1
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Glycosaminoglycan modifications of betaglycan regulate ectodomain shedding to fine-tune TGF-β signaling responses in ovarian cancer. Cell Commun Signal 2024; 22:128. [PMID: 38360757 PMCID: PMC10870443 DOI: 10.1186/s12964-024-01496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024] Open
Abstract
In pathologies including cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
Affiliation(s)
- Alex S Choi
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Laura M Jenkins-Lane
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Wade Barton
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Asha Kumari
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Carly Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Calen Raulerson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Ji
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mark D Starr
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Regina Whitaker
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Phaeton
- Department of Obstetrics and Gynecology, and Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Rebecca Arend
- Department of Gynecology Oncology, Heersink School of Medicine, University of Alabama School of Medicine, Birmingham, AL, 35233, USA
| | - Michael Shtutman
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Andrew B Nixon
- Department of Medicine and Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nadine Hempel
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Karthikeyan Mythreye
- Department of Pathology and O'Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
2
|
Choi AS, Jenkins-Lane LM, Barton W, Kumari A, Lancaster C, Raulerson C, Ji H, Altomare D, Starr MD, Whitaker R, Phaeton R, Arend R, Shtutman M, Nixon AB, Hempel N, Lee NY, Mythreye K. Heparan sulfate modifications of betaglycan promote TIMP3-dependent ectodomain shedding to fine-tune TGF-β signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555364. [PMID: 37693479 PMCID: PMC10491198 DOI: 10.1101/2023.08.29.555364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In pathologies such as cancer, aberrant Transforming Growth Factor-β (TGF-β) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pivotal pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-β responses. Betaglycan/type III TGF-β receptor (TβRIII), is an established co-receptor for the TGF-β superfamily known to bind directly to TGF-βs 1-3 and inhibin A/B. While betaglycan can be membrane-bound, it can also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. The extracellular domain of betaglycan undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. Here we report the unexpected discovery that the heparan sulfate modifications are critical for the ectodomain shedding of betaglycan. In the absence of such modifications, betaglycan is not shed. Such shedding is indispensable for the ability of betaglycan to suppress TGF-β signaling and the cells' responses to exogenous TGF-β ligands. Using unbiased transcriptomics, we identified TIMP3 as a key regulator of betaglycan shedding and thereby TGF-β signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-β signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan modifications of betaglycan for shedding and influence on TGF-β signaling responses. Dysregulated shedding of TGF-β receptors plays a vital role in determining the response and availability of TGF-βs', which is crucial for prognostic predictions and understanding of TGF-β signaling dynamics.
Collapse
|
3
|
Kumari A, Shonibare Z, Monavarian M, Arend RC, Lee NY, Inman GJ, Mythreye K. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38:139-161. [PMID: 33590419 PMCID: PMC7987693 DOI: 10.1007/s10585-021-10077-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. Late-stage diagnosis with significant tumor burden, accompanied by recurrence and chemotherapy resistance, contributes to this poor prognosis. These morbidities are known to be tied to events associated with epithelial-mesenchymal transition (EMT) in cancer. During EMT, localized tumor cells alter their polarity, cell-cell junctions, cell-matrix interactions, acquire motility and invasiveness and an exaggerated potential for metastatic spread. Key triggers for EMT include the Transforming Growth Factor-β (TGFβ) family of growth factors which are actively produced by a wide array of cell types within a specific tumor and metastatic environment. Although TGFβ can act as either a tumor suppressor or promoter in cancer, TGFβ exhibits its pro-tumorigenic functions at least in part via EMT. TGFβ regulates EMT both at the transcriptional and post-transcriptional levels as outlined here. Despite recent advances in TGFβ based therapeutics, limited progress has been seen for ovarian cancers that are in much need of new therapeutic strategies. Here, we summarize and discuss several recent insights into the underlying signaling mechanisms of the TGFβ isoforms in EMT in the unique metastatic environment of EOCs and the current therapeutic interventions that may be relevant.
Collapse
Affiliation(s)
- Asha Kumari
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Zainab Shonibare
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Mehri Monavarian
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology-Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nam Y Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Gareth J Inman
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karthikeyan Mythreye
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, WTI 320B, 1824 Sixth Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Gao P, Mu M, Chen Y, He J, Tao X, Song C. Yes-associated protein upregulates filopodia formation to promote alveolar epithelial-cell phagocytosis. Immunol Lett 2020; 225:44-49. [PMID: 32554050 DOI: 10.1016/j.imlet.2020.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
Cells engulf particles larger than 0.5 μm in diameter by phagocytosis, which is driven by cytoskeletal rearrangements. Phagocytosis by alveolar epithelial cells (AECs) helps to maintain the alveolar homeostasis. Yes-associated protein (YAP), a transcriptional coactivator of the Hippo pathway, affects proliferation, differentiation, and cytoskeletal rearrangement of AECs, but it is not clear whether YAP regulates phagocytosis. In this study, interference with YAP expression inhibited phagocytosis in MLE-12 cells and in primary cultures of AEC. Filopodia formation promoted phagocytosis in AECs, and YAP enhanced filopodia formation in AECs. Blocking PI3K signaling resulted in reduced YAP protein expression and inhibition of phagocytosis. The results indicate that YAP expression was regulated by PI3K signaling and promoted phagocytosis in AECs by upregulating filopodia formation.
Collapse
Affiliation(s)
- Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, PR China; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, PR China; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Yan Chen
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, PR China; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, PR China; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, PR China
| | - Xiangnan Tao
- Clinical Laboratory, The Second Affiliated Hospital of Bengbu Medical College, Anhui, 233004, PR China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, PR China; Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui, 233030, PR China; Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, 233030, PR China.
| |
Collapse
|
5
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
6
|
Abstract
Metastasis, the dissemination of cancer cells from primary tumors, represents a major hurdle in the treatment of cancer. The epithelial-mesenchymal transition (EMT) has been studied in normal mammalian development for decades, and it has been proposed as a critical mechanism during cancer progression and metastasis. EMT is tightly regulated by several internal and external cues that orchestrate the shifting from an epithelial-like phenotype into a mesenchymal phenotype, relying on a delicate balance between these two stages to promote metastatic development. EMT is thought to be induced in a subset of metastatic cancer stem cells (MCSCs), bestowing this population with the ability to spread throughout the body and contributing to therapy resistance. The EMT pathway is of increasing interest as a novel therapeutic avenue in the treatment of cancer, and could be targeted to prevent tumor cell dissemination in early stage patients or to eradicate existing metastatic cells in advanced stages. In this review, we describe the sequence of events and defining mechanisms that take place during EMT, and how these interactions drive cancer cell progression into metastasis. We summarize clinical interventions focused on targeting various aspects of EMT and their contribution to preventing cancer dissemination.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicolas Yelle
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Surgery, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
7
|
Quansah E, Sgamma T, Jaddoa E, Zetterström TS. Chronic methylphenidate regulates genes and proteins mediating neuroplasticity in the juvenile rat brain. Neurosci Lett 2017. [DOI: 10.1016/j.neulet.2017.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Klein RH, Lin Z, Hopkin AS, Gordon W, Tsoi LC, Liang Y, Gudjonsson JE, Andersen B. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genet 2017; 13:e1006745. [PMID: 28445475 PMCID: PMC5425218 DOI: 10.1371/journal.pgen.1006745] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amelia Soto Hopkin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
9
|
Wang K, Sun Y, Tao W, Fei X, Chang C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett 2017; 394:1-12. [PMID: 28089832 DOI: 10.1016/j.canlet.2016.12.036] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 01/10/2023]
Abstract
Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis.
Collapse
Affiliation(s)
- Kefeng Wang
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, 110004, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Wei Tao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Xiang Fei
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, 14642, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
10
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
11
|
Chen X, Wei L, Zhao S. miR-338 inhibits the metastasis of lung cancer by targeting integrin β3. Oncol Rep 2016; 36:1467-74. [PMID: 27431198 DOI: 10.3892/or.2016.4928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/27/2016] [Indexed: 11/06/2022] Open
Abstract
miR-338 as an intronic miRNA from apoptosis-associated tyrosine kinase (AATK) is involved in tumor proliferation and apoptosis, but its function and regulatory mechanism in lung cancer is still obscure. In the present study, we found that miR-338 was strikingly downregulated in 115 lung cancer tissues and 5 lung cancer cell lines. Besides, low level of miR-338 was associated with tumor emboli, TNM stage, tumor recurrence and poor survival. Regaining the expression of miR-338 in lung cancer cell lines significantly impaired cellular adhesion, migration, invasion and lung tumor formation in nude mice. Furthermore, we also identified a metastasis related protein, integrin β3 (ITGB3), as a novel target gene of miR-338. Our results reveal a new regulatory mechanism of miR-338 which may help us better understand the metastasis of lung cancer.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Li Wei
- Department of Thoracic Surgery, The People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
12
|
Shed proteoglycans in tumor stroma. Cell Tissue Res 2016; 365:643-55. [DOI: 10.1007/s00441-016-2452-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
13
|
Sun BO, Fang Y, Li Z, Chen Z, Xiang J. Role of cellular cytoskeleton in epithelial-mesenchymal transition process during cancer progression. Biomed Rep 2015; 3:603-610. [PMID: 26405532 DOI: 10.3892/br.2015.494] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, cancer metastases remain a major clinical problem that highlights the importance of recognition of the metastatic process in cancer diagnosis and treatment. A critical process associated with the metastasis process is the transformation of epithelial cells toward the motile mesenchymal state, a process called epithelial-mesenchymal transition (EMT). Increasing evidence suggests the crucial role of the cytoskeleton in the EMT process. The cytoskeleton is composed of the actin cytoskeleton, the microtubule network and the intermediate filaments that provide structural design and mechanical strength that is necessary for the EMT. The dynamic reorganization of the actin cytoskeleton is a prerequisite for the morphology, migration and invasion of cancer cells. The microtubule network is the cytoskeleton that provides the driving force during cell migration. Intermediate filaments are significantly rearranged, typically switching from cytokeratin-rich to vimentin-rich networks during the EMT process, accompanied by a greatly enhanced cell motility capacity. In the present review, the recent novel insights into the different cytoskeleton underlying EMT are summarized. There are numerous advances in our understanding of the fundamental role of the cytoskeleton in cancer cell invasion and migration.
Collapse
Affiliation(s)
- B O Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Yantian Fang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhenyang Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
14
|
Meyen D, Tarbashevich K, Banisch TU, Wittwer C, Reichman-Fried M, Maugis B, Grimaldi C, Messerschmidt EM, Raz E. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. eLife 2015; 4. [PMID: 25875301 PMCID: PMC4397908 DOI: 10.7554/elife.05279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 01/08/2023] Open
Abstract
Cell migration and polarization is controlled by signals in the environment. Migrating cells typically form filopodia that extend from the cell surface, but the precise function of these structures in cell polarization and guided migration is poorly understood. Using the in vivo model of zebrafish primordial germ cells for studying chemokine-directed single cell migration, we show that filopodia distribution and their dynamics are dictated by the gradient of the chemokine Cxcl12a. By specifically interfering with filopodia formation, we demonstrate for the first time that these protrusions play an important role in cell polarization by Cxcl12a, as manifested by elevation of intracellular pH and Rac1 activity at the cell front. The establishment of this polarity is at the basis of effective cell migration towards the target. Together, we show that filopodia allow the interpretation of the chemotactic gradient in vivo by directing single-cell polarization in response to the guidance cue. DOI:http://dx.doi.org/10.7554/eLife.05279.001 Some of the cells in an animal embryo have to migrate long distances to reach their final positions; that is to say, to reach the locations where they will participate in the formation of tissues and organs. The migration of cells is also important throughout the entire lifespan of an animal. White blood cells, for example, must be able to move within tissues to search for and fight infections as well as to detect and remove abnormal cells. The front end of a migrating cell typically protrudes. The back of the cell is then pulled and detaches, which allows the whole cell to move forward. Migrating cells generate thin finger-like projections known as filopodia that have been suggested to help the cell sense their external environments and follow chemical cues. It is not clear what happens to a migrating cell in a living organism if the formation of its filopodia is impaired, or even how filipodia help the normal migration of cells in animals. To define how filopodia help to guide migrating cells in an animal, Meyen et al. analyzed the migration of cells called ‘primordial germ cells’ (or PGCs) in zebrafish. These cells form very early on in development of a zebrafish embryo at a position that is far away from their final location (in the testes or ovaries where they will go on to form sperm or egg cells respectively). Meyen et al. revealed that cells that are exposed to the guidance cue (a protein called a chemokine) form more filopodia at their front compared to their rear. The filopodia formed at the cell front also extend and retract more frequently. Meyen et al. further observed that the specific chemokine that guides the cells can bind to the filopodia and enter the cell. This leads to a signal inside the cell that tells the cell to move in the direction where more of the chemokine is found. Indeed, altering the distribution and number of filopodia around the cell's edge decreases the ability of the primordial germ cells to reach their targets. Together, this work shows that the filopodia at the front end of cells are required for sensing the chemokines that guide cell movement. Further work is required to understand the mechanism that determines the distribution of filopodia on the surface of migrating cells, and the role of chemokines in the process. Moreover, this work may also be relevant for understanding the migration of cancer cells, because several types of cancer can invade new tissues by following directional cues including chemokines. DOI:http://dx.doi.org/10.7554/eLife.05279.002
Collapse
Affiliation(s)
- Dana Meyen
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Torsten U Banisch
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Carolina Wittwer
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Michal Reichman-Fried
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Benoît Maugis
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Cecilia Grimaldi
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Esther-Maria Messerschmidt
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| | - Erez Raz
- Institute for Cell Biology, Center for Molecular Biology of Inflammation, Münster University, Münster, Germany
| |
Collapse
|