1
|
Yan L, Cui Y, Feng J. Biology of Pellino1: a potential therapeutic target for inflammation in diseases and cancers. Front Immunol 2023; 14:1292022. [PMID: 38179042 PMCID: PMC10765590 DOI: 10.3389/fimmu.2023.1292022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Pellino1 (Peli1) is a highly conserved E3 Ub ligase that exerts its biological functions by mediating target protein ubiquitination. Extensive evidence has demonstrated the crucial role of Peli1 in regulating inflammation by modulating various receptor signaling pathways, including interleukin-1 receptors, Toll-like receptors, nuclear factor-κB, mitogen-activated protein kinase, and phosphoinositide 3-kinase/AKT pathways. Peli1 has been implicated in the development of several diseases by influencing inflammation, apoptosis, necrosis, pyroptosis, autophagy, DNA damage repair, and glycolysis. Peli1 is a risk factor for most cancers, including breast cancer, lung cancer, and lymphoma. Conversely, Peli1 protects against herpes simplex virus infection, systemic lupus erythematosus, esophageal cancer, and toxic epidermolysis bullosa. Therefore, Peli1 is a potential therapeutic target that warrants further investigation. This comprehensive review summarizes the target proteins of Peli1, delineates their involvement in major signaling pathways and biological processes, explores their role in diseases, and discusses the potential clinical applications of Peli1-targeted therapy, highlighting the therapeutic prospects of Peli1 in various diseases.
Collapse
Affiliation(s)
| | | | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
3
|
PELI1 and EGFR cooperate to promote breast cancer metastasis. Oncogenesis 2023; 12:9. [PMID: 36841821 PMCID: PMC9968314 DOI: 10.1038/s41389-023-00457-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Pellino-1 (PELI1) is an E3 ubiquitin ligase acting as a key regulator for the inflammation and autoimmunity via the ubiquitination of the substrate proteins. There is increasing evidence to support that PELI1 functions as an oncoprotein in tumorigenesis and metastasis. However, the molecular mechanism underlying the high expression and oncogenic roles of PELI1 in cancers remains limited. Herein, we revealed a novel regulation mechanism by which PELI1 and EGFR cooperate to promote breast cancer metastasis. EGFR is positively correlated with PELI1 expression in breast cancers, and its activation led to the phosphorylation of PELI1 at Tyr154 and Thr264, which subsequently activated its E3 ubiquitin ligase. Simultaneously, PELI1 physically interacted with and enhanced the stability of EGFR via the K63-linked polyubiquitination in reverse. The co-inhibition of the PELI1-EGFR showed synergetic effect to repress breast cancer metastasis. Furthermore, we identified a compound S62 as a small molecule disruptor of PELI1/EGFR that effectively repressed breast cancer metastasis. Our study not only uncovered the emerging roles of PELI1/EGFR interaction in the progression of breast cancer, but also provided an effective strategy for the inhibition of metastasis in breast cancer.
Collapse
|
4
|
Tang C, Hou YX, Shi PX, Zhu CH, Lu X, Wang XL, Que LL, Zhu GQ, Liu L, Chen Q, Li CF, Xu Y, Li JT, Li YH. Cardiomyocyte-specific Peli1 contributes to the pressure overload-induced cardiac fibrosis through miR-494-3p-dependent exosomal communication. FASEB J 2023; 37:e22699. [PMID: 36520055 DOI: 10.1096/fj.202200597r] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Cardiac fibrosis is an essential pathological process in pressure overload (PO)-induced heart failure. Recently, myocyte-fibroblast communication is proven to be critical in heart failure, in which, pathological growth of cardiomyocytes (CMs) may promote fibrosis via miRNAs-containing exosomes (Exos). Peli1 regulates the activation of NF-κB and AP-1, which has been demonstrated to engage in miRNA transcription in cardiomyocytes. Therefore, we hypothesized that Peli1 in CMs regulates the activation of cardiac fibroblasts (CFs) through an exosomal miRNA-mediated paracrine mechanism, thereby promoting cardiac fibrosis. We found that CM-conditional deletion of Peli1 improved PO-induced cardiac fibrosis. Moreover, Exos from mechanical stretch (MS)-induced WT CMs (WT MS-Exos) promote activation of CFs, Peli1-/- MS-Exos reversed it. Furthermore, miRNA microarray and qPCR analysis showed that miR-494-3p was increased in WT MS-Exos while being down regulated in Peli1-/- MS-Exos. Mechanistically, Peli1 promoted miR-494-3p expression via NF-κB/AP-1 in CMs, and then miR-494-3p induced CFs activation by inhibiting PTEN and amplifying the phosphorylation of AKT, SMAD2/3, and ERK. Collectively, our study suggests that CMs Peli1 contributes to myocardial fibrosis via CMs-derived miR-494-3p-enriched exosomes under PO, and provides a potential exosomal miRNA-based therapy for cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Xing Hou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Peng-Xi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Cheng-Hao Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xia Lu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.,Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiao-Lu Wang
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Lin-Li Que
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chuan-Fu Li
- Department of Surgery, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Jian-Tao Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yue-Hua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
6
|
Hoyler T, Bannert B, André C, Beck D, Boulay T, Buffet D, Caesar N, Calzascia T, Dawson J, Kyburz D, Hennze R, Huppertz C, Littlewood-Evans A, Loetscher P, Mertz KD, Niwa S, Robert G, Rush JS, Ruzzante G, Sarret S, Stein T, Touil I, Wieczorek G, Zipfel G, Hawtin S, Junt T. Nonhematopoietic IRAK1 drives arthritis via neutrophil chemoattractants. JCI Insight 2022; 7:149825. [PMID: 35801586 PMCID: PMC9310529 DOI: 10.1172/jci.insight.149825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type–specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1β or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1β–dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.
Collapse
Affiliation(s)
- Thomas Hoyler
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Cédric André
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Damian Beck
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Boulay
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - David Buffet
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nadja Caesar
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Calzascia
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Janet Dawson
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Robert Hennze
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Christine Huppertz
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Amanda Littlewood-Evans
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pius Loetscher
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Satoru Niwa
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gautier Robert
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - James S Rush
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Giulia Ruzzante
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sophie Sarret
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Stein
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ismahane Touil
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grazyna Wieczorek
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Geraldine Zipfel
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stuart Hawtin
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Tobias Junt
- Department of Autoimmunity Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
7
|
miR-590-5p Overexpression Alleviates β-Amyloid-Induced Neuron Damage via Targeting Pellino-1. Anal Cell Pathol (Amst) 2022; 2022:7657995. [PMID: 35310934 PMCID: PMC8924595 DOI: 10.1155/2022/7657995] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is one common degenerative disorder. However, the effects of miR-590-5p on AD and the mechanism on modulation of AD development were unclear. In this study, the miR-590-5p level in AD patients at mild, moderate, and severe stage as well as APP/PS1 transgenic mice was detected by qRT-PCR. The relationship of miR-590-5p and pellino-1 (PELI1) was identified by double luciferase reporter gene assay. Afterwards, both BV-2 and HT22 cells were exposed to β-amyloid (Aβ) peptides to mimic AD cell model. Then, the roles of miR-590-5p upregulation or PELI1 silence in cell proliferation and apoptosis were explored by CCK-8 assay and TUNEL assay, and the expression of apoptosis-related proteins was detected by western blotting. Furthermore, the involvements of the downstream Traf3/MAPK P38 pathway with the roles of miR-590-5p in AD were measured by western blotting. Our results showed that knockdown of miR-590-5p was found in AD patients, mice model, and Aβ-induced cell model. Notably, PELI1 was proved as a target gene of miR-590-5p. miR-590-5p mimic or PELI1 silence significantly promoted cell proliferation and inhibited cell apoptosis, as well as suppressed the activation of Traf3/MAPK P38 pathway both in Aβ-induced BV-2 and HT22 cells. The effects of PELI1 overexpression on cell proliferation, apoptosis, and Traf3/MAPK P38 pathway were partly abrogated by miR-590-5p mimic both in BV-2 and HT22 cells. In conclusion, miR-590-5p was expressed at lower levels in AD, and miR-590-5p/PELI1 axis might be involved in the progression of AD by the downstream Traf3/MAPK P38 pathway.
Collapse
|
8
|
Zhang E, Li X. The Emerging Roles of Pellino Family in Pattern Recognition Receptor Signaling. Front Immunol 2022; 13:728794. [PMID: 35197966 PMCID: PMC8860249 DOI: 10.3389/fimmu.2022.728794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
The Pellino family is a novel and well-conserved E3 ubiquitin ligase family and consists of Pellino1, Pellino2, and Pellino3. Each family member exhibits a highly conserved structure providing ubiquitin ligase activity without abrogating cell and structure-specific function. In this review, we mainly summarized the crucial roles of the Pellino family in pattern recognition receptor-related signaling pathways: IL-1R signaling, Toll-like signaling, NOD-like signaling, T-cell and B-cell signaling, and cell death-related TNFR signaling. We also summarized the current information of the Pellino family in tumorigenesis, microRNAs, and other phenotypes. Finally, we discussed the outstanding questions of the Pellino family in immunity.
Collapse
Affiliation(s)
- E Zhang
- Marine College, Shandong University, Weihai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
- *Correspondence: Xia Li,
| |
Collapse
|
9
|
Peli1 impairs microglial Aβ phagocytosis through promoting C/EBPβ degradation. PLoS Biol 2020; 18:e3000837. [PMID: 33017390 PMCID: PMC7561136 DOI: 10.1371/journal.pbio.3000837] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/15/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022] Open
Abstract
Amyloid-β (Aβ) accumulation in the brain is a hallmark of Alzheimer’s disease (AD) pathology. However, the molecular mechanism controlling microglial Aβ phagocytosis is poorly understood. Here we found that the E3 ubiquitin ligase Pellino 1 (Peli1) is induced in the microglia of AD-like five familial AD (5×FAD) mice, whose phagocytic efficiency for Aβ was then impaired, and therefore Peli1 depletion suppressed the Aβ deposition in the brains of 5×FAD mice. Mechanistic characterizations indicated that Peli1 directly targeted CCAAT/enhancer-binding protein (C/EBP)β, a major transcription factor responsible for the transcription of scavenger receptor CD36. Peli1 functioned as a direct E3 ubiquitin ligase of C/EBPβ and mediated its ubiquitination-induced degradation. Consequently, loss of Peli1 increased the protein levels of C/EBPβ and the expression of CD36 and thus, promoted the phagocytic ability in microglial cells. Together, our findings established Peli1 as a critical regulator of microglial phagocytosis and highlighted the therapeutic potential by targeting Peli1 for the treatment of microglia-mediated neurological diseases. This study identifies Peli1, an E3 ubiqitin ligase enriched in microglia, as a restraining factor that curtails microglial phagocytosis of the amyloid Aβ. Correspondingly, deletion of Peli1 enhances Aβ phagocytosis and clearance in Alzheimer’s disease, implicating Peli1 as a therapeutic target with significant potential for the treatment of microglia-mediated neurological disease.
Collapse
|
10
|
Cohen P, Kelsall IR, Nanda SK, Zhang J. HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Adv Biol Regul 2020; 75:100666. [PMID: 31615747 PMCID: PMC7132539 DOI: 10.1016/j.jbior.2019.100666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Components of bacteria and viruses activate Toll-Like Receptors in host cells, triggering the formation of the Myddosome and a signalling network that culminates in the production and release of the inflammatory mediators required to combat pathogenic infection. The Myddosome initiates signalling by recruiting and activating five E3 ligases that generate hybrid ubiquitin chains and attach them to components of the Myddosome. These ubiquitin chains act as a scaffold for the recruitment and activation of ubiquitin-binding proteins, which include the "master" protein kinases TAK1 and IKKβ that drive inflammatory mediator production, as well as other proteins like ABIN1 and A20 that restrict activation of the network to prevent the overproduction of these substances that can lead to autoimmunity and organ damage. Here we review recent developments in our understanding of this network, focusing on the unexpected discovery that the E3 ligase HOIL-1 initiates the formation of hybrid ubiquitin chains by forming an ester bond between the first ubiquitin and the protein components of the Myddosome.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom.
| | - Ian R Kelsall
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| | - Jiazhen Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
11
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
DeFelice MM, Clark HR, Hughey JJ, Maayan I, Kudo T, Gutschow MV, Covert MW, Regot S. NF-κB signaling dynamics is controlled by a dose-sensing autoregulatory loop. Sci Signal 2019; 12:12/579/eaau3568. [PMID: 31040261 DOI: 10.1126/scisignal.aau3568] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, multiple studies have shown that signaling proteins activated in different temporal patterns, such as oscillatory, transient, and sustained, can result in distinct gene expression patterns or cell fates. However, the molecular events that ensure appropriate stimulus- and dose-dependent dynamics are not often understood and are difficult to investigate. Here, we used single-cell analysis to dissect the mechanisms underlying the stimulus- and dose-encoding patterns in the innate immune signaling network. We found that Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) signaling dynamics relied on a dose-dependent, autoinhibitory loop that rendered cells refractory to further stimulation. Using inducible gene expression and optogenetics to perturb the network at different levels, we identified IL-1R-associated kinase 1 (IRAK1) as the dose-sensing node responsible for limiting signal flow during the innate immune response. Although the kinase activity of IRAK1 was not required for signal propagation, it played a critical role in inhibiting the nucleocytoplasmic oscillations of the transcription factor NF-κB. Thus, protein activities that may be "dispensable" from a topological perspective can nevertheless be essential in shaping the dynamic response to the external environment.
Collapse
Affiliation(s)
- Mialy M DeFelice
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Helen R Clark
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jacob J Hughey
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Inbal Maayan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Miriam V Gutschow
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. .,Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Dai L, Lin J, Said AB, Yau YH, Shochat SG, Ruiz-Carrillo D, Sun K, Chandrasekaran R, Sze SK, Lescar J, Cheung PC. Pellino1 specifically binds to phospho-Thr18 of p53 and is recruited to sites of DNA damage. Biochem Biophys Res Commun 2019; 513:714-720. [PMID: 30987826 DOI: 10.1016/j.bbrc.2019.03.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 12/23/2022]
Abstract
Pellino1 is an E3 ubiquitin ligase that plays a key role in positive regulation of innate immunity signaling, specifically required for the production of interferon when induced by viral double-stranded RNA. We report the identification of the tumor suppressor protein, p53, as a binding partner of Pellino1. Their interaction has a Kd of 42 ± 2 μM and requires phosphorylation of Thr18 within p53 and association with the forkhead-associated (FHA) domain of Pellino1. We employed laser micro-irradiation and live cell microscopy to show that Pellino1 is recruited to newly occurring DNA damage sites, via its FHA domain. Mutation of a hitherto unidentified nuclear localization signal within the N-terminus of Pellino1 led to its exclusion from the nucleus. This study provides evidence that Pellino1 translocates to damaged DNA in the nucleus and has a functional role in p53 signaling and the DNA damage response.
Collapse
Affiliation(s)
- Liang Dai
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jianqing Lin
- School of Biological Sciences, Nanyang Technological University, Singapore; Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore
| | | | - Yin Hoe Yau
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | - Kang Sun
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Singapore; Nanyang Institute of Structural Biology, Nanyang Technological University, Singapore.
| | - Peter Cf Cheung
- School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
14
|
Choi SW, Park HH, Kim S, Chung JM, Noh HJ, Kim SK, Song HK, Lee CW, Morgan MJ, Kang HC, Kim YS. PELI1 Selectively Targets Kinase-Active RIP3 for Ubiquitylation-Dependent Proteasomal Degradation. Mol Cell 2018; 70:920-935.e7. [DOI: 10.1016/j.molcel.2018.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
|
15
|
The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun 2018; 9:1560. [PMID: 29674674 PMCID: PMC5908787 DOI: 10.1038/s41467-018-03669-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 03/03/2018] [Indexed: 12/30/2022] Open
Abstract
The NLRP3 inflammasome has an important function in inflammation by promoting the processing of pro-IL-1β and pro-IL-18 to their mature bioactive forms, and by inducing cell death via pyroptosis. Here we show a critical function of the E3 ubiquitin ligase Pellino2 in facilitating activation of the NLRP3 inflammasome. Pellino2-deficient mice and myeloid cells have impaired activation of NLRP3 in response to toll-like receptor priming, NLRP3 stimuli and bacterial challenge. These functions of Pellino2 in the NLRP3 pathway are dependent on Pellino2 FHA and RING-like domains, with Pellino2 promoting the ubiquitination of NLRP3 during the priming phase of activation. We also identify a negative function of IRAK1 in the NLRP3 inflammasome, and describe a counter-regulatory relationship between IRAK1 and Pellino2. Our findings reveal a Pellino2-mediated regulatory signaling system that controls activation of the NLRP3 inflammasome. The NLRP3 inflammasome is important for inducing IL-1β and IL-18 inflammatory responses. Here the authors show, by generating and characterizing Peli2 deficient mice and immune cells, that an E3 ubiquitin ligase Pellino2 promotes inflammasome priming by inducing NLRP3 ubiquitination and by targeting IRAK1.
Collapse
|
16
|
Lim R, Barker G, Lappas M. Pellino 1 is a novel regulator of TNF and TLR signalling in human myometrial and amnion cells. J Reprod Immunol 2018; 127:24-35. [PMID: 29751216 DOI: 10.1016/j.jri.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
Preterm birth is the primary cause of neonatal deaths and morbidities. Pathological processes causally linked to preterm birth are inflammation and infection. Pellino-1 (Peli1) has previously been found to regulate the inflammatory response in non-gestational tissues in response to toll-like receptor (TLR) ligands and pro-inflammatory cytokines. The aims of this study were to determine the effect of labor on Peli1 expression in myometrium and fetal membranes, and the effect of Peli1 silencing by siRNA (siPELI1) on the production of pro-inflammatory and pro-labor mediators. The expression of Peli1 was found to be higher in myometrium and fetal membranes with term labor, compared to non-laboring samples. Peli1 mRNA and protein expression was also higher in amnion from women with preterm histological chorioamnionitis. In human primary myometrial cells, siPELI1 transfected cells showed a decrease in pro-inflammatory cytokine IL6, chemokines (CXCL8, CCL2) and adhesion molecule ICAM1 when in the presence of pro-inflammatory cytokine TNF, TLR2/6 ligand fsl-1, TLR5 ligand flagellin, and TLR3 ligand poly(I:C). Similarly in primary amnion cells, siPELI1 transfected cells decreased IL1B-induced expression and secretion of IL6 and CXCL8. In siPELI1 transfected myometrial cells, there was a decrease in prostaglandin PGF2α and its receptor, PTGFR mRNA expression when treated with TNF. There was a decrease in NF-κB RELA transcriptional activity in siPELI1 transfected cells in the presence of TNF, fsl-1 and flagellin, but not poly(I:C). Our study suggests a novel role for Peli1 in regulating pro-inflammatory and pro-labor mediators through TNF and TLR signalling.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
17
|
Abstract
Interleukin 1 (IL-1) receptor-associated kinases (IRAKs) are serine/threonine kinases that play critical roles in initiating innate immune responses against foreign pathogens and other types of dangers through their role in Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) mediated signaling pathways. Upon ligand binding, TLRs and IL-1Rs recruit adaptor proteins, such as myeloid differentiation primary response gene 88 (MyD88), to the membrane, which in turn recruit IRAKs via the death domains in these proteins to form the Myddosome complex, leading to IRAK kinase activation. Despite their biological and clinical significance, only the IRAK4 kinase domain structure has been determined among the four IRAK family members. Here, we report the crystal structure of the human IRAK1 kinase domain in complex with a small molecule inhibitor. The structure reveals both similarities and differences between IRAK1 and IRAK4 and is suggestive of approaches to develop IRAK1- or IRAK4-specific inhibitors for potential therapeutic applications. While the IRAK4 kinase domain is capable of homodimerization in the unphosphorylated state, we found that the IRAK1 kinase domain is constitutively monomeric regardless of its phosphorylation state. Additionally, the IRAK1 kinase domain forms heterodimers with the phosphorylated, but not unphosphorylated, IRAK4 kinase domain. Collectively, these data indicate a two-step kinase activation process in which the IRAK4 kinase domain first homodimerizes in the Myddosome, leading to its trans-autophosphorylation and activation. The phosphorylated IRAK4 kinase domain then forms heterodimers with the IRAK1 kinase domain within the Myddosome, leading to its subsequent phosphorylation and activation.
Collapse
|
18
|
Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J 2017; 474:2235-2248. [PMID: 28507161 PMCID: PMC5632801 DOI: 10.1042/bcj20170288] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/21/2022]
Abstract
Interleukin-1 (IL-1) signaling induces the formation of Lys63-linked ubiquitin (K63-Ub) chains, which are thought to activate the ‘master’ protein kinase TGFβ-activated kinase 1 (TAK1) by interacting with its TAK1-binding 2 (TAB2) and TAB3 subunits. Here, we report that IL-1β can also activate the TAB1–TAK1 heterodimer present in TAB2/TAB3 double knockout (DKO) IL-1 receptor-expressing cells. The IL-1β-dependent activation of the TAB1–TAK1 heterodimer in TAB2/3 DKO cells is required for the expression and E3 ligase activity of tumor necrosis factor receptor-associated factor 6 (TRAF6) and is reduced by the small interfering RNA (siRNA) knockdown of ubiquitin conjugating 13 (Ubc13), an E2-conjugating enzyme that directs the formation of K63-Ub chains. IL-1β signaling was restored to TAB1/2/3 triple KO cells by the re-expression of either TAB1 or TAB2, but not by an ubiquitin binding-defective mutant of TAB2. We conclude that IL-1β can induce the activation of TAK1 in two ways, only one of which requires the binding of K63-Ub chains to TAB2/3. The early IL-1β-stimulated, TAK1-dependent activation of p38α mitogen-activated protein (MAP) kinase and the canonical IκB kinase (IKK) complex, as well as the NF-κB-dependent transcription of immediate early genes, was similar in TAB2/3 DKO cells and TAB2/3-expressing cells. However, in contrast with TAB2/3-expressing cells, IL-1β signaling was transient in TAB2/3 DKO cells, and the activation of c-Jun N-terminal kinase 1 (JNK1), JNK2 and p38γ was greatly reduced at all times. These observations indicate a role for TAB2/3 in directing the TAK1-dependent activation of MAP kinase kinases that switch on JNK1/2 and p38γ MAP kinases. These observations and the transient activation of the TAB1–TAK1 heterodimer may explain why IL-1β-dependent IL-8 mRNA formation was abolished in TAB2/3 DKO cells.
Collapse
|
19
|
The mechanism of activation of IRAK1 and IRAK4 by interleukin-1 and Toll-like receptor agonists. Biochem J 2017; 474:2027-2038. [PMID: 28512203 PMCID: PMC5460469 DOI: 10.1042/bcj20170097] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
We have developed the first assays that measure the protein kinase activities of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 reliably in human cell extracts, by employing Pellino1 as a substrate in conjunction with specific pharmacological inhibitors of IRAK1 and IRAK4. We exploited these assays to show that IRAK4 was constitutively active and that its intrinsic activity towards Pellino1 was not increased significantly by stimulation with interleukin-1 (IL-1) in IL-1R-expressing HEK293 cells, Pam3CSK4-stimulated human THP1 monocytes or primary human macrophages. Our results, in conjunction with those of other investigators, suggest that the IL-1-stimulated trans-autophosphorylation of IRAK4 is initiated by the myeloid differentiation primary response gene 88-induced dimerization of IRAK4 and is not caused by an increase in the intrinsic catalytic activity of IRAK4. In contrast with IRAK4, we found that IRAK1 was inactive in unstimulated cells and converted into an active protein kinase in response to IL-1 or Pam3CSK4 in human cells. Surprisingly, the IL-1-stimulated activation of IRAK1 was not affected by pharmacological inhibition of IRAK4 and not reversed by dephosphorylation and/or deubiquitylation, suggesting that IRAK1 catalytic activity is not triggered by a covalent modification but by an allosteric mechanism induced by its interaction with IRAK4.
Collapse
|
20
|
Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 2017; 24:1153-1159. [PMID: 28475177 PMCID: PMC5520163 DOI: 10.1038/cdd.2017.17] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCFβTRCP, leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled by the formation and destruction of three different types of ubiquitin linkage.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sam Strickson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
21
|
Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc Natl Acad Sci U S A 2017; 114:E3481-E3489. [PMID: 28404732 DOI: 10.1073/pnas.1702367114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It is widely accepted that the essential role of TRAF6 in vivo is to generate the Lys63-linked ubiquitin (K63-Ub) chains needed to activate the "master" protein kinase TAK1. Here, we report that TRAF6 E3 ligase activity contributes to but is not essential for the IL-1-dependent formation of K63-Ub chains, TAK1 activation, or IL-8 production in human cells, because Pellino1 and Pellino2 generate the K63-Ub chains required for signaling in cells expressing E3 ligase-inactive TRAF6 mutants. The IL-1-induced formation of K63-Ub chains and ubiquitylation of IRAK1, IRAK4, and MyD88 was abolished in TRAF6/Pellino1/Pellino2 triple-knockout (KO) cells, but not in TRAF6 KO or Pellino1/2 double-KO cells. The reexpression of E3 ligase-inactive TRAF6 mutants partially restored IL-1 signaling in TRAF6 KO cells, but not in TRAF6/Pellino1/Pellino2 triple-KO cells. Pellino1-generated K63-Ub chains activated the TAK1 complex in vitro with similar efficiently to TRAF6-generated K63-Ub chains. The early phase of TLR signaling and the TLR-dependent secretion of IL-10 (controlled by IRAKs 1 and 2) was only reduced modestly in primary macrophages from knockin mice expressing the E3 ligase-inactive TRAF6[L74H] mutant, but the late-phase production of IL-6, IL-12, and TNFα (controlled only by the pseudokinase IRAK2) was abolished. RANKL-induced signaling in macrophages and the differentiation of bone marrow to osteoclasts was similar in TRAF6[L74H] and wild-type cells, explaining why the bone structure and teeth of the TRAF6[L74H] mice was normal, unlike TRAF6 KO mice. We identify two essential roles of TRAF6 that are independent of its E3 ligase activity.
Collapse
|
22
|
Nanda SK, Lopez-Pelaez M, Arthur JSC, Marchesi F, Cohen P. Suppression of IRAK1 or IRAK4 Catalytic Activity, but Not Type 1 IFN Signaling, Prevents Lupus Nephritis in Mice Expressing a Ubiquitin Binding-Defective Mutant of ABIN1. THE JOURNAL OF IMMUNOLOGY 2016; 197:4266-4273. [PMID: 27807192 PMCID: PMC5114882 DOI: 10.4049/jimmunol.1600788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 12/21/2022]
Abstract
Polymorphisms in the TNIP1 gene encoding A20-binding inhibitor of NF-κB1 (ABIN1) predispose to lupus and other autoimmune diseases in at least eight human populations. We found previously that knock-in mice expressing a ubiquitin-binding-defective mutant of ABIN1 (ABIN1[D485N]) develop autoimmunity as they age and succumb to a disease resembling lupus nephritis in humans. In this article, we report that Flt3-derived dendritic cells from these mice overproduced type 1 IFNs upon stimulation with ligands that activate TLR7 or TLR9. However, crossing ABIN1[D485N] mice to IFNAR1-knockout mice that do not express the α-subunit of the type 1 IFNR did not prevent splenomegaly, the appearance of high serum levels of autoantibodies and other Igs, or liver inflammation and only reduced kidney inflammation modestly. In contrast, crossing ABIN1[D485N] mice to knock-in mice expressing catalytically inactive mutants of IRAK1 or IRAK4 prevented splenomegaly, autoimmunity, and liver and kidney inflammation. Our results support the notion that IRAK1 and/or IRAK4 are attractive targets for the development of drugs to prevent, and perhaps treat, lupus nephritis and other autoinflammatory diseases caused by the decreased ability of ABIN1 or other proteins to restrict the strength of MyD88 signaling.
Collapse
Affiliation(s)
- Sambit K Nanda
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Marta Lopez-Pelaez
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J Simon C Arthur
- Division of Immunology and Cell Signaling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and
| | - Francesco Marchesi
- School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
23
|
Ye X, Kong D, Wang J, Ishrat T, Shi H, Ding X, Cui G, Hua F. MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice. Biochem Biophys Res Commun 2016; 480:69-74. [PMID: 27717824 DOI: 10.1016/j.bbrc.2016.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/03/2016] [Indexed: 02/06/2023]
Abstract
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling.
Collapse
Affiliation(s)
- Xinchun Ye
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Delian Kong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jun Wang
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tauheed Ishrat
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongjuan Shi
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiaohui Ding
- Department of Human Anatomy, Histology and Embryology, Shenyang Medical College, Shenyang, 110000, China
| | - Guiyun Cui
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fang Hua
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA; Key Laboratory of Anesthesiology of Jiangsu Province, Xuzhou 221002, China.
| |
Collapse
|
24
|
Pellino-1 derived cationic antimicrobial prawn peptide: Bactericidal activity, toxicity and mode of action. Mol Immunol 2016; 78:171-182. [PMID: 27648859 DOI: 10.1016/j.molimm.2016.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
The antimicrobial peptides (AMPs) are multifunctional molecules which represent significant roles in the innate immune system. These molecules have been well known for decades because of their role as natural antibiotics in both invertebrates and vertebrates. The development of multiple drug resistance against conventional antibiotics brought a greater focus on AMPs in recent years. The cationic peptides, in particular, proven as host defense peptides and are considered as effectors of innate immunity. Among the various innate immune molecules, functions of pellino-1 (Peli-1) have been recently studied for its remarkable role in specific immune functions. In our study, we have identified Peli-1 from the cDNA library of freshwater prawn Macrobrachium rosenbergii (Mr) and analyzed its features using various in-silico methods. Real time PCR analysis showed an induced expression of MrPeli-1 during white spot syndrome virus (WSSV), bacteria (Vibrio harveyi) and lipopolysaccharide (LPS) from Escherichia coli challenge. Also, a cationic AMP named MrDN was derived from MrPeli-1 protein sequence and its activity was confirmed against various pathogenic bacteria. The mode of action of MrDN was determined to be its membrane permeabilization ability against Bacillus cereus ATCC 2106 as well as its DNA binding ability. Further, scanning electron microscopic (SEM) images showed the membrane disruption and leakage of cellular components of B. cereus cells induced by MrDN. The toxicity of MrDN against normal cells (HEK293 cells) was demonstrated by MTT and hemolysis assays. Overall, the results demonstrated the innate immune function of MrPeli-1 with a potential cationic AMP in prawn.
Collapse
|
25
|
Nguyen T, Ho M, Ghosh A, Kim T, Yun SI, Lee SS, Kim KK. An ubiquitin-binding molecule can work as an inhibitor of ubiquitin processing enzymes and ubiquitin receptors. Biochem Biophys Res Commun 2016; 479:33-9. [PMID: 27613091 DOI: 10.1016/j.bbrc.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 11/26/2022]
Abstract
The ubiquitin pathway plays a critical role in regulating diverse biological processes, and its dysregulation is associated with various diseases. Therefore, it is important to have a tool that can control the ubiquitin pathway in order to improve understanding of this pathway and to develop therapeutics against relevant diseases. We found that Chicago Sky Blue 6B binds directly to the β-groove, a major interacting surface of ubiquitin. Hence, it could successfully inhibit the enzymatic activity of ubiquitin processing enzymes and the binding of ubiquitin to the CXCR4, a cell surface ubiquitin receptor. Furthermore, we demonstrated that this ubiquitin binding chemical could effectively suppress the ubiquitin induced cancer cell migration by blocking ubiquitin-CXCR4 interaction. Current results suggest that ubiquitin binding molecules can be developed as inhibitors of ubiquitin-protein interactions, which will have the value not only in unveiling the biological role of ubiquitin but also in treating related diseases.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea
| | - Minh Ho
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea
| | - Ambarnil Ghosh
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea
| | - Truc Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea
| | - Sun Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea
| | - Seung Seo Lee
- Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 440-746, South Korea.
| |
Collapse
|
26
|
Sam68 is a regulator of Toll-like receptor signaling. Cell Mol Immunol 2016; 14:107-117. [PMID: 27374795 PMCID: PMC5214940 DOI: 10.1038/cmi.2016.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/14/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022] Open
Abstract
Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.
Collapse
|
27
|
Li P, Liu H, Zhang Y, Liao R, He K, Ruan X, Gong J. Endotoxin Tolerance Inhibits Degradation of Tumor Necrosis Factor Receptor-Associated Factor 3 by Suppressing Pellino 1 Expression and the K48 Ubiquitin Ligase Activity of Cellular Inhibitor of Apoptosis Protein 2. J Infect Dis 2016; 214:906-15. [PMID: 27377744 DOI: 10.1093/infdis/jiw279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pellino 1 positively regulates Toll-like receptor 4 signaling by regulating tumor necrosis factor receptor-associated factor 3 (TRAF3) degradation and is suppressed with the induction of endotoxin tolerance. However, the role of TRAF3 in endotoxin tolerance is largely unknown. In this study, we found that lipopolysaccharide (LPS) stimulation decreased TARF3 protein expression in mouse Kupffer cells (KCs) and liver tissues, whereas endotoxin tolerization abrogated this effect. Degradative TRAF3 K48-linked ubiquitination and the cytoplasmic translocation of the MYD88-associated multiprotein complex were significantly inhibited in tolerized KCs, which led to markedly impaired activation of MYD88-dependent JNK and p38 and downregulation of inflammatory cytokines. TRAF3 ablation failed to induce a fully endotoxin-tolerant state in RAW264.7 cells. Pellino 1 knockdown in Raw264.7 cells did not impair induction of cIAP2 in response to LPS but inhibited the K63-linked ubiquitination of cellular inhibitor of apoptosis protein 2 (cIAP2) and K48-linked ubiquitination of TRAF3 protein. We also found upregulation of Pellino 1 and downregulation of TRAF3 in liver tissues of patients with cholangitis. Our findings reveal a novel mechanism that endotoxin tolerance reprograms mitogen-activated protein kinase signaling by suppressing Pellino 1-mediated K63-linked ubiquitination of cIAP2, K48-linked ubiquitination, and degradation of TRAF3.
Collapse
Affiliation(s)
| | | | | | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Kun He
- Department of Hepatobiliary Surgery
| | - Xiongzhong Ruan
- Centre for Lipid Research, & Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University
| | | |
Collapse
|
28
|
Medvedev AE, Murphy M, Zhou H, Li X. E3 ubiquitin ligases Pellinos as regulators of pattern recognition receptor signaling and immune responses. Immunol Rev 2016; 266:109-22. [PMID: 26085210 DOI: 10.1111/imr.12298] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pellinos are a family of E3 ubiquitin ligases discovered for their role in catalyzing K63-linked polyubiquitination of Pelle, an interleukin-1 (IL-1) receptor-associated kinase homolog in the Drosophila Toll pathway. Subsequent studies have revealed the central and non-redundant roles of mammalian Pellino-1, Pellino-2, and Pelino-3 in signaling pathways emanating from IL-1 receptors, Toll-like receptors, NOD-like receptors, T- and B-cell receptors. While Pellinos ability to interact with many signaling intermediates suggested their scaffolding roles, recent findings in mice expressing ligase-inactive Pellinos demonstrated the importance of Pellino ubiquitin ligase activity. Cell-specific functions of Pellinos have emerged, e.g. Pellino-1 being a negative regulator in T lymphocytes and a positive regulator in myeloid cells, and details of molecular regulation of receptor signaling by various members of the Pellino family have been revealed. In this review, we summarize current information about Pellino-mediated regulation of signaling by pattern recognition receptors, T-cell and B-cell receptors and tumor necrosis factor receptors, and discuss Pellinos roles in sepsis and infectious diseases, as well as in autoimmune, inflammatory, and allergic disorders. We also provide our perspective on the potential of targeting Pellinos with peptide- or small molecule-based drug compounds as a new therapeutic approach for septic shock and autoimmune pathologies.
Collapse
Affiliation(s)
- Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Michael Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
29
|
Bid Promotes K63-Linked Polyubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6) and Sensitizes to Mutant SOD1-Induced Proinflammatory Signaling in Microglia. eNeuro 2016; 3:eN-NWR-0099-15. [PMID: 27257617 PMCID: PMC4870272 DOI: 10.1523/eneuro.0099-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1G93A expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.
Collapse
|
30
|
Abstract
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Unit 902, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
31
|
Humphries F, Moynagh PN. Molecular and physiological roles of Pellino E3 ubiquitin ligases in immunity. Immunol Rev 2015; 266:93-108. [DOI: 10.1111/imr.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiachra Humphries
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
| | - Paul N. Moynagh
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Northern Ireland UK
| |
Collapse
|
32
|
Murphy M, Xiong Y, Pattabiraman G, Qiu F, Medvedev AE. Pellino-1 Positively Regulates Toll-like Receptor (TLR) 2 and TLR4 Signaling and Is Suppressed upon Induction of Endotoxin Tolerance. J Biol Chem 2015; 290:19218-32. [PMID: 26082489 DOI: 10.1074/jbc.m115.640128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.
Collapse
Affiliation(s)
- Michael Murphy
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Yanbao Xiong
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Goutham Pattabiraman
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Fu Qiu
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrei E Medvedev
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| |
Collapse
|
33
|
The E3 Ubiquitin Ligase Pellino3 Protects against Obesity-Induced Inflammation and Insulin Resistance. Immunity 2014; 41:973-87. [DOI: 10.1016/j.immuni.2014.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
|
34
|
Huoh YS, Ferguson KM. The pellino e3 ubiquitin ligases recognize specific phosphothreonine motifs and have distinct substrate specificities. Biochemistry 2014; 53:4946-55. [PMID: 25027698 PMCID: PMC4201300 DOI: 10.1021/bi5005156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
four mammalian Pellinos (Pellinos 1, 2, 3a, and 3b) are E3
ubiquitin ligases that are emerging as critical mediators for a variety
of immune signaling pathways, including those activated by Toll-like
receptors, the T-cell receptor, and NOD2. It is becoming increasingly
clear that each Pellino has a distinct role in facilitating immune
receptor signaling. However, the underlying mechanisms by which these
highly homologous proteins act selectively in these signaling pathways
are not clear. In this study, we investigate whether Pellino substrate
recognition contributes to the divergent functions of Pellinos. Substrate
recognition of each Pellino is mediated by its noncanonical forkhead-associated
(FHA) domain, a well-characterized phosphothreonine-binding module.
Pellino FHA domains share very high sequence identity, so a molecular
basis for differences in substrate recognition is not immediately
apparent. To explore Pellino substrate specificity, we first identify
a high-affinity Pellino2 FHA domain-binding motif in the Pellino substrate,
interleukin-1 receptor-associated kinase 1 (IRAK1). Analysis of binding
of the different Pellinos to a panel of phosphothreonine-containing
peptides derived from the IRAK1-binding motif reveals that each Pellino
has a distinct phosphothreonine peptide binding preference. We observe
a similar binding specificity in the interaction of Pellinos with
a number of known Pellino substrates. These results argue that the
nonredundant roles that Pellinos play in immune signaling are in part
due to their divergent substrate specificities. This new insight into
Pellino substrate recognition could be exploited for pharmacological
advantage in treating inflammatory diseases that have been linked
to the aberrant regulation of Pellinos.
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Physiology and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
35
|
Greenwood AI, Kwon J, Nicholson LK. Isomerase-catalyzed binding of interleukin-1 receptor-associated kinase 1 to the EVH1 domain of vasodilator-stimulated phosphoprotein. Biochemistry 2014; 53:3593-607. [PMID: 24857403 DOI: 10.1021/bi500031e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Interleukin-1 receptor-associated kinase 1 (IRAK1) is a crucial signaling kinase in the immune system, involved in Toll-like receptor signaling. Vasodilator-stimulated phosphoprotein (VASP) is a central player in cell migration that regulates actin polymerization and connects signaling events to cytoskeletal remodeling. A VASP–IRAK1 interaction is thought to be important in controlling macrophage migration in response to protein kinase C-ε activation. We show that the monomeric VASP EVH1 domain directly binds to the 168WPPPP172 motif in the IRAK1 undefined domain (IRAK1-UD) with moderate affinity (KDApp = 203 ± 3 μM). We further show that this motif adopts distinct cis and trans isomers for the Trp168–Pro169 peptide bond with nearly equal populations, and that binding to the VASP EVH1 domain is specific for the trans isomer, coupling binding to isomerization. Nuclear magnetic resonance line shape analysis and tryptophan fluorescence experiments reveal the complete kinetics and thermodynamics of the binding reaction, showing diffusion-limited binding to the trans isomer followed by slow, isomerization-dependent binding. We further demonstrate that the peptidyl-prolyl isomerase cyclophilin A (CypA) catalyzes isomerization of the Trp168–Pro169 peptide bond and accelerates binding of the IRAK1-UD to the VASP EVH1 domain. We propose that binding of IRAK1 to tetrameric VASP is regulated by avidity through the assembly of IRAK1 onto receptor-anchored signaling complexes and that an isomerase such as CypA may modulate IRAK1 signaling in vivo. These studies demonstrate a direct interaction between IRAK1 and VASP and suggest a potential mechanism for how this interaction might be regulated by both assembly of IRAK1 onto an activated signaling complex and PPIase enzymes.
Collapse
Affiliation(s)
- Alexander I Greenwood
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | | | |
Collapse
|
36
|
Abstract
Toll-like receptors (TLRs) and the receptors for interleukin (IL)-1, IL-18 and IL-33 are required for defence against microbial pathogens but, if hyper-activated or not switched off efficiently, can cause tissue damage and inflammatory and autoimmune diseases. Understanding how the checks and balances in the system are integrated to fight infection without the network operating out of control will be crucial for the development of improved drugs to treat these diseases in the future. In this Cell Science at a Glance article and the accompanying poster, I provide a brief overview of how one of these intricate networks is controlled by the interplay of protein phosphorylation and protein ubiquitylation events, and the mechanisms in myeloid cells that restrict and terminate its activation to prevent inflammatory and autoimmune diseases. Finally, I suggest a few protein kinases that have been neglected as drug targets, but whose therapeutic potential should be explored in the light of recent advances in our understanding of their roles in the innate immune system.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
37
|
Abstract
Pellino proteins were initially characterized as a family of E3 ubiquitin ligases that can catalyse the ubiquitylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and regulate innate immune signalling pathways. More recently, physiological and molecular roles for members of the Pellino family have been described in the regulation of innate and adaptive immune responses by ubiquitylation. This Review describes the emerging roles of Pellino proteins in innate and adaptive immunity and discusses the mechanistic basis of these functions.
Collapse
Affiliation(s)
- Paul N Moynagh
- 1] Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland. [2] Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Northern Ireland, United Kingdom
| |
Collapse
|
38
|
Wu W, Hu Y, Li J, Zhu W, Ha T, Que L, Liu L, Zhu Q, Chen Q, Xu Y, Li C, Li Y. Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovasc Res 2014; 102:46-55. [DOI: 10.1093/cvr/cvu007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
39
|
IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 2013; 111:775-80. [PMID: 24379360 DOI: 10.1073/pnas.1320294111] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic infections and tissue injuries trigger the assembly of inflammasomes, cytosolic protein complexes that activate caspase-1, leading to cleavage of pro-IL-1β and pro-IL-18 and to pyroptosis, a proinflammatory cell death program. Although microbial recognition by Toll-like receptors (TLRs) is known to induce the synthesis of the major caspase-1 substrate pro-IL-1β, the role of TLRs has been considered limited to up-regulation of the inflammasome components. During infection with a virulent microbe, TLRs and nucleotide-binding oligomerization domain-like receptors (NLRs) are likely activated simultaneously. To examine the requirements and outcomes of combined activation, we stimulated TLRs and a specific NLR, nucleotide binding and oligomerization, leucine-rich repeat, pyrin domain-containing 3 (NLRP3), simultaneously and discovered that such activation triggers rapid caspase-1 cleavage, leading to secretion of presynthesized inflammatory molecules and pyroptosis. This acute caspase-1 activation is independent of new protein synthesis and depends on the TLR-signaling molecule IL-1 receptor-associated kinase (IRAK-1) and its kinase activity. Importantly, Listeria monocytogenes induces NLRP3-dependent rapid caspase-1 activation and pyroptosis, both of which are compromised in IRAK-1-deficient macrophages. Our results reveal that simultaneous sensing of microbial ligands and virulence factors by TLRs and NLRP3, respectively, leads to a rapid TLR- and IRAK-1-dependent assembly of the NLRP3 inflammasome complex, and that such activation is important for release of alarmins, pyroptosis, and early IFN-γ production by memory CD8 T cells, all of which could be critical for early host defense.
Collapse
|
40
|
Pauls E, Nanda SK, Smith H, Toth R, Arthur JSC, Cohen P. Two phases of inflammatory mediator production defined by the study of IRAK2 and IRAK1 knock-in mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2717-30. [PMID: 23918981 DOI: 10.4049/jimmunol.1203268] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The roles of IL-1R-associated kinase (IRAK)2 and IRAK1 in cytokine production were investigated using immune cells from knock-in mice expressing the TNFR-associated factor 6 (TRAF6) binding-defective mutant IRAK2[E525A] or the catalytically inactive IRAK1[D359A] mutant. In bone marrow-derived macrophages (BMDMs), the IRAK2-TRAF6 interaction was required for the late (2-8 h) but not the early phase (0-2 h) of il6 and tnfa mRNA production, and hence for IL-6 and TNF-α secretion by TLR agonists that signal via MyD88. Loss of the IRAK2-TRAF6 interaction had little effect on the MyD88-dependent production of anti-inflammatory molecules produced during the early phase, such as Dual Specificity Phosphatase 1, and a modest effect on IL-10 secretion. The LPS/TLR4-stimulated production of il6 and tnfa mRNA and IL-6 and TNF-α secretion was hardly affected, because the Toll/IL-1R domain-containing adapter-inducing IFN-β (TRIF) signaling pathway was used instead of the IRAK2-TRAF6 interaction to sustain late-phase mRNA production. IRAK1 catalytic activity was not rate limiting for il6, tnfa, or il10 mRNA production or the secretion of these cytokines by BMDMs, but IFN-β mRNA induction by TLR7 and TLR9 agonists was greatly delayed in plasmacytoid dendritic cells (pDCs) from IRAK1[D359A] mice. In contrast, IFN-β mRNA production was little affected in pDCs from IRAK2[E525A] mice, but subsequent IFN-α mRNA production and IFN-α secretion were reduced. IFN-β and IFN-α production were abolished in pDCs from IRAK1[D359A] × IRAK2[E525A] double knock-in mice. Our results establish that the IRAK2-TRAF6 interaction is rate limiting for the late, but not the early phase of cytokine production in BMDM and pDCs, and that the IRAK2-TRAF6 interaction is needed to sustain IκB-inducing kinase β activity during prolonged activation of the MyD88 signaling network. [corrected]
Collapse
Affiliation(s)
- Eduardo Pauls
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona 08916, Spain
| | - Sambit K Nanda
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Hilary Smith
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Rachel Toth
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - J Simon C Arthur
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom.,Division of Cell Signaling and Immunology Unit, Sir James Black Centre, University of Dundee, DD1 5EH, United Kingdom
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
41
|
Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis. Nat Immunol 2013; 14:927-36. [PMID: 23892723 DOI: 10.1038/ni.2669] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
Abstract
Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation.
Collapse
|
42
|
Ordureau A, Enesa K, Nanda S, Le Francois B, Peggie M, Prescott A, Albert PR, Cohen P. DEAF1 is a Pellino1-interacting protein required for interferon production by Sendai virus and double-stranded RNA. J Biol Chem 2013; 288:24569-80. [PMID: 23846693 PMCID: PMC3750155 DOI: 10.1074/jbc.m113.479550] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Double-stranded (ds) RNA of viral origin, a ligand for Melanoma Differentiation-associated gene 5 (MDA5) and Toll-Like Receptor 3 (TLR3), induces the TANK-Binding Kinase 1 (TBK1)-dependent phosphorylation and activation of Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1, which are required for interferon β (IFNβ) gene transcription. Here, we report that Pellino1 interacts with the transcription factor Deformed Epidermal Autoregulatory Factor 1 (DEAF1). The interaction is independent of the E3 ligase activity of Pellino1, but weakened by the phosphorylation of Pellino1. We show that DEAF1 binds to the IFNβ promoter and to IRF3 and IRF7, that it is required for the transcription of the IFNβ gene and IFNβ secretion in MEFs infected with Sendai virus or transfected with poly(I:C). DEAF1 is also needed for TLR3-dependent IFNβ production. Taken together, our results identify DEAF1 as a novel component of the signal transduction network by which dsRNA of viral origin stimulates IFNβ production.
Collapse
Affiliation(s)
- Alban Ordureau
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Xiao Y, Jin J, Chang M, Chang JH, Hu H, Zhou X, Brittain GC, Stansberg C, Torkildsen Ø, Wang X, Brink R, Cheng X, Sun SC. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 2013; 19:595-602. [PMID: 23603814 PMCID: PMC3899792 DOI: 10.1038/nm.3111] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Abstract
Microglia are crucial for the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Here we show that the E3 ubiquitin ligase Peli1 is abundantly expressed in microglia and promotes microglial activation during the course of EAE induction. Peli1 mediates the induction of chemokines and proinflammatory cytokines in microglia and thereby promotes recruitment of T cells into the central nervous system. The severity of EAE is reduced in Peli1-deficient mice despite their competent induction of inflammatory T cells in the peripheral lymphoid organs. Notably, Peli1 regulates Toll-like receptor (TLR) pathway signaling by promoting degradation of TNF receptor-associated factor 3 (Traf3), a potent inhibitor of mitogen-activated protein kinase (MAPK) activation and gene induction. Ablation of Traf3 restores microglial activation and CNS inflammation after the induction of EAE in Peli1-deficient mice. These findings establish Peli1 as a microglia-specific mediator of autoimmune neuroinflammation and suggest a previously unknown signaling mechanism of Peli1 function.
Collapse
Affiliation(s)
- Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Siednienko J, Jackson R, Mellett M, Delagic N, Yang S, Wang B, Tang LS, Callanan JJ, Mahon BP, Moynagh PN. Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons. Nat Immunol 2012; 13:1055-62. [PMID: 23042151 DOI: 10.1038/ni.2429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression.
Collapse
Affiliation(s)
- Jakub Siednienko
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Enesa K, Ordureau A, Smith H, Barford D, Cheung PCF, Patterson-Kane J, Arthur JSC, Cohen P. Pellino1 is required for interferon production by viral double-stranded RNA. J Biol Chem 2012; 287:34825-35. [PMID: 22902624 PMCID: PMC3464584 DOI: 10.1074/jbc.m112.367557] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/13/2012] [Indexed: 12/24/2022] Open
Abstract
Viral double-stranded RNA, a ligand for Toll-like Receptor 3 (TLR3) and the cytoplasmic RNA receptors RIG1 and MDA5, activate a signaling network in which the IKK-related protein kinase TBK1 phosphorylates the transcription factor Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1. IRF3 then translocates to the nucleus where it stimulates transcription of the interferonβ (IFNβ) gene, but the function of Pellino1 in this pathway is unknown. Here, we report that myeloid cells and embryonic fibroblasts from knock-in mice expressing an E3 ligase-deficient mutant of Pellino1 produce reduced levels of IFNβ mRNA and secrete much less IFNβ in response to viral double-stranded RNA because the interaction of IRF3 with the IFNβ promoter is impaired. These results identify Pellino1 as a novel component of the signal transduction network by which viral double-stranded RNA stimulates IFNβ gene transcription.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Knock-In Techniques
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Transduction/physiology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Transcription, Genetic/physiology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
| | | | | | - David Barford
- the Institute of Cancer Research, London SW36JB, United Kingdom
| | | | - Janet Patterson-Kane
- the Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G611QH, United Kingdom
| | | | - Philip Cohen
- From the MRC Protein Phosphorylation Unit and
- Scottish Institute for Cell Signaling, Sir James Black Centre, University of Dundee, DD15EH, United Kingdom
| |
Collapse
|
46
|
Kim TW, Yu M, Zhou H, Cui W, Wang J, DiCorleto P, Fox P, Xiao H, Li X. Pellino 2 is critical for Toll-like receptor/interleukin-1 receptor (TLR/IL-1R)-mediated post-transcriptional control. J Biol Chem 2012; 287:25686-95. [PMID: 22669975 PMCID: PMC3408172 DOI: 10.1074/jbc.m112.352625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Interleukin 1 receptor-associated kinase 1(IRAK1), a key molecule in TLR/IL-1R-mediated signaling, is phosphorylated, ubiquitinated, and degraded upon ligand stimulation. We and others have recently identified Pellino proteins as novel RING E3 ubiquitin ligases involved in IRAK1 polyubiquitination and degradation. However, it remains unclear how each Pellino member distinctly regulates TLR/IL-1R signaling by modulating IRAK1 ubiquitination. In this study we examined the role of Pellino 2 in IL-1- and LPS-mediated signaling and gene expression by knocking down Pellino 2 in human 293-IL-1R cells and primary bone marrow macrophages. Pellino 2 (but not Pellino 1) knockdown abolished IL-1- and LPS-induced Lys-63-linked IRAK1 ubiquitination with reduced Lys-48-linked IRAK1 ubiquitination. Furthermore, Pellino 2 is required for TAK1-dependent NFκB activation. However, because of the retained TAK1-independent NFκB activation, the levels of IL-1- and LPS-induced NFκB activation were not substantially affected in Pellino 2 knockdown 293-IL-1R cells and primary macrophages, respectively. On the other hand, Pellino 2 knockdown reduced the IL-1- and LPS-induced inflammatory gene expression at late time points, which was accompanied by increased decay rates of the mRNAs of the inflammatory genes. Importantly, IL-1- and LPS-mediated JNK and ERK activation were substantially attenuated in Pellino 2 knock-down cells, implicating MAPK activation in TLR/IL-1R-induced mRNA stabilization. Taken together, this study demonstrated that Pellino 2 plays a critical role for TLR/IL-1R-mediated post-transcriptional control.
Collapse
Affiliation(s)
| | - Minjia Yu
- From the Department of Immunology and
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Hao Zhou
- From the Department of Immunology and
| | - Wei Cui
- From the Department of Immunology and
| | - Jianan Wang
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Paul DiCorleto
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Paul Fox
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Hui Xiao
- From the Department of Immunology and
| | | |
Collapse
|
47
|
Jin W, Chang M, Sun SC. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 2012; 9:113-22. [PMID: 22307041 PMCID: PMC4002811 DOI: 10.1038/cmi.2011.60] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli.
Collapse
Affiliation(s)
- Wei Jin
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
48
|
Into T, Inomata M, Takayama E, Takigawa T. Autophagy in regulation of Toll-like receptor signaling. Cell Signal 2012; 24:1150-62. [PMID: 22333395 DOI: 10.1016/j.cellsig.2012.01.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Microbiology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Hozumi, Japan.
| | | | | | | |
Collapse
|