1
|
Madera D, Alonso-Gómez A, Delgado MJ, Valenciano AI, Alonso-Gómez ÁL. Gene Characterization of Nocturnin Paralogues in Goldfish: Full Coding Sequences, Structure, Phylogeny and Tissue Expression. Int J Mol Sci 2023; 25:54. [PMID: 38203224 PMCID: PMC10779419 DOI: 10.3390/ijms25010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this work is the full characterization of all the nocturnin (noc) paralogues expressed in a teleost, the goldfish. An in silico analysis of the evolutive origin of noc in Osteichthyes is performed, including the splicing variants and new paralogues appearing after teleostean 3R genomic duplication and the cyprinine 4Rc. After sequencing the full-length mRNA of goldfish, we obtained two isoforms for noc-a (noc-aa and noc-ab) with two splice variants (I and II), and only one for noc-b (noc-bb) with two transcripts (II and III). Using the splicing variant II, the prediction of the secondary and tertiary structures renders a well-conserved 3D distribution of four α-helices and nine β-sheets in the three noc isoforms. A synteny analysis based on the localization of noc genes in the patrilineal or matrilineal subgenomes and a phylogenetic tree of protein sequences were accomplished to stablish a classification and a long-lasting nomenclature of noc in goldfish, and valid to be extrapolated to allotetraploid Cyprininae. Finally, both goldfish and zebrafish showed a broad tissue expression of all the noc paralogues. Moreover, the enriched expression of specific paralogues in some tissues argues in favour of neo- or subfunctionalization.
Collapse
Affiliation(s)
| | | | | | | | - Ángel Luis Alonso-Gómez
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.M.); (A.A.-G.); (M.J.D.); (A.I.V.)
| |
Collapse
|
2
|
Kulshrestha S, Devkar R. Circadian control of Nocturnin and its regulatory role in health and disease. Chronobiol Int 2023; 40:970-981. [PMID: 37400970 DOI: 10.1080/07420528.2023.2231081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
Circadian rhythms are generated by intrinsic 24-h oscillations that anticipate the extrinsic changes associated with solar day. A conserved transcriptional-translational feedback loop generates these molecular oscillations of clock genes at the organismal and the cellular levels. One of the recently discovered outputs of circadian clock is Nocturnin (Noct) or Ccrn4l. In mice, Noct mRNA is broadly expressed in cells throughout the body, with a particularly high-amplitude rhythm in liver. NOCT belongs to the EEP family of proteins with the closest similarity to the CCR4 family of deadenylases. Multiple studies have investigated the role of Nocturnin in development, adipogenesis, lipid metabolism, inflammation, osteogenesis, and obesity. Further, mice lacking Noct (Noct KO or Noct-/-) are protected from high-fat diet-induced obesity and hepatic steatosis. Recent studies had provided new insights by investigating various aspects of Nocturnin, ranging from its sub-cellular localization to identification of its target transcripts. However, a profound understanding of its molecular function remains elusive. This review article seeks to integrate the available literature into our current understanding of the functions of Nocturnin, their regulatory roles in key tissues and to throw light on the existing scientific lacunae.
Collapse
Affiliation(s)
- Shruti Kulshrestha
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ranjitsinh Devkar
- Chronobiology and Molecular Endocrinology Lab, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Le PT, Bornstein SA, Motyl KJ, Tian L, Stubblefield JJ, Hong HK, Takahashi JS, Green CB, Rosen CJ, Guntur AR. A novel mouse model overexpressing Nocturnin results in decreased fat mass in male mice. J Cell Physiol 2019; 234:20228-20239. [PMID: 30953371 DOI: 10.1002/jcp.28623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
Nocturnin (NOCT) belongs to the Mg2+ dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ. In this study, we characterized the skeletal and adipose tissue phenotype when we globally overexpressed Noct in vivo. After 12 weeks of Noct overexpression, transgenic male mice had lower fat mass compared to controls, with no significant differences in the skeleton. Based on the presence of a mitochondrial target sequence in NOCT, we determined that mouse NOCT protein localizes to the mitochondria; subsequently, we found that NOCT overexpression led to a significant increase in the preadipocytes ability to utilize oxidative phosphorylation for ATP (adenosine triphosphate) generation. In summary, the effects of NOCT on adipocytes are likely through its novel role as a mediator of mitochondrial function.
Collapse
Affiliation(s)
- Phuong T Le
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Sheila A Bornstein
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Li Tian
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Jeremy J Stubblefield
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hee-Kyung Hong
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| | - Anyonya R Guntur
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine.,Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine
| |
Collapse
|
4
|
Hughes KL, Abshire ET, Goldstrohm AC. Regulatory roles of vertebrate Nocturnin: insights and remaining mysteries. RNA Biol 2018; 15:1255-1267. [PMID: 30257600 PMCID: PMC6284557 DOI: 10.1080/15476286.2018.1526541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional control of messenger RNA (mRNA) is an important layer of gene regulation that modulates mRNA decay, translation, and localization. Eukaryotic mRNA decay begins with the catalytic removal of the 3' poly-adenosine tail by deadenylase enzymes. Multiple deadenylases have been identified in vertebrates and are known to have distinct biological roles; among these proteins is Nocturnin, which has been linked to circadian biology, adipogenesis, osteogenesis, and obesity. Multiple studies have investigated Nocturnin's involvement in these processes; however, a full understanding of its molecular function remains elusive. Recent studies have provided new insights by identifying putative Nocturnin-regulated mRNAs in mice and by determining the structure and regulatory activities of human Nocturnin. This review seeks to integrate these new discoveries into our understanding of Nocturnin's regulatory functions and highlight the important remaining unanswered questions surrounding its regulation, biochemical activities, protein partners, and target mRNAs.
Collapse
Affiliation(s)
- Kelsey L. Hughes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Elizabeth T. Abshire
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Aaron C. Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Abstract
Sleep is nearly ubiquitous throughout the animal kingdom, yet little is known about how ecological factors or perturbations to the environment shape the duration and timing of sleep. In diverse animal taxa, poor sleep negatively impacts development, cognitive abilities and longevity. In addition to mammals, sleep has been characterized in genetic model organisms, ranging from the nematode worm to zebrafish, and, more recently, in emergent models with simplified nervous systems such as Aplysia and jellyfish. In addition, evolutionary models ranging from fruit flies to cavefish have leveraged natural genetic variation to investigate the relationship between ecology and sleep. Here, we describe the contributions of classical and emergent genetic model systems to investigate mechanisms underlying sleep regulation. These studies highlight fundamental interactions between sleep and sensory processing, as well as a remarkable plasticity of sleep in response to environmental changes. Understanding how sleep varies throughout the animal kingdom will provide critical insight into fundamental functions and conserved genetic mechanisms underlying sleep regulation. Furthermore, identification of naturally occurring genetic variation regulating sleep may provide novel drug targets and approaches to treat sleep-related diseases.
Collapse
Affiliation(s)
- Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Schröder HC, Grebenjuk VA, Wang X, Müller WEG. Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications. BIOINSPIRATION & BIOMIMETICS 2016; 11:041002. [PMID: 27452043 DOI: 10.1088/1748-3190/11/4/041002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the first description of the silicateins, a group of enzymes that mediate the formation of the amorphous, hydrated biosilica of the skeleton of the siliceous sponges, much progress has been achieved in the understanding of this biomineralization process. These discoveries include, beside the proof of the enzymatic nature of the sponge biosilica formation, the dual property of the enzyme, to act both as a structure-forming and structure-guiding protein, and the demonstration that the initial product of silicatein is a soft, gel-like material that has to undergo a maturation process during which it achieves its favorable physical-chemical properties allowing the development of various technological or medical applications. This process comprises the hardening of the material by the removal of water and ions, its cast-molding to specific morphologies, as well as the fusion of the biosilica nanoparticles through a biosintering mechanism. The discovery that the enzymatically formed biosilica is morphogenetically active and printable also opens new applications in rapid prototyping and three-dimensional bioprinting of customized scaffolds/implants for biomedical use.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
7
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2015; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
8
|
Müller WE, Schlossmacher U, Schröder HC, Lieberwirth I, Glasser G, Korzhev M, Neufurth M, Wang X. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system. Acta Biomater 2014; 10:450-62. [PMID: 23978410 DOI: 10.1016/j.actbio.2013.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/03/2013] [Accepted: 08/13/2013] [Indexed: 12/30/2022]
Abstract
The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated.
Collapse
|
9
|
Müller WEG, Qiang L, Schröder HC, Hönig N, Yuan D, Grebenjuk VA, Mussino F, Giovine M, Wang X. Carbonic anhydrase: a key regulatory and detoxifying enzyme for Karst plants. PLANTA 2014; 239:213-229. [PMID: 24385198 DOI: 10.1007/s00425-013-1981-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 06/03/2023]
Abstract
Karstification is a rapid process during which calcidic stones/limestones undergo dissolution with the consequence of a desertification of karst regions. A slow-down of those dissolution processes of Ca-carbonate can be approached by a reforestation program using karst-resistant plants that can resist alkaline pH and higher bicarbonate (HCO₃⁻) concentrations in the soil. Carbonic anhydrases (CA) are enzymes that mediate a rapid and reversible interconversion of CO₂ and HCO₃⁻. In the present study, the steady-state expression of a CA gene, encoding for the plant carbonic anhydrase from the parsley Petroselinum crispum, is monitored. The studies were primarily been performed during germination of the seeds up to the 12/14-day-old embryos. The CA cDNA was cloned. Quantitative polymerase chain reaction (qPCR) analysis revealed that the gene expression level of the P. crispum CA is strongly and significantly affected at more alkaline pH in the growth medium (pH 8.3). This abolishing effect is counteracted both by addition of HCO₃⁻ and by addition of polyphosphate (polyP) to the culture medium. In response to polyP, the increased pH in the vacuoles of the growing plants is normalized. The effect of polyP let us to propose that this polymer acts as a buffer system that facilitates the adjustment of the pH in the cytoplasm. In addition, it is proposed that polyP has the potential to act, especially in the karst, as a fertilizer that allows the karstic plants to cope with the adverse pH and HCO₃⁻ condition in the soil.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group, University Medical Center, Institute for Physiological Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Müller WEG, Neufurth M, Schlossmacher U, Schröder HC, Pisignano D, Wang X. The sponge silicatein-interacting protein silintaphin-2 blocks calcite formation of calcareous sponge spicules at the vaterite stage. RSC Adv 2014. [DOI: 10.1039/c3ra45193c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Müller WEG, Schröder HC, Markl JS, Grebenjuk VA, Korzhev M, Steffen R, Wang X. Cryptochrome in sponges: a key molecule linking photoreception with phototransduction. J Histochem Cytochem 2013; 61:814-32. [PMID: 23920109 DOI: 10.1369/0022155413502652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)-interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany (WEGM,HCS,JSM,VAG,MK,RS,XW)
| | | | | | | | | | | | | |
Collapse
|
12
|
Ribonucleoprotein complexes that control circadian clocks. Int J Mol Sci 2013; 14:9018-36. [PMID: 23698761 PMCID: PMC3676770 DOI: 10.3390/ijms14059018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/07/2013] [Accepted: 04/15/2013] [Indexed: 12/03/2022] Open
Abstract
Circadian clocks are internal molecular time-keeping mechanisms that enable organisms to adjust their physiology and behavior to the daily surroundings. Misalignment of circadian clocks leads to both physiological and health impairment. Post-transcriptional regulation and translational regulation of circadian clocks have been extensively investigated. In addition, accumulating evidence has shed new light on the involvement of ribonucleoprotein complexes (RNPs) in the post-transcriptional regulation of circadian clocks. Numerous RNA-binding proteins (RBPs) and RNPs have been implicated in the post-transcriptional modification of circadian clock proteins in different model organisms. Herein, we summarize the advances in the current knowledge on the role of RNP complexes in circadian clock regulation.
Collapse
|
13
|
Muller WEG, Schroder HC, Pisignano D, Markl JS, Wang X. Metazoan Circadian Rhythm: Toward an Understanding of a Light-Based Zeitgeber in Sponges. Integr Comp Biol 2013; 53:103-17. [DOI: 10.1093/icb/ict001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
14
|
Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications. BIOMEDICAL INORGANIC POLYMERS 2013; 54:197-234. [DOI: 10.1007/978-3-642-41004-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Godwin AR, Kojima S, Green CB, Wilusz J. Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:571-9. [PMID: 23274303 DOI: 10.1016/j.bbagrm.2012.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/12/2012] [Accepted: 12/16/2012] [Indexed: 01/06/2023]
Abstract
PARN, Nocturnin and Angel are three of the multiple deadenylases that have been described in eukaryotic cells. While each of these enzymes appear to target poly(A) tails for shortening and influence RNA gene expression levels and quality control, the enzymes differ in terms of enzymatic mechanisms, regulation and biological impact. The goal of this review is to provide an in depth biochemical and biological perspective of the PARN, Nocturnin and Angel deadenylases. Understanding the shared and unique roles of these enzymes in cell biology will provide important insights into numerous aspects of the post-transcriptional control of gene expression. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Alan R Godwin
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|