transport between membrane bilayers in vitro. Since then, many LTPs have been isolated from bacteria, plants, yeast, and mammals, and extensively studied in cell-free systems and intact cells. A major advance in the LTP field was associated with the discovery of intracellular membrane contact sites (MCSs), small cytosolic gaps between the endoplasmic reticulum (ER) and other cellular membranes, which accelerate lipid transfer by LTPs. As LTPs modulate the distribution of lipids within cellular membranes, and many lipid species function as second messengers in key signaling pathways that control cell survival, proliferation, and migration, LTPs have been implicated in cancer-associated signal transduction cascades. Increasing evidence suggests that LTPs play an important role in cancer progression and metastasis. This review describes how different LTPs as well as MCSs can contribute to cell transformation and malignant phenotype, and discusses how “aberrant” MCSs are associated with tumorigenesis in human.
Collapse
Affiliation(s)
- Diego Peretti
- UK Dementia Research Institute, Clinical Neurosciences Department, University of Cambridge, Cambridge, United Kingdom
| | - SoHui Kim
- Nakseongdae R&D Center, GPCR Therapeutics, Inc., Seoul, South Korea
| | - Roberta Tufi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Angiotensin-Receptor-Associated Protein Modulates Ca 2+ Signals in Photoreceptor and Mossy Fiber cells. Sci Rep 2019; 9:19622. [PMID: 31873081 PMCID: PMC6928155 DOI: 10.1038/s41598-019-55380-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
Fast, precise and sustained neurotransmission requires graded Ca2+ signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca2+ fluxes and Ca2+ buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca2+ transients. Compared to wild type, Ca2+ imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca2+ signaling within the central nervous system.
Collapse
|
12
|
The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochem J 2019; 476:2321-2346. [DOI: 10.1042/bcj20180622] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is a membrane glycerophospholipid and a major regulator of the characteristic appearance of the Golgi complex as well as its vesicular trafficking, signalling and metabolic functions. Phosphatidylinositol 4-kinases, and in particular the PI4KIIIβ isoform, act in concert with PI4P to recruit macromolecular complexes to initiate the biogenesis of trafficking vesicles for several Golgi exit routes. Dysregulation of Golgi PI4P metabolism and the PI4P protein interactome features in many cancers and is often associated with tumour progression and a poor prognosis. Increased expression of PI4P-binding proteins, such as GOLPH3 or PITPNC1, induces a malignant secretory phenotype and the release of proteins that can remodel the extracellular matrix, promote angiogenesis and enhance cell motility. Aberrant Golgi PI4P metabolism can also result in the impaired post-translational modification of proteins required for focal adhesion formation and cell–matrix interactions, thereby potentiating the development of aggressive metastatic and invasive tumours. Altered expression of the Golgi-targeted PI 4-kinases, PI4KIIIβ, PI4KIIα and PI4KIIβ, or the PI4P phosphate Sac1, can also modulate oncogenic signalling through effects on TGN-endosomal trafficking. A Golgi trafficking role for a PIP 5-kinase has been recently described, which indicates that PI4P is not the only functionally important phosphoinositide at this subcellular location. This review charts new developments in our understanding of phosphatidylinositol 4-kinase function at the Golgi and how PI4P-dependent trafficking can be deregulated in malignant disease.
Collapse
|
13
|
Grabon A, Bankaitis VA, McDermott MI. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J Lipid Res 2018; 60:242-268. [PMID: 30504233 DOI: 10.1194/jlr.r089730] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositides are key regulators of a large number of diverse cellular processes that include membrane trafficking, plasma membrane receptor signaling, cell proliferation, and transcription. How a small number of chemically distinct phosphoinositide signals are functionally amplified to exert specific control over such a diverse set of biological outcomes remains incompletely understood. To this end, a novel mechanism is now taking shape, and it involves phosphatidylinositol (PtdIns) transfer proteins (PITPs). The concept that PITPs exert instructive regulation of PtdIns 4-OH kinase activities and thereby channel phosphoinositide production to specific biological outcomes, identifies PITPs as central factors in the diversification of phosphoinositide signaling. There are two evolutionarily distinct families of PITPs: the Sec14-like and the StAR-related lipid transfer domain (START)-like families. Of these two families, the START-like PITPs are the least understood. Herein, we review recent insights into the biochemical, cellular, and physiological function of both PITP families with greater emphasis on the START-like PITPs, and we discuss the underlying mechanisms through which these proteins regulate phosphoinositide signaling and how these actions translate to human health and disease.
Collapse
Affiliation(s)
- Aby Grabon
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Vytas A Bankaitis
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| | - Mark I McDermott
- E. L. Wehner-Welch Laboratory, Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114
| |
Collapse
|
14
|
Blunsom NJ, Gomez-Espinosa E, Ashlin TG, Cockcroft S. Mitochondrial CDP-diacylglycerol synthase activity is due to the peripheral protein, TAMM41 and not due to the integral membrane protein, CDP-diacylglycerol synthase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:284-298. [PMID: 29253589 PMCID: PMC5791848 DOI: 10.1016/j.bbalip.2017.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022]
Abstract
CDP diacylglycerol synthase (CDS) catalyses the conversion of phosphatidic acid (PA) to CDP-diacylglycerol, an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PI). CDS activity has been identified in mitochondria and endoplasmic reticulum of mammalian cells apparently encoded by two highly-related genes, CDS1 and CDS2. Cardiolipin is exclusively synthesised in mitochondria and recent studies in cardiomyocytes suggest that the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α and β) serve as transcriptional regulators of mitochondrial biogenesis and up-regulate the transcription of the CDS1 gene. Here we have examined whether CDS1 is responsible for the mitochondrial CDS activity. We report that differentiation of H9c2 cells with retinoic acid towards cardiomyocytes is accompanied by increased expression of mitochondrial proteins, oxygen consumption, and expression of the PA/PI binding protein, PITPNC1, and CDS1 immunoreactivity. Both CDS1 immunoreactivity and CDS activity were found in mitochondria of H9c2 cells as well as in rat heart, liver and brain mitochondria. However, the CDS1 immunoreactivity was traced to a peripheral p55 cross-reactive mitochondrial protein and the mitochondrial CDS activity was due to a peripheral mitochondrial protein, TAMM41, not an integral membrane protein as expected for CDS1. TAMM41 is the mammalian equivalent of the recently identified yeast protein, Tam41. Knockdown of TAMM41 resulted in decreased mitochondrial CDS activity, decreased cardiolipin levels and a decrease in oxygen consumption. We conclude that the CDS activity present in mitochondria is mainly due to TAMM41, which is required for normal mitochondrial function.
Collapse
Affiliation(s)
- Nicholas J Blunsom
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Evelyn Gomez-Espinosa
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Tim G Ashlin
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK
| | - Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| |
Collapse
|
15
|
Halberg N, Sengelaub CA, Navrazhina K, Molina H, Uryu K, Tavazoie SF. PITPNC1 Recruits RAB1B to the Golgi Network to Drive Malignant Secretion. Cancer Cell 2016; 29:339-353. [PMID: 26977884 PMCID: PMC5300038 DOI: 10.1016/j.ccell.2016.02.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 08/19/2015] [Accepted: 02/18/2016] [Indexed: 01/07/2023]
Abstract
Enhanced secretion of tumorigenic effector proteins is a feature of malignant cells. The molecular mechanisms underlying this feature are poorly defined. We identify PITPNC1 as a gene amplified in a large fraction of human breast cancer and overexpressed in metastatic breast, melanoma, and colon cancers. Biochemical, molecular, and cell-biological studies reveal that PITPNC1 promotes malignant secretion by binding Golgi-resident PI4P and localizing RAB1B to the Golgi. RAB1B localization to the Golgi allows for the recruitment of GOLPH3, which facilitates Golgi extension and enhanced vesicular release. PITPNC1-mediated vesicular release drives metastasis by increasing the secretion of pro-invasive and pro-angiogenic mediators HTRA1, MMP1, FAM3C, PDGFA, and ADAM10. We establish PITPNC1 as a PI4P-binding protein that enhances vesicular secretion capacity in malignancy.
Collapse
Affiliation(s)
- Nils Halberg
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA; Department of Biomedicine, University of Bergen, Jonas Liesvej 91, 5020 Bergen, Norway.
| | - Caitlin A Sengelaub
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA
| | - Kristina Navrazhina
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA
| | - Kunihiro Uryu
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, Rockefeller University, Box 16, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
RdgBα reciprocally transfers PA and PI at ER–PM contact sites to maintain PI(4,5)P2 homoeostasis during phospholipase C signalling in Drosophila photoreceptors. Biochem Soc Trans 2016; 44:286-92. [DOI: 10.1042/bst20150228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphatidylinositol (PI) is the precursor lipid for the synthesis of PI 4,5-bisphosphate [PI(4,5)P2] at the plasma membrane (PM) and is sequentially phosphorylated by the lipid kinases, PI 4-kinase and phosphatidylinositol 4-phosphate (PI4P)-5-kinase. Receptor-mediated hydrolysis of PI(4,5)P2 takes place at the PM but PI resynthesis occurs at the endoplasmic reticulum (ER). Thus PI(4,5)P2 resynthesis requires the reciprocal transport of two key intermediates, phosphatidic acid (PA) and PI between the ER and the PM. PI transfer proteins (PITPs), defined by the presence of the PITP domain, can facilitate lipid transfer between membranes; the PITP domain comprises a hydrophobic cavity with dual specificity but accommodates a single phospholipid molecule. The class II PITP, retinal degeneration type B (RdgB)α is a multi-domain protein and its PITP domain can bind and transfer PI and PA. In Drosophila photoreceptors, a well-defined G-protein-coupled phospholipase Cβ (PLCβ) signalling pathway, phototransduction defects resulting from loss of RdgBα can be rescued by expression of the PITP domain provided it is competent for both PI and PA transfer. We propose that RdgBα proteins maintain PI(4,5)P2 homoeostasis after PLC activation by facilitating the reciprocal transport of PA and PI at ER–PM membrane contact sites.
Collapse
|
17
|
Grabon A, Khan D, Bankaitis VA. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:724-35. [PMID: 25592381 PMCID: PMC5221696 DOI: 10.1016/j.bbalip.2014.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol is a metabolic precursor of phosphoinositides and soluble inositol phosphates. Both sets of molecules represent versatile intracellular chemical signals in eukaryotes. While much effort has been invested in understanding the enzymes that produce and consume these molecules, central aspects for how phosphoinositide production is controlled and functionally partitioned remain unresolved and largely unappreciated. It is in this regard that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as central regulators of the functional channeling of phosphoinositide pools produced on demand for specific signaling purposes. The physiological significance of these proteins is amply demonstrated by the consequences that accompany deficits in individual PITPs. Although the biological problem is fascinating, and of direct relevance to disease, PITPs remain largely uncharacterized. Herein, we discuss our perspectives regarding what is known about how PITPs work as molecules, and highlight progress in our understanding of how PITPs are integrated into cellular physiology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Aby Grabon
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Danish Khan
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Vytas A Bankaitis
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
18
|
Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul 2013; 53:280-291. [PMID: 23916246 DOI: 10.1016/j.jbior.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
The hallmark of mammalian phosphatidylinositol transfer proteins (PITPs) is to transfer phosphatidylinositol between membrane compartments. In the mammalian genome, there are three genes that code for soluble PITP proteins, PITPα, PITPβ and RdgBβ and two genes that code for membrane-associated multi-domain proteins (RdgBαI and II) containing a PITP domain. PITPα and PITPβ constitute Class I PITPs whilst the RdgB proteins constitute Class II proteins based on sequence analysis. The PITP domain of both Class I and II can sequester one molecule of phosphatidylinositol (PI) in its hydrophobic cavity. Therefore, in principle, PITPs are therefore ideally poised to couple phosphatidylinositol delivery to the PI kinases for substrate provision for phospholipases C during cell activation. Since phosphatidylinositol (4,5)bisphosphate plays critical roles in cells, particularly at the plasma membrane, where it is a substrate for both phospholipase C and phosphoinositide-3-kinases as well as required as an intact lipid to regulate ion channels and the actin cytoskeleton, homeostatic mechanisms to maintain phosphatidylinositol(4,5)bisphosphate levels are vital. To maintain phosphatidylinositol levels, phospholipase C activation inevitably leads to the resynthesis of PI at the endoplasmic reticulum where the enzymes are located. Phosphatidic acid generated at the plasma membrane during phospholipase C activation needs to move to the ER for conversion to PI and here we provide evidence that Class II PITPs are also able to bind and transport phosphatidic acid. Thus RdgB proteins could couple PA and PI transport bidirectionally during phospholipase C signalling.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK.
| | | |
Collapse
|
19
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
20
|
Garner K, Hunt AN, Koster G, Somerharju P, Groves E, Li M, Raghu P, Holic R, Cockcroft S. Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) binds and transfers phosphatidic acid. J Biol Chem 2012; 287:32263-76. [PMID: 22822086 DOI: 10.1074/jbc.m112.375840] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphatidylinositol transfer proteins (PITPs) are versatile proteins required for signal transduction and membrane traffic. The best characterized mammalian PITPs are the Class I PITPs, PITPα (PITPNA) and PITPβ (PITPNB), which are single domain proteins with a hydrophobic cavity that binds a phosphatidylinositol (PI) or phosphatidylcholine molecule. In this study, we report the lipid binding properties of an uncharacterized soluble PITP, phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) (alternative name, RdgBβ), of the Class II family. We show that the lipid binding properties of this protein are distinct to Class I PITPs because, besides PI, RdgBβ binds and transfers phosphatidic acid (PA) but hardly binds phosphatidylcholine. RdgBβ when purified from Escherichia coli is preloaded with PA and phosphatidylglycerol. When RdgBβ was incubated with permeabilized HL60 cells, phosphatidylglycerol was released, and PA and PI were now incorporated into RdgBβ. After an increase in PA levels following activation of endogenous phospholipase D or after addition of bacterial phospholipase D, binding of PA to RdgBβ was greater at the expense of PI binding. We propose that RdgBβ, when containing PA, regulates an effector protein or can facilitate lipid transfer between membrane compartments.
Collapse
Affiliation(s)
- Kathryn Garner
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Current world literature. Lipid metabolism. Curr Opin Lipidol 2012; 23:248-254. [PMID: 22576583 DOI: 10.1097/mol.0b013e3283543033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
14-3-3 protein and ATRAP bind to the soluble class IIB phosphatidylinositol transfer protein RdgBβ at distinct sites. Biochem Soc Trans 2012; 40:451-6. [DOI: 10.1042/bst20110770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PITPs (phosphatidylinositol transfer proteins) are characterized by the presence of the PITP domain whose biochemical properties of binding and transferring PI (phosphatidylinositol) are well studied. Despite their wide-spread expression in both unicellular and multicellular organisms, they remain functionally uncharacterized. An emerging theme is that individual PITPs play highly specific roles in either membrane trafficking or signal transduction. To identify specific roles for PITPs, identification of interacting molecules would shed light on their molecular function. In the present paper, we describe binding partners for the class IIB PITP RdgBβ (retinal degeneration type Bβ). RdgBβ is a soluble PITP but is unique in that it contains a region of disorder at its C-terminus following its defining N-terminal PITP domain. The C-terminus of RdgBβ is phosphorylated at two serine residues, Ser274 and Ser299, which form a docking site for 14-3-3 proteins. Binding to 14-3-3 proteins protects RdgBβ from degradation that occurs at the proteasome after ubiquitination. In addition to binding 14-3-3, the PITP domain of RdgBβ interacts with the Ang II (angiotensin II)-associated protein ATRAP (Ang II receptor-associated protein). ATRAP is also an interacting partner for the AT1R (Ang II type 1 receptor). We present a model whereby RdgBβ functions by being recruited to the membrane by ATRAP and release of 14-3-3 from the C-terminus allows the disordered region to bind a second membrane to create a membrane bridge for lipid transfer, possibly under the control of Ang II.
Collapse
|
23
|
|