1
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
3
|
Grondin JM, Langelaan DN, Smith SP. Qualitative and Quantitative Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy. Methods Mol Biol 2023; 2657:115-128. [PMID: 37149526 DOI: 10.1007/978-1-0716-3151-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1H-15N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate-binding partners, to quantify the dissociation constant (Kd) of any identified interactions, and to the map the carbohydrate-binding site on the structure of a protein. Here, we describe the titration of a family 32 carbohydrate-binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction and map the GalNAc binding site onto the structure of CpCBM32. This approach can be applied to other CBM- and protein-ligand systems.
Collapse
Affiliation(s)
- Julie M Grondin
- Department of Education, Simon Fraser University, Burnaby, AB, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
4
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, Tucker MP, Wei H, Himmel ME. Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:55. [PMID: 33663584 PMCID: PMC7931346 DOI: 10.1186/s13068-021-01891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Present Address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Haibing Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Present Address: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Manal Yunes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 USA
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
6
|
Tokunaga Y, Nagata T, Kondo K, Katahira M, Watanabe T. NMR elucidation of nonproductive binding sites of lignin models with carbohydrate-binding module of cellobiohydrolase I. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:164. [PMID: 33042221 PMCID: PMC7541279 DOI: 10.1186/s13068-020-01805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/27/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Highly efficient enzymatic saccharification of pretreated lignocellulose is a key step in achieving lignocellulosic biorefinery. Cellobiohydrolase I (Cel7A) secreted by Trichoderma reesei is an industrially used cellulase that possesses carbohydrate-binding module 1 (TrCBM1) at the C-terminal domain. The nonproductive binding of TrCBM1 to lignin significantly decreases the enzymatic saccharification efficiency and increases the cost of biomass conversion because of the additionally required enzymes. Understanding the interaction mechanism between lignin and TrCBM1 is essential for realizing a cost-effective biofuel production; however, the binding sites in lignin have not been clearly elucidated. RESULTS Three types of 13C-labeled β-O-4 lignin oligomer models were synthesized and characterized. The 2D 1H-13C heteronuclear single-quantum correlation (HSQC) spectra of the 13C-labeled lignin models confirmed that the three types of the 13C labels were correctly incorporated in the (1) aromatic rings and β positions, (2) α positions, and (3) methoxy groups, respectively. The TrCBM1-binding sites in lignin were analyzed by observing NMR chemical shift perturbations (CSPs) using the synthetic 13C-labeled β-O-4 lignin oligomer models. Obvious CSPs were observed in signals from the aromatic regions in oligomers bound to TrCBM1, whereas perturbations in the signals from aliphatic regions and methoxy groups were insignificant. These findings indicated that hydrophobic interactions and π-π stacking were dominating factors in nonproductive binding. The synthetic lignin models have two configurations whose terminal units were differently aligned and donated C(I) and C(II). The C(I) ring showed remarkable perturbation compared with the C(II), which indicated that the binding of TrCBM1 was markedly affected by the configuration of the lignin models. The long-chain lignin models (degree of polymerization (DP) 4.16-4.70) clearly bound to TrCBM1. The interactions of TrCBM1 with the short-chain lignin models (DP 2.64-3.12) were insignificant, indicating that a DP greater than 4 was necessary for TrCBM1 binding. CONCLUSION The CSP analysis using 13C-labeled β-O-4 lignin oligomer models enabled the identification of the TrCBM1 binding sites in lignins at the atomic level. This specific interaction analysis will provide insights for new molecular designs of cellulase having a controlled affinity to cellulose and lignin for a cost-effective biorefinery process.
Collapse
Affiliation(s)
- Yuki Tokunaga
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Nagata
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Keiko Kondo
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Masato Katahira
- Institute of Advanced Energy (IAE), Kyoto University, Uji, Kyoto 611-0011 Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Uji, Kyoto 611-0011 Japan
| |
Collapse
|
7
|
Ribeiro DO, Viegas A, Pires VMR, Medeiros‐Silva J, Bule P, Chai W, Marcelo F, Fontes CMGA, Cabrita EJ, Palma AS, Carvalho AL. Molecular basis for the preferential recognition of β1,3‐1,4‐glucans by the family 11 carbohydrate‐binding module from
Clostridium thermocellum. FEBS J 2019; 287:2723-2743. [DOI: 10.1111/febs.15162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/09/2019] [Accepted: 11/29/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Diana O. Ribeiro
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Aldino Viegas
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Virgínia M. R. Pires
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
| | - João Medeiros‐Silva
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Pedro Bule
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
| | - Wengang Chai
- Glycosciences Laboratory Department of Medicine Imperial College London London UK
| | - Filipa Marcelo
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Carlos M. G. A. Fontes
- CIISA ‐ Faculdade de Medicina Veterinária Universidade de Lisboa Avenida da Universidade Técnica Lisboa Portugal
- NZYTech Genes & Enzymes Campus do Lumiar Estrada do Paço do Lumiar Edifício E Lisboa Portugal
| | - Eurico J. Cabrita
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| | - Angelina S. Palma
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
- Glycosciences Laboratory Department of Medicine Imperial College London London UK
| | - Ana Luísa Carvalho
- UCIBIO Departamento de Química Faculdade de Ciências e Tecnologia Universidade NOVA de Lisboa Caparica Portugal
| |
Collapse
|
8
|
Armenta S, Sánchez-Cuapio Z, Munguia ME, Pulido NO, Farrés A, Manoutcharian K, Hernandez-Santoyo A, Moreno-Mendieta S, Sánchez S, Rodríguez-Sanoja R. The role of conserved non-aromatic residues in the Lactobacillus amylovorus α-amylase CBM26-starch interaction. Int J Biol Macromol 2019; 121:829-838. [DOI: 10.1016/j.ijbiomac.2018.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
9
|
Furtado GP, Lourenzoni MR, Fuzo CA, Fonseca-Maldonado R, Guazzaroni ME, Ribeiro LF, Ward RJ. Engineering the affinity of a family 11 carbohydrate binding module to improve binding of branched over unbranched polysaccharides. Int J Biol Macromol 2018; 120:2509-2516. [DOI: 10.1016/j.ijbiomac.2018.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/19/2023]
|
10
|
Enhanced features of Dictyoglomus turgidum Cellulase A engineered with carbohydrate binding module 11 from Clostridium thermocellum. Sci Rep 2018. [PMID: 29535356 PMCID: PMC5849603 DOI: 10.1038/s41598-018-22769-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lignocellulosic biomass (LCB) is a low-cost and abundant source of fermentable sugars. Enzymatic hydrolysis is one of the main ways to obtain sugars from biomass, but most of the polysaccharide-degrading enzymes are poorly efficient on LCB and cellulases with higher performances are required. In this study, we designed a chimeric protein by adding the carbohydrate binding module (CBM) of the cellulosomal enzyme CtLic26A-Cel5E (endoglucanase H or CelH) from Clostridium (Ruminiclostridium) thermocellum to the C-terminus of Dtur CelA, an interesting hyperthermostable endoglucanase from Dictyoglomus turgidum. The activity and binding rate of both native and chimeric enzyme were evaluated on soluble and insoluble polysaccharides. The addition of a CBM resulted in a cellulase with enhanced stability at extreme pHs, higher affinity and activity on insoluble cellulose.
Collapse
|
11
|
Grondin JM, Langelaan DN, Smith SP. Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy. Methods Mol Biol 2017; 1588:143-156. [PMID: 28417366 DOI: 10.1007/978-1-4939-6899-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1H-15N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (K d) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.
Collapse
Affiliation(s)
- Julie M Grondin
- Lethbridge Research Center, Agriculture and Agri-Food Canada, 5403-1 Ave. South, 3000, Lethbridge, AB, Canada, T1J 4P4.
| | - David N Langelaan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2
| | - Steven P Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| |
Collapse
|
12
|
Grondin JM, Duan D, Kirlin AC, Abe KT, Chitayat S, Spencer HL, Spencer C, Campigotto A, Houliston S, Arrowsmith CH, Allingham JS, Boraston AB, Smith SP. Diverse modes of galacto-specific carbohydrate recognition by a family 31 glycoside hydrolase from Clostridium perfringens. PLoS One 2017; 12:e0171606. [PMID: 28158290 PMCID: PMC5291390 DOI: 10.1371/journal.pone.0171606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/23/2017] [Indexed: 02/03/2023] Open
Abstract
Clostridium perfringens is a commensal member of the human gut microbiome and an opportunistic pathogen whose genome encodes a suite of putative large, multi-modular carbohydrate-active enzymes that appears to play a role in the interaction of the bacterium with mucin-based carbohydrates. Among the most complex of these is an enzyme that contains a presumed catalytic module belonging to glycoside hydrolase family 31 (GH31). This large enzyme, which based on its possession of a GH31 module is a predicted α-glucosidase, contains a variety of non-catalytic ancillary modules, including three CBM32 modules that to date have not been characterized. NMR-based experiments demonstrated a preference of each module for galacto-configured sugars, including the ability of all three CBM32s to recognize the common mucin monosaccharide GalNAc. X-ray crystal structures of the CpGH31 CBM32s, both in apo form and bound to GalNAc, revealed the finely-tuned molecular strategies employed by these sequentially variable CBM32s in coordinating a common ligand. The data highlight that sequence similarities to previously characterized CBMs alone are insufficient for identifying the molecular mechanism of ligand binding by individual CBMs. Furthermore, the overlapping ligand binding profiles of the three CBMs provide a fail-safe mechanism for the recognition of GalNAc among the dense eukaryotic carbohydrate networks of the colonic mucosa. These findings expand our understanding of ligand targeting by large, multi-modular carbohydrate-active enzymes, and offer unique insights into of the expanding ligand-binding preferences and binding site topologies observed in CBM32s.
Collapse
Affiliation(s)
- Julie M. Grondin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Da Duan
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alyssa C. Kirlin
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Kento T. Abe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Seth Chitayat
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Holly L. Spencer
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Craig Spencer
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alisha Campigotto
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John S. Allingham
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Steven P. Smith
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Yang H, Wei H, Ma G, Antunes MS, Vogt S, Cox J, Zhang X, Liu X, Bu L, Gleber SC, Carpita NC, Makowski L, Himmel ME, Tucker MP, McCann MC, Murphy AS, Peer WA. Cell wall targeted in planta iron accumulation enhances biomass conversion and seed iron concentration in Arabidopsis and rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1998-2009. [PMID: 26929151 PMCID: PMC5043494 DOI: 10.1111/pbi.12557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 05/27/2023]
Abstract
Conversion of nongrain biomass into liquid fuel is a sustainable approach to energy demands as global population increases. Previously, we showed that iron can act as a catalyst to enhance the degradation of lignocellulosic biomass for biofuel production. However, direct addition of iron catalysts to biomass pretreatment is diffusion-limited, would increase the cost and complexity of biorefinery unit operations and may have deleterious environmental impacts. Here, we show a new strategy for in planta accumulation of iron throughout the volume of the cell wall where iron acts as a catalyst in the deconstruction of lignocellulosic biomass. We engineered CBM-IBP fusion polypeptides composed of a carbohydrate-binding module family 11 (CBM11) and an iron-binding peptide (IBP) for secretion into Arabidopsis and rice cell walls. CBM-IBP transformed Arabidopsis and rice plants show significant increases in iron accumulation and biomass conversion compared to respective controls. Further, CBM-IBP rice shows a 35% increase in seed iron concentration and a 40% increase in seed yield in greenhouse experiments. CBM-IBP rice potentially could be used to address iron deficiency, the most common and widespread nutritional disorder according to the World Health Organization.
Collapse
Affiliation(s)
- Haibing Yang
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Guojie Ma
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
| | - Mauricio S Antunes
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Joseph Cox
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
| | - Xiao Zhang
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
| | - Xiping Liu
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
| | - Lintao Bu
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - S Charlotte Gleber
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Melvin P Tucker
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Maureen C McCann
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Angus S Murphy
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA.
- Department of Horticulture, Purdue University, West Lafayette, IN, USA.
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| | - Wendy A Peer
- Center for Direct Catalytic Conversion Of Biomass to Biofuels (C3Bio), Purdue University, West Lafayette, IN, USA
- Department of Horticulture, Purdue University, West Lafayette, IN, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
14
|
Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A. Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy. Chemistry 2015; 21:10778-85. [DOI: 10.1002/chem.201500856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/12/2022]
|
15
|
Campos BM, Liberato MV, Polikarpov I, Zeri ACDM, Squina FM. Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module from family 64 (StX). Acta Crystallogr F Struct Biol Commun 2015; 71:311-4. [PMID: 25760706 PMCID: PMC4356307 DOI: 10.1107/s2053230x15002198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
In recent years, biofuels have attracted great interest as a source of renewable energy owing to the growing global demand for energy, the dependence on fossil fuels, limited natural resources and environmental pollution. However, the cost-effective production of biofuels from plant biomass is still a challenge. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases to polysaccharides, is crucial for enzyme development. Aiming at the structural and functional characterization of novel CBMs involved in plant polysaccharide deconstruction, an analysis of the CAZy database was performed and CBM family 64 was chosen owing to its capacity to bind with high specificity to microcrystalline cellulose and to the fact that is found in thermophilic microorganisms. In this communication, the CBM-encoding module named StX was expressed, purified and crystallized, and X-ray diffraction data were collected from native and derivatized crystals to 1.8 and 2.0 Å resolution, respectively. The crystals, which were obtained by the hanging-drop vapour-diffusion method, belonged to space group P3121, with unit-cell parameters a = b = 43.42, c = 100.96 Å for the native form. The phases were found using the single-wavelength anomalous diffraction method.
Collapse
Affiliation(s)
- Bruna Medeia Campos
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Marcelo Vizona Liberato
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Ana Carolina de Mattos Zeri
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Fabio Marcio Squina
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| |
Collapse
|
16
|
Grondin JM, Chitayat S, Ficko-Blean E, Houliston S, Arrowsmith CH, Boraston AB, Smith SP. An Unusual Mode of Galactose Recognition by a Family 32 Carbohydrate-Binding Module. J Mol Biol 2014; 426:869-80. [DOI: 10.1016/j.jmb.2013.11.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/30/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022]
|