1
|
Ferri N, Marodin G. Emerging oral therapeutic strategies for inhibiting PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:25-31. [PMID: 39802651 PMCID: PMC11722601 DOI: 10.1016/j.athplu.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025]
Abstract
Pharmacological inhibition of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) have been firmly established to be an effective approach to reduce low-density lipoprotein (LDL) cholesterol levels and cardiovascular events. Subcutaneous administration of monoclonal antibodies (evolocumab and alirocumab) every 2 or 4 weeks determined a 60 % reduction of LDL cholesterol levels, while the GalNac-siRNA anti PCSK9 (inclisiran) provided an effective lipid lowering activity (-50 %) after an initial subcutaneous dose, repeated after 3 months and followed by a maintenance dose every 6 months. Although these two approaches have the potentiality to bring the majority of patients at high and very-high cardiovascular risk to the appropriate LDL cholesterol targets, their cost and subcutaneous administration represent a strong limitation for their large-scale use. These problems could be overcome by the development of small chemical molecules anti PCSK9 as oral therapy for controlling hypercholesterolemia. In the present review, we summarized the pharmacological properties of oral anti PCSK9 molecules that are currently under clinical development (DC371739, CVI-LM001, and AZD0780), including the mimetic peptides enlicitide decanoate (MK-0616) and NNC0385-0434.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giorgia Marodin
- Department of Pharmaceutical and Pharmacological Sciences, Padova, Italy
| |
Collapse
|
2
|
Liu G, Yu X, Cui C, Li X, Wang T, Palade PT, Mehta JL, Wang X. The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism. Acta Physiol (Oxf) 2025; 241:e14272. [PMID: 39797523 DOI: 10.1111/apha.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD. However, the broader clinical impacts of PCSK9 functions beyond cholesterol metabolism, including both desired and undesired effects from therapeutic PCSK9 inhibition, underscore the urgent necessity to elucidate the underlying mechanisms. Recent studies have shown that local PCSK9 in the vascular system can interact with other receptors such as CD36, LRP-1, and ABCA1. This provides new evidence supporting the potential contribution of PCSK9 to CVD through LDLR-independent signaling pathways. Therefore, this review aimed to outline the diverse effects of PCSK9 on CVD and discuss the underlying mechanisms in non-cholesterol-related processes, which will provide a rational basis for its long-term pharmacological inhibition in the clinic.
Collapse
Affiliation(s)
- Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| | - Xiatian Yu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Philip T Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China
| |
Collapse
|
3
|
Testa G, Giannelli S, Staurenghi E, Cecci R, Floro L, Gamba P, Sottero B, Leonarduzzi G. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer's Disease: A Possible Target for the Disease Treatment. Int J Mol Sci 2024; 25:13637. [PMID: 39769398 PMCID: PMC11727734 DOI: 10.3390/ijms252413637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease mainly caused by β-amyloid (Aβ) accumulation in the brain. Among the several factors that may concur to AD development, elevated cholesterol levels and brain cholesterol dyshomeostasis have been recognized to play a relevant role. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein primarily known to regulate plasma low-density lipoproteins (LDLs) rich in cholesterol and to be one of the main causes of familial hypercholesterolemia. In addition to that, PCSK9 is also recognized to carry out diverse important activities in the brain, including control of neuronal differentiation, apoptosis, and, importantly, LDL receptors functionality. Moreover, PCSK9 appeared to be directly involved in some of the principal processes responsible for AD development, such as inflammation, oxidative stress, and Aβ deposition. On these bases, PCSK9 management might represent a promising approach for AD treatment. The purpose of this review is to elucidate the role of PCSK9, whether or not cholesterol-related, in AD pathogenesis and to give an updated overview of the most innovative therapeutic strategies developed so far to counteract the pleiotropic activities of both humoral and brain PCSK9, focusing in particular on their potentiality for AD management.
Collapse
Affiliation(s)
- Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
- Division of Neurology Vand Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (G.T.); (S.G.); (E.S.); (R.C.); (L.F.); (P.G.); (G.L.)
| |
Collapse
|
4
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
5
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
6
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
7
|
Los B, Ferreira GM, Borges JB, Kronenberger T, Oliveira VFD, Dagli-Hernandez C, Bortolin RH, Gonçalves RM, Faludi AA, Mori AA, Barbosa TKA, Freitas RCCD, Jannes CE, Pereira ADC, Bastos GM, Poso A, Hirata RDC, Hirata MH. Effects of PCSK9 missense variants on molecular conformation and biological activity in transfected HEK293FT cells. Gene 2023; 851:146979. [DOI: 10.1016/j.gene.2022.146979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
8
|
Abstract
PURPOSE OF REVIEW Since the discovery of PCSK9 in 2003, this proprotein convertase was shown to target specific receptors for degradation in endosomes/lysosomes, including LDLR and other family members and hence to enhance the levels of circulating LDL-cholesterol (LDLc). Accordingly, inhibitors of PCSK9, including monoclonal antibodies blocking its circulating activity and siRNA silencers of its hepatic expression, are now used in clinics worldwide to treat hypercholesterolemia patients effectively and safely in combination with statins and/or ezetimibe. These powerful treatments reduce the incidence of atherosclerosis by at least 20%. Since 2008, novel targets of PCSK9 began to be defined, thereby expanding its roles beyond LDLc regulation into the realm of inflammation, pathogen infections and cellular proliferation in various cancers and associated metastases. RECENT FINDINGS Some pathogens such as dengue virus exploit the ability of PCSK9 to target the LDLR for degradation to enhance their ability to infect cells. Aside from increasing the degradation of the LDLR and its family members VLDLR, ApoER2 and LRP1, circulating PCSK9 also reduces the levels of other receptors such as CD36 (implicated in fatty acid uptake), oxidized LDLR receptor (that clears oxidized LDLc) as well as major histocompatibility class-I (MHC-I) receptors (implicated in the immune response to antigens). Thus, these novel targets provided links between PCSK9 and inflammation/atherosclerosis, viral infections and cancer/metastasis. The functional activities of PCSK9, accelerated the development of novel therapies to inhibit PCSK9 functions, including small molecular inhibitors, long-term vaccines, and possibly CRISPR-based silencing of hepatic expression of PCSK9. The future of inhibitors/silencers of PCSK9 function or expression looks bright, as these are expected to provide a modern armamentarium to treat various pathologies beyond hypercholesterolemia and its effects on atherosclerosis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| | - Damien Garçon
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
9
|
Benito-Vicente A, Uribe KB, Larrea-Sebal A, Palacios L, Cenarro A, Calle X, Galicia-Garcia U, Jebari-Benslaiman S, Sánchez-Hernández RM, Stef M, Lambert G, Civeira F, Martín C. Leu22_Leu23 Duplication at the Signal Peptide of PCSK9 Promotes Intracellular Degradation of LDLr and Autosomal Dominant Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2022; 42:e203-e216. [PMID: 35510551 DOI: 10.1161/atvbaha.122.315499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia. METHODS Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro. RESULTS L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation. CONCLUSIONS Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain (K.B.U.)
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Lourdes Palacios
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Ana Cenarro
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Xabier Calle
- Institute of Biological Phychiatry, Mental Health Services, University Hospital, Copenhagen, Denmark (X.C.)
| | - Unai Galicia-Garcia
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Rosa M Sánchez-Hernández
- Endocrinology Department, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria and Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Spain (R.M.S.-H.)
| | - Marianne Stef
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Gilles Lambert
- Inserm, Laboratoire UMR1188 DéTROI, Sainte Clotilde, France (G.L.).,Université de La Réunion, Faculté de Médecine, Saint Denis de La Réunion, France (G.L.)
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| |
Collapse
|
10
|
Lima IR, Tada MT, Oliveira TG, Jannes CE, Bensenor I, Lotufo PA, Santos RD, Krieger JE, Pereira AC. Polygenic risk score for hypercholesterolemia in a Brazilian familial hypercholesterolemia cohort. ATHEROSCLEROSIS PLUS 2022; 49:47-55. [PMID: 36644206 PMCID: PMC9833269 DOI: 10.1016/j.athplu.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of LDL-C leading to premature cardiovascular disease (CAD). Only about 40% of individuals with a clinical diagnosis of FH have a causative genetic variant identified, and a proportion of genetically negative cases may have a polygenic cause rather than a still unidentified monogenic cause. This work aims to evaluate and validate the role of a polygenic risk score (PRS) associated with hypercholesterolemia in a Brazilian FH cohort and its clinical implications. Methods We analyzed a previously derived PRS of 12 and 6 SNPs (Single Nucleotide Polymorphism) in 684 FH individuals (491 mutation-negative [FH/M-], 193 mutation-positive [FH/M+]) and in 1605 controls. Coronary artery calcium (CAC) score was also evaluated. Results The PRS was independently associated with LDL-C in control individuals (p < 0.001). Within this group, in individuals in the highest quartile of the 12 SNPs PRS, the odds ratio for CAC score >100 was 1.7 (95% CI: 1.01-2.88, p = 0.04) after adjustment for age and sex. Subjects in the FH/M- group had the highest mean score in both 12 and 6 SNPs PRS (38.25 and 27.82, respectively) when compared to the other two groups (p = 2.2 × 10-16). Both scores were also higher in the FH/M+ group (36.48 and 26.26, respectively) when compared to the control group (p < 0.001 for the two scores) but inferior to the FH/M- group. Within FH individuals, the presence of a higher PRS score was not associated with LDL-C levels or with CAD risk. Conclusion A higher PRS is associated with significantly higher levels of LDL-C and it is independently associated with higher CAC in the Brazilian general population. A polygenic cause can explain a fraction of FH/M- individuals but does not appear to be a modulator of the clinical phenotype among FH individuals, regardless of mutation status.
Collapse
Affiliation(s)
- Isabella Ramos Lima
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Corresponding author.
| | - Mauricio Teruo Tada
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Theo G.M. Oliveira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Isabela Bensenor
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Raul D. Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Genetics Department, Harvard Medical School, Boston, MA, USA,Corresponding author. Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
11
|
Lebeau PF, Platko K, Byun JH, Makda Y, Austin RC. The Emerging Roles of Intracellular PCSK9 and Their Implications in Endoplasmic Reticulum Stress and Metabolic Diseases. Metabolites 2022; 12:metabo12030215. [PMID: 35323658 PMCID: PMC8954296 DOI: 10.3390/metabo12030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of the proprotein convertase subtilisin/kexin type-9 (PCSK9) gene was quickly recognized by the scientific community as the third locus for familial hypercholesterolemia. By promoting the degradation of the low-density lipoprotein receptor (LDLR), secreted PCSK9 protein plays a vital role in the regulation of circulating cholesterol levels and cardiovascular disease risk. For this reason, the majority of published works have focused on the secreted form of PCSK9 since its initial characterization in 2003. In recent years, however, PCSK9 has been shown to play roles in a variety of cellular pathways and disease contexts in LDLR-dependent and -independent manners. This article examines the current body of literature that uncovers the intracellular and LDLR-independent roles of PCSK9 and also explores the many downstream implications in metabolic diseases.
Collapse
|
12
|
PCSK9 as a Target for Development of a New Generation of Hypolipidemic Drugs. Molecules 2022; 27:molecules27020434. [PMID: 35056760 PMCID: PMC8778893 DOI: 10.3390/molecules27020434] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 02/01/2023] Open
Abstract
PCSK9 has now become an important target to create new classes of lipid-lowering drugs. The prevention of its interaction with LDL receptors allows an increase in the number of these receptors on the surface of the cell membrane of hepatocytes, which leads to an increase in the uptake of cholesterol-rich atherogenic LDL from the bloodstream. The PCSK9 antagonists described in this review belong to different classes of compounds, may have a low molecular weight or belong to macromolecular structures, and also demonstrate different mechanisms of action. The mechanisms of action include preventing the effective binding of PCSK9 to LDLR, stimulating the degradation of PCSK9, and even blocking its transcription or transport to the plasma membrane/cell surface. Although several types of antihyperlipidemic drugs have been introduced on the market and are actively used in clinical practice, they are not without disadvantages, such as well-known side effects (statins) or high costs (monoclonal antibodies). Thus, there is still a need for effective cholesterol-lowering drugs with minimal side effects, preferably orally bioavailable. Low-molecular-weight PCSK9 inhibitors could be a worthy alternative for this purpose.
Collapse
|
13
|
Uribe KB, Chemello K, Larrea-Sebal A, Benito-Vicente A, Galicia-Garcia U, Bourane S, Jaafar AK, Lambert G, Martín C. A Systematic Approach to Assess the Activity and Classification of PCSK9 Variants. Int J Mol Sci 2021; 22:ijms222413602. [PMID: 34948399 PMCID: PMC8706470 DOI: 10.3390/ijms222413602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. OBJECTIVE Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. METHODS The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. RESULTS LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. CONCLUSIONS We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.
Collapse
Affiliation(s)
- Kepa B. Uribe
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastian, Spain
| | - Kevin Chemello
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Steeve Bourane
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Ali K. Jaafar
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint-Denis de La Reunion, France; (K.C.); (S.B.); (A.K.J.)
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| | - César Martín
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940 Leioa, Spain; (K.B.U.); (A.L.-S.); (A.B.-V.); (U.G.-G.)
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain
- Correspondence: (G.L.); (C.M.); Tel.: +94-601-8053 (C.M.)
| |
Collapse
|
14
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
15
|
Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur J Clin Invest 2021; 51:e13459. [PMID: 33236356 DOI: 10.1111/eci.13459] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is involved in cholesterol homeostasis. After binding to the complex low-density lipoprotein (LDL)-receptor, PCSK9 induces its intracellular degradation, thus reducing serum LDL clearance. In addition to the well-known activity on the hepatic LDL receptor-mediated pathway, PCSK9 has been, however, associated with vascular inflammation in atherogenesis. Indeed, PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g. endothelial cells, smooth muscle cells and macrophages) and is detected inside human atherosclerotic plaques. We here analyse the biology of PCSK9 and its possible involvement in molecular processes involved in atherosclerosis, beyond the regulation of circulating LDL cholesterol levels.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | - Danilo Neglia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Raffaele De Caterina
- Fondazione Toscana G. Monasterio, Pisa, Italy.,Cardiovascular Division, Pisa University Hospital, University of Pisa, Pisa, Italy
| | | | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
16
|
Huang Y, Ning K, Li WW, Lin G, Hou CL, Wang MJ, Zhu YC. Hydrogen sulfide accumulates LDL receptor precursor via downregulating PCSK9 in HepG2 cells. Am J Physiol Cell Physiol 2020; 319:C1082-C1096. [DOI: 10.1152/ajpcell.00244.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endogenous hydrogen sulfide (H2S) affects cholesterol homeostasis and liver X receptor α (LXRα) expression. However, whether low-density lipoprotein (LDL) receptor (LDLR), a key player in cholesterol homeostasis, is regulated by exogenous H2S through LXRα signaling has not been determined. We investigated the effects of sodium hydrosulfide (NaHS, H2S donor) on LDLR expression in the presence or absence of LXR agonists, T0901317 or GW3965 in HepG2 cells. We found that H2S strongly accumulated LDLR precursor in the presence of T0901317. Hence, LDLR transcription and the genes involved in LDLR precursor maturation and degradation were studied. T0901317 increased the LDLR mRNA level, whereas H2S did not affect LDLR transcription. H2S had no significant effect on the expression of LXRα and inducible degrader of LDLR (IDOL). H2S and T0901317 altered mRNA levels of several enzymes for N- and O-glycosylation and endoplasmic reticulum (ER) chaperones assisting LDLR maturation, but did not affect their protein levels. H2S decreased proprotein convertase subtilisin/kexin type 9 (PCSK9) protein levels and its mRNA level elevated by T0901317. T0901317 with PCSK9 siRNA also accumulated LDLR precursor as did T0901317 with H2S. High glucose increased PCSK9 protein levels and attenuated LDLR precursor accumulation induced by T0901317 with H2S. Taken together, H2S accumulates LDLR precursor by downregulating PCSK9 expression but not through the LXRα-IDOL pathway, LDLR transcriptional activation, or dysfunction of glycosylation enzymes and ER chaperones. These results also indicate that PCSK9 plays an important role in LDLR maturation in addition to its well-known effect on the degradation of LDLR mature form.
Collapse
Affiliation(s)
- Yong Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ke Ning
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Wen Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Cui-Lan Hou
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Oommen D, Kizhakkedath P, Jawabri AA, Varghese DS, Ali BR. Proteostasis Regulation in the Endoplasmic Reticulum: An Emerging Theme in the Molecular Pathology and Therapeutic Management of Familial Hypercholesterolemia. Front Genet 2020; 11:570355. [PMID: 33173538 PMCID: PMC7538668 DOI: 10.3389/fgene.2020.570355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal genetic disease characterized by high serum low-density lipoprotein (LDL) content leading to premature coronary artery disease. The main genetic and molecular causes of FH are mutations in low-density lipoprotein receptor gene (LDLR) resulting in the non-clearance of LDL from the blood by hepatocytes and consequently the formation of plaques. LDLR is synthesized and glycosylated in the endoplasmic reticulum (ER) and then transported to the plasma membrane via Golgi. It is estimated that more than 50% of reported FH-causing mutations in LDLR result in misfolded proteins that are transport-defective and hence retained in ER. ER accumulation of misfolded proteins causes ER-stress and activates unfolded protein response (UPR). UPR aids protein folding, blocks further protein synthesis, and eliminates misfolded proteins via ER-associated degradation (ERAD) to alleviate ER stress. Various studies demonstrated that ER-retained LDLR mutants are subjected to ERAD. Interestingly, chemical chaperones and genetic or pharmacological inhibition of ERAD have been reported to rescue the transport defective mutant LDLR alleles from ERAD and restore their ER-Golgi transport resulting in the expression of functional plasma membrane LDLR. This suggests the possibility of pharmacological modulation of proteostasis in the ER as a therapeutic strategy for FH. In this review, we picture a detailed analysis of UPR and the ERAD processes activated by ER-retained LDLR mutants associated with FH. In addition, we discuss and critically evaluate the potential role of chemical chaperones and ERAD modulators in the therapeutic management of FH.
Collapse
Affiliation(s)
- Deepu Oommen
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Aseel A Jawabri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
18
|
Strøm TB, Bjune K, Leren TP. Bone morphogenetic protein 1 cleaves the linker region between ligand-binding repeats 4 and 5 of the LDL receptor and makes the LDL receptor non-functional. Hum Mol Genet 2020; 29:1229-1238. [PMID: 31600776 DOI: 10.1093/hmg/ddz238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
The cell-surface low-density lipoprotein receptor (LDLR) internalizes low-density lipoprotein (LDL) by receptor-mediated endocytosis and plays a key role in the regulation of plasma cholesterol levels. The ligand-binding domain of the LDLR contains seven ligand-binding repeats of approximately 40 residues each. Between ligand-binding repeats 4 and 5, there is a 10-residue linker region that is subject to enzymatic cleavage. The cleaved LDLR is unable to bind LDL. In this study, we have screened a series of enzyme inhibitors in order to identify the enzyme that cleaves the linker region. These studies have identified bone morphogenetic protein 1 (BMP1) as being the cleavage enzyme. This conclusion is based upon the use of the specific BMP1 inhibitor UK 383367, silencing of the BMP1 gene by the use of siRNA or CRISPR/Cas9 technology and overexpression of wild-type BMP1 or the loss-of-function mutant E214A-BMP1. We have also shown that the propeptide of BMP1 has to be cleaved at RSRR120↓ by furin-like proprotein convertases for BMP1 to have an activity towards the LDLR. Targeting BMP1 could represent a novel strategy to increase the number of functioning LDLRs in order to lower plasma LDL cholesterol levels. However, a concern by using BMP1 inhibitors as cholesterol-lowering drugs could be the risk of side effects based on the important role of BMP1 in collagen assembly.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Petroglou D, Kanellos I, Savopoulos C, Kaiafa G, Chrysochoou A, Skantzis P, Daios S, Hatzitolios AI, Giannoglou G. The LDL-Receptor and its Molecular Properties: From Theory to Novel Biochemical and Pharmacological Approaches in Reducing LDL-cholesterol. Curr Med Chem 2020; 27:317-333. [PMID: 29865996 DOI: 10.2174/0929867325666180604114819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/25/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Low-Density Lipoprotein (LDL) Receptor (LDL-R) is a transmembrane protein playing a crucial role in effective lipid homeostasis. Various therapeutic agents have been used in the management of dyslipidemias, however, the outcome of therapeutic target is debated. OBJECTIVE The aim of this review is to summarize and fully understand the current concept regarding LDL-R and its molecular properties, metabolic pathway, factors affecting LDL-R activity and all available pharmacological interventions. Additionally, non-lipid related properties of LDL-R are also referred. METHODS Literature from the PubMed database was extracted to identify papers between 1984 to 2017 regarding LDL-R and therapeutic agents on dyslipidemia management. RESULTS We analyzed basic data regarding agents associated with LDL-R (Sterol Regulating Element-Binding Proteins - SREBPs, Protein ARH, IDOL, Thyroid Hormones, Haematologic Disorders, Protein convertase subtilisin kexintype 9 - PCSK-9, ApoC-III) as well as non-lipid related properties of LDL-R, while all relevant (common and novel) pharmacological interventions (statins, fibrates, cholesterol absorption inhibitors, bile acid sequestrants and PCSK- 9) are also referred. CONCLUSION LDL-R and its molecular properties are involved in lipid homeostasis, so potentially sets the therapeutic goals in cardiovascular patients, which is usually debated. Further research is needed in order to fully understand its properties, as well as to find the potential pharmacological interventions that could be beneficial in cholesterol homeostasis and various morbidities in order to reach the most appropriate therapeutic goal.
Collapse
Affiliation(s)
- Dimitrios Petroglou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilias Kanellos
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Savopoulos
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgia Kaiafa
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasios Chrysochoou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Skantzis
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos I Hatzitolios
- 1st Propedeutic Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Giannoglou
- 1st Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
20
|
Strøm TB, Bjune K, Costa LTD, Leren TP. Strategies to prevent cleavage of the linker region between ligand-binding repeats 4 and 5 of the LDL receptor. Hum Mol Genet 2019; 28:3734-3741. [PMID: 31332430 DOI: 10.1093/hmg/ddz164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/18/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023] Open
Abstract
A main strategy for lowering plasma low-density lipoprotein (LDL) cholesterol levels is to increase the number of cell-surface LDL receptors (LDLRs). This can be achieved by increasing the synthesis or preventing the degradation of the LDLR. One mechanism by which an LDLR becomes non-functional is enzymatic cleavage within the 10 residue linker region between ligand-binding repeats 4 and 5. The cleaved LDLR has only three ligand-binding repeats and is unable to bind LDL. In this study, we have performed cell culture experiments to identify strategies to prevent this cleavage. As a part of these studies, we found that Asp193 within the linker region is critical for cleavage to occur. Moreover, both 14-mer synthetic peptides and antibodies directed against the linker region prevented cleavage. As a consequence, more functional LDLRs were observed on the cell surface. The observation that the cleaved LDLR was present in extracts from the human adrenal gland indicates that cleavage of the linker region takes place in vivo. Thus, preventing cleavage of the LDLR by pharmacological measures could represent a novel lipid-lowering strategy.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Luís Teixeira da Costa
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Strøm TB, Vinje T, Bjune K, da Costa LT, Laerdahl JK, Leren TP. Lysosomal acid lipase does not have a propeptide and should not be considered being a proprotein. Proteins 2019; 88:440-448. [PMID: 31587363 DOI: 10.1002/prot.25821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023]
Abstract
Lysosomal acid lipase (LAL) plays an important role in lipid metabolism by performing hydrolysis of triglycerides and cholesteryl esters in the lysosome. Based upon characteristics of LAL purified from human liver, it has been proposed that LAL is a proprotein with a 55 residue propeptide that may be essential for proper folding, intracellular transport, or enzymatic function. However, the biological significance of such a propeptide has not been fully elucidated. In this study, we have performed a series of studies in cultured HepG2 and HeLa cells to determine the role of the putative propeptide. However, by Western blot analysis and subcellular fractionation, we have not been able to identify a cleaved LAL lacking the N-terminal 55 residues. Moreover, mutating residues surrounding the putative cleavage site at Lys76 ↓ in order to disrupt a proteinase recognition sequence, did not affect LAL activity. Furthermore, forcing cleavage at Lys76 ↓ by introducing the optimal furin cleavage site RRRR↓EL between residues 76 and 77, did not affect LAL activity. These data, in addition to bioinformatics analyses, indicate that LAL is not a proprotein. Thus, it is possible that the previously reported cleavage at Lys76 ↓ could have resulted from exposure to proteolytic enzymes during the multistep purification procedure.
Collapse
Affiliation(s)
- Thea B Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Terje Vinje
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Luís T da Costa
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
22
|
Vinje T, Laerdahl JK, Bjune K, Leren TP, Strøm TB. Characterization of the mechanisms by which missense mutations in the lysosomal acid lipase gene disrupt enzymatic activity. Hum Mol Genet 2019; 28:3043-3052. [DOI: 10.1093/hmg/ddz114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Hydrolysis of cholesteryl esters and triglycerides in the lysosome is performed by lysosomal acid lipase (LAL). In this study we have investigated how 23 previously identified missense mutations in the LAL gene (LIPA) (OMIM# 613497) affect the structure of the protein and thereby disrupt LAL activity. Moreover, we have performed transfection studies to study intracellular transport of the 23 mutants. Our main finding was that most pathogenic mutations result in defective enzyme activity by affecting the normal folding of LAL. Whereas, most of the mutations leading to reduced stability of the cap domain did not alter intracellular transport, nearly all mutations that affect the stability of the core domain gave rise to a protein that was not efficiently transported from the endoplasmic reticulum (ER) to the Golgi apparatus. As a consequence, ER stress was generated that is assumed to result in ER-associated degradation of the mutant proteins. The two LAL mutants Q85K and S289C were selected to study whether secretion-defective mutants could be rescued from ER-associated degradation by the use of chemical chaperones. Of the five chemical chaperones tested, only the proteasomal inhibitor MG132 markedly increased the amount of mutant LAL secreted. However, essentially no increased enzymatic activity was observed in the media. These data indicate that the use of chemical chaperones to promote the exit of folding-defective LAL mutants from the ER, may not have a great therapeutic potential as long as these mutants appear to remain enzymatically inactive.
Collapse
Affiliation(s)
- Terje Vinje
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway
| | - Katrine Bjune
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
24
|
Vinje T, Wierød L, Leren TP, Strøm TB. Prevalence of cholesteryl ester storage disease among hypercholesterolemic subjects and functional characterization of mutations in the lysosomal acid lipase gene. Mol Genet Metab 2018; 123:169-176. [PMID: 29196158 DOI: 10.1016/j.ymgme.2017.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Lysosomal acid lipase hydrolyzes cholesteryl esters and triglycerides contained in low density lipoprotein. Patients who are homozygous or compound heterozygous for mutations in the lysosomal acid lipase gene (LIPA), and have some residual enzymatic activity, have cholesteryl ester storage disease. One of the clinical features of this disease is hypercholesterolemia. Thus, patients with hypercholesterolemia who do not carry a mutation as a cause of autosomal dominant hypercholesterolemia, may actually have cholesteryl ester storage disease. In this study we have performed DNA sequencing of LIPA in 3027 hypercholesterolemic patients who did not carry a mutation as a cause of autosomal dominant hypercholesterolemia. Functional analyses of possibly pathogenic mutations and of all mutations in LIPA listed in The Human Genome Mutation Database were performed to determine the pathogenicity of these mutations. For these studies, HeLa T-REx cells were transiently transfected with mutant LIPA plasmids and Western blot analysis of cell lysates was performed to determine if the mutants were synthesized in a normal fashion. The enzymatic activity of the mutants was determined in lysates of the transfected cells using 4-methylumbelliferone-palmitate as the substrate. A total of 41 mutations in LIPA were studied, of which 32 mutations were considered pathogenic by having an enzymatic activity <10% of normal. However, none of the 3027 hypercholesterolemic patients were homozygous or compound heterozygous for a pathogenic mutation. Thus, cholesteryl ester storage disease must be a very rare cause of hypercholesterolemia in Norway.
Collapse
Affiliation(s)
- Terje Vinje
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lene Wierød
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
25
|
Peripheral vascular atherosclerosis in a novel PCSK9 gain-of-function mutant Ossabaw miniature pig model. Transl Res 2018; 192:30-45. [PMID: 29175268 PMCID: PMC5811343 DOI: 10.1016/j.trsl.2017.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 10/24/2022]
Abstract
Hypercholesterolemia is a major risk factor for atherosclerosis. Remaining challenges in the management of atherosclerosis necessitate development of animal models that mimic human pathophysiology. We characterized a novel mutant pig model with DNA transposition of D374Y gain-of-function (GOF) cDNA of chimp proprotein convertase subtilisin/kexin type-9 (PCSK9), and tested the hypothesis that it would develop peripheral vascular remodeling and target organ injury in the kidney. Wild-type or PCSK9-GOF Ossabaw miniature pigs fed a standard or atherogenic diet (AD) (n = 7 each) were studied in vivo after 3 and 6 months of diet. Single-kidney hemodynamics and function were studied using multidetector computed tomography and kidney oxygenation by blood oxygen level-dependent magnetic resonance imaging. The renal artery was evaluated by intravascular ultrasound, aortic stiffness by multidetector computed tomography, and kidney stiffness by magnetic resonance elastography. Subsequent ex vivo studies included the renal artery endothelial function and morphology of abdominal aorta, renal, and femoral arteries by histology. Compared with wild type, PCSK9-GOF pigs had elevated cholesterol, triglyceride, and blood pressure levels at 3 and 6 months. Kidney stiffness increased in GOF groups, but aortic stiffness only in GOF-AD. Hypoxia, intrarenal fat deposition, oxidative stress, and fibrosis were observed in both GOF groups, whereas kidney function remained unchanged. Peripheral arteries in GOF groups showed medial thickening and development of atheromatous plaques. Renal endothelial function was impaired only in GOF-AD. Therefore, the PCSK9-GOF mutation induces rapid development of atherosclerosis in peripheral vessels of Ossabaw pigs, which is exacerbated by a high-cholesterol diet. This model may be useful for preclinical studies of atherosclerosis.
Collapse
|
26
|
Qiu C, Zeng P, Li X, Zhang Z, Pan B, Peng ZYF, Li Y, Ma Y, Leng Y, Chen R. What is the impact of PCSK9 rs505151 and rs11591147 polymorphisms on serum lipids level and cardiovascular risk: a meta-analysis. Lipids Health Dis 2017; 16:111. [PMID: 28606094 PMCID: PMC5469167 DOI: 10.1186/s12944-017-0506-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background PCSK9 rs505151 and rs11591147 polymorphisms are identified as gain- and loss-of-function mutations, respectively. The effects of these polymorphisms on serum lipid levels and cardiovascular risk remain to be elucidated. Methods In this meta-analysis, we explored the association of PCSK9 rs505151 and rs11591147 polymorphisms with serum lipid levels and cardiovascular risk by calculating the standardized mean difference (SMD) and odds ratios (OR) with 95% confidence intervals (CI). Results Pooled results analyzed under a dominant genetic model indicated that the PCSK9 rs505151 G allele was related to higher levels of triglycerides (SMD: 0.14, 95% CI: 0.02 to 0.26, P = 0.021, I2 = 0) and low-density lipoproteins cholesterol (LDL-C) (SMD: 0.17, 95% CI: 0.00 to 0.35, P = 0.046, I2 = 75.9%) and increased cardiovascular risk (OR: 1.50, 95% CI: 1.19 to 1.89, P = 0.0006, I2 = 48%). The rs11591147 T allele was significantly associated with lower levels of total cholesterol (TC) and LDL-C (TC, SMD: -0.45, 95% CI: -0.57 to −0.32, P = 0.000, I2 = 0; LDL-C, SMD: -0.44, 95% CI: -0.55 to −0.33, P = 0.000, I2 = 0) and decreased cardiovascular risk (OR: 0.77, 95% CI: 0.60 to 0.98, P = 0.031, I2 = 59.9) in Caucasians. Conclusions This study indicates that the variant G allele of PCSK9 rs505151 confers increased triglyceride (TG) and LDL-C levels, as well as increased cardiovascular risk. Conversely, the variant T allele of rs11591147 protects carriers from cardiovascular disease susceptibility and lower TC and LDL-C levels in Caucasians. These findings provide useful information for researchers interested in the fields of PCSK9 genetics and cardiovascular risk prediction not only for designing future studies, but also for clinical and public health applications.
Collapse
Affiliation(s)
- Chengfeng Qiu
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China. .,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Pingyu Zeng
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohui Li
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhen Zhang
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bingjie Pan
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Y F Peng
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yapei Li
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yeshuo Ma
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Leng
- Xiangya school of Pharmaceutical Sciences, Central South University, Changsha, China.,Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Strøm TB, Laerdahl JK, Leren TP. Mutations affecting the transmembrane domain of the LDL receptor: impact of charged residues on the membrane insertion. Hum Mol Genet 2017; 26:1634-1642. [DOI: 10.1093/hmg/ddx068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/17/2017] [Indexed: 12/11/2022] Open
|
28
|
Ferri N, Ruscica M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 2016; 54:588-601. [PMID: 27038318 DOI: 10.1007/s12020-016-0939-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein (LDL) cholesterol plays a pivotal role in the pathogenesis of atherosclerotic cardiovascular disease (CVD). The discovery that proprotein convertase subtilisin/kexin type 9 (PCSK9) represents a key regulator pathway for hepatic LDL receptor (LDLR) degradation sheds light on new uncovered issues regarding LDL-C homeostasis. Indeed, as confirmed by phase II and III clinical trials with monoclonal antibodies, targeting PCSK9 represents the newest and most promising pharmacological tool for the treatment of hypercholesterolemia and related CVD. However, clinical, genetic, and experimental evidence indicates that PCSK9 may be either a cause or an effect in the context of metabolic syndrome (MetS), a condition comprising a cluster of risk factors including insulin resistance, obesity, hypertension, and atherogenic dyslipidemia. The latter is characterized by a triad of hypertriglyceridemia, low plasma concentrations of high-density lipoproteins, and qualitative changes in LDLs. PCSK9 levels seem to correlate with many of these lipid parameters as well as with the insulin sensitivity indices, although the molecular mechanisms behind this association are still unknown or not completely elucidated. Nevertheless, this area of research represents an important starting point for a better understanding of the physiological role of PCSK9, also considering the recent approval of new therapies involving anti-PCSK9. Thus, in the present review, we will discuss the current knowledge on the role of PCSK9 in the context of MetS, alteration of lipids, glucose homeostasis, and inflammation.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti 2, 35131, Padua, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
29
|
Lebeau P, Al-Hashimi A, Sood S, Lhoták Š, Yu P, Gyulay G, Paré G, Chen SRW, Trigatti B, Prat A, Seidah NG, Austin RC. Endoplasmic Reticulum Stress and Ca2+ Depletion Differentially Modulate the Sterol Regulatory Protein PCSK9 to Control Lipid Metabolism. J Biol Chem 2016; 292:1510-1523. [PMID: 27909053 DOI: 10.1074/jbc.m116.744235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence implicates endoplasmic reticulum (ER) stress as a mediator of impaired lipid metabolism, thereby contributing to fatty liver disease and atherosclerosis. Previous studies demonstrated that ER stress can activate the sterol regulatory element-binding protein-2 (SREBP2), an ER-localized transcription factor that directly up-regulates sterol regulatory genes, including PCSK9 Given that PCSK9 contributes to atherosclerosis by targeting low density lipoprotein (LDL) receptor (LDLR) degradation, this study investigates a novel mechanism by which ER stress plays a role in lipid metabolism by examining its ability to modulate PCSK9 expression. Herein, we demonstrate the existence of two independent effects of ER stress on PCSK9 expression and secretion. In cultured HuH7 and HepG2 cells, agents or conditions that cause ER Ca2+ depletion, including thapsigargin, induced SREBP2-dependent up-regulation of PCSK9 expression. In contrast, a significant reduction in the secreted form of PCSK9 protein was observed in the media from both thapsigargin- and tunicamycin (TM)-treated HuH7 cells, mouse primary hepatocytes, and in the plasma of TM-treated C57BL/6 mice. Furthermore, TM significantly increased hepatic LDLR expression and reduced plasma LDL concentrations in mice. Based on these findings, we propose a model in which ER Ca2+ depletion promotes the activation of SREBP2 and subsequent transcription of PCSK9. However, conditions that cause ER stress regardless of their ability to dysregulate ER Ca2+ inhibit PCSK9 secretion, thereby reducing PCSK9-mediated LDLR degradation and promoting LDLR-dependent hepatic cholesterol uptake. Taken together, our studies provide evidence that the retention of PCSK9 in the ER may serve as a potential strategy for lowering LDL cholesterol levels.
Collapse
Affiliation(s)
- Paul Lebeau
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Ali Al-Hashimi
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Sudesh Sood
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Šárka Lhoták
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Pei Yu
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Gabriel Gyulay
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Guillaume Paré
- the Population Health Research Institute and the Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, Ontario L8L 2X2
| | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 2T9, and
| | - Bernardo Trigatti
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Annik Prat
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, .,the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2
| |
Collapse
|
30
|
Wierød L, Cameron J, Strøm TB, Leren TP. Studies of the autoinhibitory segment comprising residues 31-60 of the prodomain of PCSK9: Possible implications for the mechanism underlying gain-of-function mutations. Mol Genet Metab Rep 2016; 9:86-93. [PMID: 27896130 PMCID: PMC5121147 DOI: 10.1016/j.ymgmr.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the low density lipoprotein receptor (LDLR) at the cell surface and is internalized as a complex with the LDLR. In the acidic milieu of the sorting endosome, PCSK9 remains bound to the LDLR and prevents the LDLR from folding over itself to adopt a closed conformation. As a consequence, the LDLR fails to recycle back to the cell membrane. Even though it is the catalytic domain of PCSK9 that interacts with the LDLR at the cell surface, the structurally disordered segment consisting of residues 31–60 and which is rich in acidic residues, has a negative effect both on autocatalytic cleavage and on the activity of PCSK9 towards the LDLR. Thus, this unstructured segment represents an autoinhibitory domain of PCSK9. One may speculate that post-translational modifications within residues 31–60 may affect the inhibitory activity of this segment, and represent a mechanism for fine-tuning the activity of PCSK9 towards the LDLR. Our data indicate that the inhibitory effect of this unstructured segment results from an interaction with basic residues of the catalytic domain of PCSK9. Mutations in the catalytic domain which involve charged residues, could therefore be gain-of-function mutations by affecting the positioning of this segment.
Collapse
Affiliation(s)
- Lene Wierød
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jamie Cameron
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
31
|
Sabatine MS, Underberg JA, Koren M, Baum SJ. Focus on PCSK9 Inhibitors: From Genetics to Clinical Practice. Postgrad Med 2016; 128 Suppl 1:31-9. [PMID: 27422124 DOI: 10.1080/00325481.2016.1208895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Elevation of low-density lipoprotein cholesterol (LDL-C) is an important cause of atherosclerotic cardiovascular disease (ASCVD). Over the years, clinical outcome studies with LDL-C lowering agents have revealed that reducing LCL-C levels is effective in reducing rates of major ASCVD events. Although secondary factors play a role in clinical expression, severe lipid disorders often have a strong genetic component. Genetic revelations have provided novel targets for improving LDL-C management in high-risk individuals. Most recently, researchers have explored how the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) alters LDL metabolism and lowers LDL-C levels to achieve lipid goals and potentially reduce ASCVD risk in patients with severe lipid disorders, including familial hypercholesterolemia (FH). This CMHC Spotlight article summarizes the clinical evidence demonstrating the safety, tolerability, and efficacy of PCSK9 inhibitors in lowering LDL-C levels. Reductions in LDL-C levels by PCSK9 inhibitors alone in patients who are statin intolerant or combined with maximally tolerated statins in patients with severe lipid disorders demonstrate the potential for reduced morbidity and mortality associated with ASCVD.
Collapse
Affiliation(s)
- Marc S Sabatine
- a Thrombolysis in Myocardial Infarction (TIMI) Study Group, Division of Cardiovascular Medicine , Brigham and Women's Hospital.,b Department of Medicine , Harvard Medical School , Boston , MA
| | - James A Underberg
- c NYU Medical School, NYU Center for CVD Prevention , Bellevue Hospital Lipid Clinic , New York , NY
| | - Michael Koren
- d Jacksonville Center for Clinical Research.,e Academy of Physicians in Clinical Research , Jacksonville , FL
| | - Seth J Baum
- f MB Clinical Research.,g American Society for Preventive Cardiology.,h The FH Foundation
| |
Collapse
|
32
|
Ferri N, Corsini A, Macchi C, Magni P, Ruscica M. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: experimental animal models and clinical evidence. Transl Res 2016; 173:19-29. [PMID: 26548330 DOI: 10.1016/j.trsl.2015.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/03/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) belongs to the proprotein convertase family. Several studies have demonstrated its involvement in the regulation of low-density lipoprotein (LDL) cholesterol levels by inducing the degradation of the LDL receptor (LDLR). However, experimental, epidemiologic, and pharmacologic data provide important evidence on the role of PCSK9 also on high-density lipoproteins (HDLs). In mice, PCSK9 regulates the HDL cholesterol (HDL-C) levels by the degradation of hepatic LDLR, thus inhibiting the uptake of apolipoprotein (Apo)E-containing HDLs. Several epidemiologic and genetic studies reported positive relationship between PCSK9 and HDL-C levels, likely by reducing the uptake of the ApoE-containing HDL particles. PCSK9 enhances also the degradation of LDLR's closest family members, ApoE receptor 2, very low-density lipoprotein receptor, and LDLR-related protein 1. This feature provides a molecular mechanism by which PCSK9 may affect HDL metabolism. Experimental studies demonstrated that PCSK9 directly interacts with HDL by modulating PCSK9 self-assembly and its binding to the LDLR. Finally, the inhibition of PCSK9 by means of monoclonal antibodies directed to PCSK9 (ie, evolocumab and alirocumab) determines an increase of HDL-C fraction by 7% and 4.2%, respectively. Thus, the understanding of the role of PCSK9 on HDL metabolism needs to be elucidated with a particular focus on the effect of PCSK9 on HDL-mediated reverse cholesterol transport.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy.
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milan, Italy
| | - Chiara Macchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Centro per lo Studio delle Malattie Dismetaboliche e delle Iperlipemie-Enrica Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
33
|
Strøm TB, Laerdahl JK, Leren TP. Mutation p.L799R in the LDLR, which affects the transmembrane domain of the LDLR, prevents membrane insertion and causes secretion of the mutant LDLR. Hum Mol Genet 2015. [PMID: 26220972 DOI: 10.1093/hmg/ddv304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in the low-density lipoprotein receptor (LDLR) gene cause familial hypercholesterolemia (FH). The mechanism by which mutations in the LDLR affecting the transmembrane domain of the receptor cause FH has not been thoroughly investigated. In this study, we have selected 12 naturally occurring mutations affecting the transmembrane domain and studied their effect on the LDLR. The main strategy has been to transiently transfect HepG2 cells with mutant LDLR plasmids and to study the mutant LDLRs in cell lysates and in media by western blot analysis. The most striking finding was that mutation p.L799R led to secretion of the entire 160 kDa mature L799R-LDLR. Residue 799Leu is in the middle of the 22-residue transmembrane domain, and introduction of a basic residue in the hydrophobic core of the transmembrane domain could prevent L799R-LDLR from being correctly recognized and integrated in the membrane by the Sec61 translocon complex. This would then lead to translocation of the entire L799R-LDLR into the lumen of the endoplasmic reticulum. Mutation p.L799R should be considered a member of a separate class of FH-causing mutations that affects the insertion of the LDLR in the cell membrane.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics
| | - Jon K Laerdahl
- Department of Microbiology and Bioinformatics Core Facility, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics,
| |
Collapse
|
34
|
Gauthier MS, Pérusse JR, Awan Z, Bouchard A, Tessier S, Champagne J, Krastins B, Byram G, Chabot K, Garneau P, Rabasa-Lhoret R, Faubert D, Lopez MF, Seidah NG, Coulombe B. A semi-automated mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA-SRM) reveals novel relationships between circulating PCSK9 and metabolic phenotypes in patient cohorts. Methods 2015; 81:66-73. [PMID: 25770357 DOI: 10.1016/j.ymeth.2015.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of circulating low density lipoprotein cholesterol (LDL-C) levels. Besides its full-length mature form, multiple variants of PCSK9 have been reported such as forms that are truncated, mutated and/or with posttranslational modifications (PTMs). Previous studies have demonstrated that most of these variants affect PCSK9's function and thereby LDL-C levels. Commercial ELISA kits are available for quantification of PCSK9, but do not allow discrimination between the various forms and PTMs of the protein. To address this issue and given the complexity and wide dynamic range of the plasma proteome, we have developed a mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA-SRM) for the multiplexed quantification of several forms of circulating PCSK9 in human plasma. Our MSIA-SRM assay quantifies peptides spanning the various protein domains and the S688 phosphorylation site. The assay was applied in two distinct cohorts of obese patients and healthy pregnant women stratified by their circulating LDL-C levels. Seven PCSK9 peptides were monitored in plasma samples: one in the prodomain prior to the autocleavage site at Q152, one in the catalytic domain prior to the furin cleavage site at R218, two in the catalytic domain following R218, one in the cysteine and histidine rich domain (CHRD) and the C-terminal peptide phosphorylated at S688 and unmodified. The latter was not detectable in sufficient amounts to be quantified in human plasma. All peptides were measured with high reproducibility and with LLOQ and LOD below the clinical range. The abundance of 5 of the 6 detectable PCSK9 peptides was higher in obese patients stratified with high circulating LDL-C levels as compared to those with low LDL-C (p < 0.05). The same 5 peptides showed good and statistically significant correlations with LDL-C levels (0.55 < r < 0.65; 0.0002 ⩽ p ⩽ 0.002), but not the S688 phosphorylated peptide. However, this phosphopeptide was significantly correlated with insulin resistance (r = 0.48; p = 0.04). In the pregnant women cohort, none of the peptides were associated to LDL-C levels. However, the 6 detectable PCSK9 peptides, but not PCSK9 measured by ELISA, were significantly correlated with serum triglyceride levels in this cohort. Our results also suggest that PCSK9 circulates with S688 phosphorylated at high stoichiometry. In summary, we have developed and applied a robust and sensitive MSIA-SRM assay for the absolute quantification of all PCSK9 domains and a PTM in human plasma. This assay revealed novel relationships between PCSK9 and metabolic phenotypes, as compared to classical ELISA assays.
Collapse
Affiliation(s)
- Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Joëlle R Pérusse
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Zuhier Awan
- King Abdulaziz University, Jeddah, Saudi Arabia; McGill University, Montréal, QC H3A 1A1, Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Sylvain Tessier
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Josée Champagne
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Bryan Krastins
- Thermo Fisher Scientific, Biomarker Research Initiatives in Mass Spectrometry Center, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Gregory Byram
- Thermo Fisher Scientific, Biomarker Research Initiatives in Mass Spectrometry Center, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Katherine Chabot
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Pierre Garneau
- General Surgery Department, Hôpital du Sacré-Coeur de Montréal, Montréal, QC H4J 1C5, Canada
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Mary F Lopez
- Thermo Fisher Scientific, Biomarker Research Initiatives in Mass Spectrometry Center, 790 Memorial Drive, Cambridge, MA 02139, USA
| | - Nabil G Seidah
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal (affiliated to the Université de Montréal), 110 Avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada; Department of Biochemistry, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
35
|
Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol 2015; 110:4. [PMID: 25600226 PMCID: PMC4298671 DOI: 10.1007/s00395-015-0463-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising treatment target to lower serum cholesterol, a major risk factor of cardiovascular diseases. Gain-of-function mutations of PCSK9 are associated with hypercholesterolemia and increased risk of cardiovascular events. Conversely, loss-of-function mutations cause low-plasma LDL-C levels and a reduction of cardiovascular risk without known unwanted effects on individual health. Experimental studies have revealed that PCSK9 reduces the hepatic uptake of LDL-C by increasing the endosomal and lysosomal degradation of LDL receptors (LDLR). A number of clinical studies have demonstrated that inhibition of PCSK9 alone and in addition to statins potently reduces serum LDL-C concentrations. This review summarizes the current data on the regulation of PCSK9, its molecular function in lipid homeostasis and the emerging evidence on the extra-hepatic effects of PCSK9.
Collapse
Affiliation(s)
- Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität Giessen, Aulweg 129, 35392, Giessen, Germany,
| | | | | |
Collapse
|
36
|
PCSK9 inhibition in LDL cholesterol reduction: Genetics and therapeutic implications of very low plasma lipoprotein levels. Pharmacol Ther 2015; 145:58-66. [DOI: 10.1016/j.pharmthera.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
|
37
|
Chorba JS, Shokat KM. The proprotein convertase subtilisin/kexin type 9 (PCSK9) active site and cleavage sequence differentially regulate protein secretion from proteolysis. J Biol Chem 2014; 289:29030-43. [PMID: 25210046 DOI: 10.1074/jbc.m114.594861] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biologic-based strategies to inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) show promise as anti-hypercholesterolemic and, therefore, anti-atherosclerotic therapies. Despite substantial effort, no small molecule strategy to inhibit PCSK9 has demonstrated feasibility. In this study we interrogated the chemistry of the PCSK9 active site and its adjacent residues to identify a foothold with which to drug the PCSK9 processing pathway and ultimately disrupt the interaction with the LDL receptor. Here, we develop a system in which we amplify the readout of PCSK9 proteolysis with a highly specific substrate in cells, showing that the PCSK9 catalytic domain is capable of proteolysis in trans. We use this system to show that the substrate specificity for PCSK9 proteolysis is distinct from the specificity for PCSK9 secretion, demonstrating that PCSK9 processing occurs in two separate sequential steps: that of proteolysis followed by secretion. We show that specific residues in the protease recognition sequence can differentially modulate the effects on proteolysis and secretion. Additionally, we demonstrate that the clinically described, dominant negative Q152H mutation restricts proteolysis and secretion independently. Our results suggest that the PCSK9 active site and its adjacent residues serve as an allosteric modulator of protein secretion independent of its role in proteolysis, revealing a new strategy for intracellular PCSK9 inhibition.
Collapse
Affiliation(s)
- John S Chorba
- From the Division of Cardiology, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, California 94110, Cardiovascular Research Institute, University of California, San Francisco, California 94158, and
| | - Kevan M Shokat
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158 and Department of Chemistry, University of California, Berkeley, California 94720
| |
Collapse
|
38
|
Mutation G805R in the transmembrane domain of the LDL receptor gene causes familial hypercholesterolemia by inducing ectodomain cleavage of the LDL receptor in the endoplasmic reticulum. FEBS Open Bio 2014; 4:321-7. [PMID: 24918045 PMCID: PMC4048843 DOI: 10.1016/j.fob.2014.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/22/2022] Open
Abstract
Mutation G805R is in the transmembrane domain of the LDLR. A polar residue in the transmembrane domain induced metalloproteinase cleavage. Mutation G805R caused reduced amounts of the precursor LDLR. Reduced amounts of precursor LDLR led to reduced amounts of the mature LDLR. Mutation G805R prevented γ-secretase cleavage within the transmembrane domain.
More than 1700 mutations in the low density lipoprotein receptor (LDLR) gene have been found to cause familial hypercholesterolemia (FH). These are commonly divided into five classes based upon their effects on the structure and function of the LDLR. However, little is known about the mechanism by which mutations in the transmembrane domain of the LDLR gene cause FH. We have studied how the transmembrane mutation G805R affects the function of the LDLR. Based upon Western blot analyses of transfected HepG2 cells, mutation G805R reduced the amounts of the 120 kDa precursor LDLR in the endoplasmic reticulum. This led to reduced amounts of the mature 160 kDa LDLR at the cell surface. However, significant amounts of a secreted 140 kDa G805R-LDLR ectodomain fragment was observed in the culture media. Treatment of the cells with the metalloproteinase inhibitor batimastat largely restored the amounts of the 120 and 160 kDa forms in cell lysates, and prevented secretion of the 140 kDa ectodomain fragment. Together, these data indicate that a metalloproteinase cleaved the ectodomain of the 120 kDa precursor G805R-LDLR in the endoplasmic reticulum. It was the presence of the polar Arg805 and not the lack of Gly805 which led to ectodomain cleavage. Arg805 also prevented γ-secretase cleavage within the transmembrane domain. It is conceivable that introducing a charged residue within the hydrophobic membrane lipid bilayer, results in less efficient incorporation of the 120 kDa G805R-LDLR in the endoplasmic reticulum membrane and makes it a substrate for metalloproteinase cleavage.
Collapse
|