1
|
Abstract
In eukaryotes, heme attachment through two thioether bonds to mitochondrial cytochromes c and c1 is catalyzed by either multisubunit cytochrome c maturation system I or holocytochrome c synthetase (HCCS). The former was inherited from the alphaproteobacterial progenitor of mitochondria; the latter is a eukaryotic innovation for which prokaryotic ancestry is not evident. HCCS provides one of a few exemplars of de novo protein innovation in eukaryotes, but structure-function insight of HCCS is limited. Uniquely, euglenozoan protists, which include medically relevant kinetoplastids Trypanosoma and Leishmania parasites, attach heme to mitochondrial c-type cytochromes by a single thioether linkage. Yet the mechanism is unknown, as genes encoding proteins with detectable similarity to any proteins involved in cytochrome c maturation in other taxa are absent. Here, a bioinformatics search for proteins conserved in all hemoprotein-containing kinetoplastids identified kinetoplastid cytochrome c synthetase (KCCS), which we reveal as essential and mitochondrial and catalyzes heme attachment to trypanosome cytochrome c. KCCS has no sequence identity to other proteins, apart from a slight resemblance within four short motifs suggesting relatedness to HCCS. Thus, KCCS provides a novel resource for studying eukaryotic cytochrome c maturation, possibly with wider relevance, since mutations in human HCCS leads to disease. Moreover, many examples of mitochondrial biochemistry are different in euglenozoans compared to many other eukaryotes; identification of KCCS thus provides another exemplar of extreme, unusual mitochondrial biochemistry in an evolutionarily divergent group of protists.
Collapse
|
2
|
Ferguson SJ. Paracoccus denitrificans Oxidative Phosphorylation: Retentions, Gains, Losses, and Lessons En Route to Mitochondria. IUBMB Life 2018; 70:1214-1221. [PMID: 30428155 DOI: 10.1002/iub.1962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022]
Abstract
There are many similarities between the oxidative phosphorylation apparatus of mitochondria and those found in the cytoplasmic membranes of alpha-proteobacteria, exemplified by Paracocus denitrificans. These similarities are reviewed here alongside consideration of the differences between mitochondrial and bacterial counterparts, as well as the loss from the modern mitochondria of many of the bacterial respiratory proteins. The assembly of c-type cytochromes is of particular evolutionary interest as the post-translational apparatus used in the alpha-proteobacteria is found in plants, and for example in eukyarotic species including algae of various kinds together with jakobids, but has been superseded by different systems in mitochondria of metazoans and trypanosomatids. All mitochondrial cytochromes c have the N-terminal sequence feature that is recognised by the metazoan system whereas the bacterial counterparts do not, suggesting that the loss of the bacterial system from eukaryotes occurred in the context of an already present recognition sequence in the eukaryotic cytochromes. Interestingly, in the case of cytochromes c1 the putative recognition features for the metazoans appear to be substantially present in the bacterial proteins. The ability to prepare from P. denitrificans inverted membrane vesicles with classic respiratory control presents a valuable system from which to draw lessons concerning the long debated topic of what controls the rates of respiration and ATP synthesis in mitochondria. © 2018 IUBMB Life, 70(12):1214-1221, 2018.
Collapse
Affiliation(s)
- Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
3
|
Chen H, Lv M, Lv Z, Li C, Zhang W, Zhao X, Duan X, Jin C, Xiong J, Xu F, Li Y. Divergent roles of three cytochrome c in CTSB-modulating coelomocyte apoptosis in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:65-76. [PMID: 28549733 DOI: 10.1016/j.dci.2017.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Cytochrome c plays crucial roles in apoptosis and the immune response. We previously demonstrated that cathepsin B from Apostichopus japonicus (AjCTSB) induces coelomocyte apoptosis. However, the mechanistic explanation and the regulation of this process have not been investigated. In the present study, we identified three cytochrome c cDNAs from A. japonicus (designated Ajcytc1, Ajcytc-1, and Ajcytc-2) using expressed sequence tag- (EST) and RACE-based approaches. The deduced amino acid sequences of the three cytochrome isoforms contained conserved CXXCH motifs, which are involved in binding heme and maintaining proteolytic activity. Time course expression analysis in vitro and in vivo revealed that the three cytochrome isoforms were induced upon pathogen challenge and LPS exposure. More importantly, AjCTSB knockdown by siRNA dramatically increased mitochondrial membrane potential (ΔΨm) in a time-dependent manner based on JC-1 fluorescent probe staining. AjCTSB knockdown also resulted in decreased expression of these three cytochromes 24 h after siAjCTSB transfection. Functional analysis using isoform-specific siRNAs revealed that Ajcytc-1, but not Ajcytc1 or Ajcytc-2, is involved in coelomocyte apoptosis. Moreover, the transcript level of Ajcaspase-3, an apoptosis executioner, was also consistently down-regulated upon silencing of Ajcytc-1 but not Ajcytc1 or Ajcytc-2. Collectively, these results indicate that Ajcytc1, Ajcytc-1, and Ajcytc-2 play distinct roles in mediating the immune response to bacteria according to AjCTSB expression. Moreover, Ajcytc-1 could be released upon dissipation of the ΔΨm, which could further trigger coelomocyte apoptosis through the activation of Ajcaspase-3.
Collapse
Affiliation(s)
- Huahui Chen
- School of Marine Sciences, Ningbo University, PR China
| | - Miao Lv
- School of Marine Sciences, Ningbo University, PR China
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, PR China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, PR China
| | - Xuemei Duan
- School of Marine Sciences, Ningbo University, PR China
| | - Chunhua Jin
- School of Marine Sciences, Ningbo University, PR China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, PR China
| | - Feng Xu
- School of Marine Sciences, Ningbo University, PR China
| | - Ye Li
- School of Marine Sciences, Ningbo University, PR China
| |
Collapse
|
4
|
Babbitt SE, Hsu J, Mendez DL, Kranz RG. Biosynthesis of Single Thioether c-Type Cytochromes Provides Insight into Mechanisms Intrinsic to Holocytochrome c Synthase (HCCS). Biochemistry 2017; 56:3337-3346. [PMID: 28617588 DOI: 10.1021/acs.biochem.7b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
C-type cytochromes (cyts c) are generally characterized by the presence of two thioether attachments between heme and two cysteine residues within a highly conserved CXXCH motif. Most eukaryotes use the System III cyt c biogenesis pathway composed of holocytochrome c synthase (HCCS) to catalyze thioether formation. Some protozoan organisms express a functionally equivalent, natural variant of cyt c with an XXXCH heme-attachment motif, resulting in a single covalent attachment. Previous studies have shown that recombinant HCCS can produce low levels of the XXXCH single thioether variant. However, cyt c variants containing substitutions at the C-terminal cysteine of the heme-attachment site (i.e., resulting in CXXXH) have never been observed in nature, and attempts to biosynthesize a recombinant version of this cyt c variant have been largely unsuccessful. In this study, we report the biochemical analyses of an HCCS-matured CXXXH cyt c variant, comparing its biosynthesis and properties to those of the XXXCH variant. The results indicate that although HCCS mediates heme attachment to the N-terminal cysteine in CXXXH cyt c variants, up to 50% of the cyt c produced is modified in an oxygen-dependent manner, resulting in a mixed population of cyt c. Since this aerobic modification occurs only in the context of CXXXH, we also propose that natural HCCS-mediated heme attachment to CXXCH likely initiates at the C-terminal cysteine.
Collapse
Affiliation(s)
- Shalon E Babbitt
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Jennifer Hsu
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Deanna L Mendez
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| | - Robert G Kranz
- Department of Biology, Washington University , St. Louis, Missouri 63130, United States
| |
Collapse
|
5
|
Zhang Y, Stevens JM, Ferguson SJ. Substrate recognition of holocytochrome c synthase: N-terminal region and CXXCH motif of mitochondrial cytochrome c. FEBS Lett 2014; 588:3367-74. [PMID: 25084480 PMCID: PMC4158909 DOI: 10.1016/j.febslet.2014.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
Abstract
Holocytochrome c synthase (HCCS) does not attach heme to cytochromes lacking the histidine in the CXXCH motif. HCCS can recognise C-terminally truncated cytochromes c. The aromatic nature of, or possibly shape complementarity to, F15 in cytochrome c is important for recognition by HCCS. The spacing of the phenylalanine relative to the CXXCH is a recognition feature.
Holocytochrome c synthase (HCCS) attaches heme covalently to mitochondrial respiratory cytochromes c. Little is known about the reaction of heme attachment to apocytochromes c by HCCS, although recently it has been established that the CXXCH motif and the N-terminus of the apocytochrome polypeptide are important protein–protein recognition motifs. Here, we explore further the important features of the N-terminal sequence and investigate what variations in the CXXCH residues are productively recognised by HCCS in its substrate.
Collapse
Affiliation(s)
- Yulin Zhang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | - Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
6
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Mavridou DAI, Ferguson SJ, Stevens JM. Cytochrome c assembly. IUBMB Life 2013; 65:209-16. [PMID: 23341334 DOI: 10.1002/iub.1123] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 11/08/2022]
Abstract
Cytochromes c are central proteins in energy transduction processes by virtue of their functions in electron transfer in respiration and photosynthesis. They have heme covalently attached to a characteristic CXXCH motif via protein-catalyzed post-translational modification reactions. Several systems with diverse constituent proteins have been identified in different organisms and are required to perform the heme attachment and associated functions. The necessary steps are translocation of the apocytochrome polypeptide to the site of heme attachment, transport and provision of heme to the appropriate compartment, reduction and chaperoning of the apocytochrome, and finally, formation of the thioether bonds between heme and two cysteines in the cytochrome. Here we summarize the established classical models for these processes and present recent progress in our understanding of the individual steps within the different cytochrome c biogenesis systems.
Collapse
|
8
|
Divergence of Erv1-associated mitochondrial import and export pathways in trypanosomes and anaerobic protists. EUKARYOTIC CELL 2012; 12:343-55. [PMID: 23264646 DOI: 10.1128/ec.00304-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In yeast (Saccharomyces cerevisiae) and animals, the sulfhydryl oxidase Erv1 functions with Mia40 in the import and oxidative folding of numerous cysteine-rich proteins in the mitochondrial intermembrane space (IMS). Erv1 is also required for Fe-S cluster assembly in the cytosol, which uses at least one mitochondrially derived precursor. Here, we characterize an essential Erv1 orthologue from the protist Trypanosoma brucei (TbERV1), which naturally lacks a Mia40 homolog. We report kinetic parameters for physiologically relevant oxidants cytochrome c and O(2), unexpectedly find O(2) and cytochrome c are reduced simultaneously, and demonstrate that efficient reduction of O(2) by TbERV1 is not dependent upon a simple O(2) channel defined by conserved histidine and tyrosine residues. Massive mitochondrial swelling following TbERV1 RNA interference (RNAi) provides evidence that trypanosome Erv1 functions in IMS protein import despite the natural absence of the key player in the yeast and animal import pathways, Mia40. This suggests significant evolutionary divergence from a recently established paradigm in mitochondrial cell biology. Phylogenomic profiling of genes also points to a conserved role for TbERV1 in cytosolic Fe-S cluster assembly. Conversely, loss of genes implicated in precursor delivery for cytosolic Fe-S assembly in Entamoeba, Trichomonas, and Giardia suggests fundamental differences in intracellular trafficking pathways for activated iron or sulfur species in anaerobic versus aerobic eukaryotes.
Collapse
|