1
|
Jia Z, Su H, Zhao Q, Wang S, Sun J, Mao X. Structure-Assisted Design of Chitosanase Product Specificity for the Production of High-Degree Polymerization Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19081-19092. [PMID: 39105795 DOI: 10.1021/acs.jafc.4c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Chitosanases are valuable enzymatic tools in the food industry for converting chitosan into functional chitooligosaccharides (COSs). However, most of the chitosanases extensively characterized produced a low degree of polymerization (DP) COSs (DP = 1-3, LdpCOSs), indicating an imperative for enhancements in the product specificity for the high DP COS (DP >3, HdpCOSs) production. In this study, a chitosanase from Methanosarcina sp. 1.H.T.1A.1 (OUC-CsnA4) was cloned and expressed. Analysis of the enzyme-substrate interactions and the subsite architecture of the OUC-CsnA4 indicated that a Ser49 mutation could modify its interaction pattern with the substrate, potentially enhancing product specificity for producing HdpCOSs. Site-directed mutagenesis provided evidence that the S49I and S49P mutations in OUC-CsnA4 enabled the production of up to 24 and 26% of (GlcN)5 from chitosan, respectively─the wild-type enzyme was unable to produce detectable levels of (GlcN)5. These mutations also altered substrate binding preferences, favoring the binding of longer-chain COSs (DP >5) and enhancing (GlcN)5 production. Furthermore, molecular dynamics simulations and molecular docking studies underscored the significance of +2 subsite interactions in determining the (GlcN)4 and (GlcN)5 product specificity. These findings revealed that the positioning and interactions of the reducing end of the substrate within the catalytic cleft are crucial factors influencing the product specificity of chitosanase.
Collapse
Affiliation(s)
- Zhenrong Jia
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Haipeng Su
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Qiang Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Shujia Wang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
2
|
Suzuki M, Saito A, Kobayashi M, Yokoyama T, Omiya S, Li J, Sugita K, Miki K, Saito JI, Ando A. Crystal structure of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1 in complex with chitotetraose. Biochim Biophys Acta Gen Subj 2024; 1868:130549. [PMID: 38158023 DOI: 10.1016/j.bbagen.2023.130549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by β - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity and the conformational switch from open to closed structures are still a mystery. METHODS The GH-46 subclass III chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), which also catalyzes the hydrolysis of GlcN-GlcNAc bonds in addition to GlcN-GlcN, has had its chitotetraose [(GlcN)4]-complexed crystal structure solved at 1.35 Å resolution. RESULTS The MH-K1 chitosanase's (GlcN)4-bound structure has numerous structural similarities to other GH-46 chitosanases in terms of substrate binding and catalytic processes. However, subsite -1, which is absolutely specific for GlcN, seems to characterize the structure of a subclass III chitosanase due to its distinctive length and angle of a flexible loop. According to a comparison of the (GlcN)4-bound and apo-form structures, the particular binding of a GlcN residue at subsite -2 through Asp77 causes the backbone helix to kink, which causes the upper- and lower-domains to approach closely when binding a substrate. CONCLUSIONS Although GH-46 chitosanases vary in the finer details of the subsites defining cleavage specificity, they share similar structural characteristics in substrate-binding, catalytic processes, and potentially in conformational change. GENERAL SIGNIFICANCE The precise binding of a GlcN residue to the -2 subsite is essential for the conformational shift that occurs in all GH-46 chitosanases, as shown by the crystal structures of the apo- and substrate-bound forms of MH-K1 chitosanase.
Collapse
Affiliation(s)
- Michihiko Suzuki
- Molecular Analysis Center, Research Unit, R&D Division, Kyowa Kirin, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akihiro Saito
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan; Department of Materials and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka 437-8555, Japan.
| | - Mariko Kobayashi
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Tomofumi Yokoyama
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Shoko Omiya
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Jian Li
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Kei Sugita
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Jun-Ichi Saito
- Molecular Analysis Center, Research Unit, R&D Division, Kyowa Kirin, Sunto-gun, Shizuoka 411-8731, Japan
| | - Akikazu Ando
- Department of Nanobiology, Graduate School of Advanced and Integration Science, Chiba University, Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
3
|
Wu C, Yu X, Zheng P, Chen P, Wu D. Rational Redesign of Chitosanase to Enhance Thermostability and Catalytic Activity to Produce Chitooligosaccharides with a Relatively High Degree of Polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15213-15223. [PMID: 37793074 DOI: 10.1021/acs.jafc.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Chitooligosaccharides (hdpCOS) with a high degree of polymerization (hdp, DP 4-10) generally have greater biological activities than those of low-DP (ldp, DP 2-3) COS. Chitosanase from Bacillus amyloliquefaciens KCP2 (Csn46) can degrade chitosan to more hdpCOS at high temperature (70 °C), but low thermal stability at this temperature makes it unsuitable for industrial application; the wild-type enzyme can only produce COS (DP 2-4) at lower temperatures. Several thermostable mutants were obtained by modifying chitosanase using a comprehensive strategy based on a computer-aided mutant design. A combination of four beneficial single-point mutations (A129L/T175 V/K70T/D34G) to Csn46 was selected to obtain a markedly improved mutant, Mut4, with a half-life at 60 °C extended from 34.31 to 690.80 min, and the specific activity increased from 1671.73 to 3528.77 U/mg. Mut4 produced COS with DPs of 2-4 and 2-7 at 60 and 70 °C, respectively. Therefore, Mut4 has the potential to be applied to the industrial-scale preparation of hdpCOS with high biological activity.
Collapse
Affiliation(s)
- Changyun Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pu Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Pengcheng Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Dan Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
4
|
Sun H, Zhao L, Mao X, Cao R, Liu Q. Identification of a Key Loop for Tuning Transglycosylation Activity in the Substrate-Binding Region of a Chitosanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5585-5591. [PMID: 37000127 DOI: 10.1021/acs.jafc.3c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Csn-PD, a glycoside family 46 chitosanase from Paenibacillus dendritiformis, exhibits endotype hydrolysis of chitosan and produces (GlcN)2 as the major product. Here, we report the crystal structure of Csn-PD at 1.68 Å resolution. The structure contains 14 α-helices and two β-strands that fold into two globular domains with the substrate bound between them. To evaluate the function of a loop in the substrate-binding region (residues 112-116, NDKHP), a mutant Csn-PDL1, in which this loop was deleted, was generated. Hydrolysis of chitosan by the mutant yielded chitooligosaccharides (COSs) with higher degrees of polymerization (DP) than the wild-type enzyme. Excitingly, (GlcN)6 was produced from smaller COSs via transglycosylation activity of the mutant. Hence, the catalytic performance of a chitosanase was altered by modification of a loop in the substrate-binding regions. Our novel data on a chitosanase with transglycosylation activity offer a promising way to produce COSs with high DP.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Jing G, Wenjun G, Yi W, Kepan X, Wen L, Tingting H, Zhiqiang C. Enhancing Enzyme Activity and Thermostability of Bacillus amyloliquefaciens Chitosanase BaCsn46A Through Saturation Mutagenesis at Ser196. Curr Microbiol 2023; 80:180. [PMID: 37046080 DOI: 10.1007/s00284-023-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Chitosanase plays an important role in chitooligosaccharides (COS) production. We found that the chitosanase (BaCsn46A) of Bacillus amyloliquefacien was a good candidate for chitosan hydrolysis of COS. In order to further improve the enzyme properties of BaCsn46A, the S196 located near the active center was found to be a critical site impacts on enzyme properties by sequence alignment analysis. Herein, saturation mutation was carried out to study role of 196 site on BaCsn46A catalytic function. Compared with WT, the specific enzyme activity of S196A increased by 118.79%, and the thermostability of S196A was much higher than WT. In addition, we found that the enzyme activity of S196P was 2.41% of that of WT, indicating that the type of amino acid in 196 site could significant affect the catalytic activity and thermostability of BaCsn46A. After molecular docking analysis we found that the increase in hydrogen bonds and decrease in unfavorable bonds interacting with the substrate were the main reason for the change of enzyme properties which is valuable for future studies on Bacillus species chitosanase.
Collapse
Affiliation(s)
- Guo Jing
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Gao Wenjun
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Wang Yi
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Xu Kepan
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Luo Wen
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
| | - Hong Tingting
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Cai Zhiqiang
- Laboratory of Applied Microbiology, School of Biological and Food Engineering, Changzhou University, Changzhou Jiangsu, 213164, China.
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
6
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7
|
Su H, Sun J, Jia Z, Zhao H, Mao X. Insights into promiscuous chitosanases: the known and the unknown. Appl Microbiol Biotechnol 2022; 106:6887-6898. [PMID: 36178516 DOI: 10.1007/s00253-022-12198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Chitosanase, a glycoside hydrolase (GH), catalyzes the cleavage of β-1,4-glycosidic bonds in polysaccharides and is widely distributed in nature. Many organisms produce chitosanases, and numerous chitosanases in the GH families have been intensely studied. The reported chitosanases mainly cleaved the inter-glucosamine glycosidic bonds, while substrate specificity is not strictly unique due to the existence of bifunctional or multifunctional activity profiles. The promiscuity of chitosanases is essential for the different pathways of biomass polysaccharide conversion and understanding of the chitosanase evolutionary process. However, the reviews for this aspect are completely unknown. This review provides an overview of the promiscuous activities, also considering the substrate and product specificity of chitosanases observed to date. These contribute to important implications for the future discovery and research of promiscuous chitosanases and applications related to biomass conversion. KEY POINTS: • The promiscuity of chitosanases is reviewed for the first time. • The current review provides insights into the substrate specificity of chitosanases. • The mode-product relationship and prospect of promiscuous chitosanases are highlighted.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhenrong Jia
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Hongjun Zhao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
8
|
Cao S, Gao P, Xia W, Liu S, Liu X. Cloning and characterization of a novel GH75 family chitosanase from Penicillium oxalicum M2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Xu Y, Li L, Cao S, Zhu B, Yao Z. An updated comprehensive review of advances on structural features, catalytic mechanisms, modification methods and applications of chitosanases. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Enhancement of the performance of the GH75 family chitosanases by fusing a carbohydrate binding module and insights into their substrate binding mechanisms. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
12
|
Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Appl Microbiol Biotechnol 2022; 106:1979-1990. [PMID: 35175399 DOI: 10.1007/s00253-022-11829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/02/2022]
Abstract
Chitosanases are critical tools for the preparation of active oligosaccharides, whose composition is related to the cleavage pattern of the enzyme. Although numerous chitosanases have been characterized, the glycoside hydrolase (GH) family 5 chitosanases with other activities have rarely been investigated. Herein, a novel and second GH5 chitosanase OUC-Csngly from Streptomyces bacillaris was cloned and further characterized by expression in Escherichia coli BL21 (DE3). Interestingly, OUC-Csngly possessed dual chitosanase and cellulase activities. Molecular docking analysis showed that the C-2 group of sugar units affected the binding of the enzyme to oligosaccharides, which could result in different cleavage patterns toward chito-oligosaccharides (COSs) and cello-oligosaccharides. Further, we characterized OUC-Csngly's distinctive cleavage patterns toward two different types of oligosaccharides. Meanwhile, endo-type chitosanase OUC-Csngly generated (GlcN) - (GlcN)4 from chitosan, was significantly different from other chitosanases. To our knowledge, this is the first report to investigate the different cleavage patterns of chitosanase for COSs and cello-oligosaccharides.Key points• The molecular docking showed C-2 group of sugar units in substrate affecting the cleavage pattern.• The first chitosanase exhibited different cleavage patterns towards chito- and cello-oligosaccharides.• The groups at C-2 influence the subsite composition of the enzyme's active cleft.
Collapse
|
13
|
Guo J, Wang Y, Zhang X, Gao W, Cai Z, Hong T, Man Z, Qing Q. Improvement of the Catalytic Activity of Chitosanase BsCsn46A from Bacillus subtilis by Site-Saturation Mutagenesis of Proline121. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11835-11846. [PMID: 34590486 DOI: 10.1021/acs.jafc.1c04206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BsCsn46A, a GH46 family chitosanase from Bacillus subtilis, has great potential for industrial chitooligosaccharide production due to its high activity and stability. In this study, a special amino acid Pro121 was identified not fit in the helix structure, which was located in the opposite side of the active center in BsCsn46A, by the PoPMuSiC algorithm. Then, saturation mutagenesis was performed to explore the role of the site amino acid 121. Compared with the wild type, the specific activity of P121N, P121C, and P121V was increased by 1.69-, 1.97-, and 2.15-fold, respectively. In particular, the specific activity of P121N was increased without loss of thermostability, indicating that replacing the structural stiffness of proline in the helical structure could significantly improve the chitosanase activity. The Km values of P121N, P121C, and P121V decreased significantly, indicating that the affinity between the enzyme-substrate complex was enhanced. Through molecular docking, it was found that the increase of hydrogen bonds and van der Waals force between the enzyme-substrate complex and the removal of unfavorable bonds might be the main reason for the change of enzyme properties. In addition, the optimal temperature of the three mutants changed from 60 to 55 °C. These results indicate that the site 121 plays a critical role in the catalytic activity and enzymatic properties of chitosanase. To our knowledge, the results provide novel data on chitosanase activity and identify an excellent candidate of industrial chitosanase.
Collapse
Affiliation(s)
- Jing Guo
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yi Wang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xuan Zhang
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenjun Gao
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zhiqiang Cai
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Tingting Hong
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zaiwei Man
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- School of Petrochemical Engineering, School of food Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, China
- Zaozhuang Key Laboratory of Corn Bioengineering, Zaozhuang Science and Technology Collaborative Innovation Center of Enzyme, Shandong Hengren Gongmao Co. Ltd, Zaozhuang 277100, China
| | - Qing Qing
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
- Laboratory of Applied Microbiology, School of Pharmaceutical, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
14
|
Cui D, Yang J, Lu B, Shen H. Efficient Preparation of Chitooligosaccharide With a Potential Chitosanase Csn-SH and Its Application for Fungi Disease Protection. Front Microbiol 2021; 12:682829. [PMID: 34220769 PMCID: PMC8249199 DOI: 10.3389/fmicb.2021.682829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Chitosanase plays a vital role in bioactive chitooligosaccharide preparation. Here, we characterized and prepared a potential GH46 family chitosanase from Bacillus atrophaeus BSS. The purified recombinant enzyme Csn-SH showed a molecular weight of 27.0 kDa. Csn-SH displayed maximal activity toward chitosan at pH 5.0 and 45°C. Thin-layer chromatography and electrospray ionization–mass spectrometry indicated that Csn-SH mainly hydrolyzed chitosan into (GlcN)2, (GlcN)3, and (GlcN)4 with an endo-type cleavage pattern. Molecular docking analysis demonstrated that Csn-SH cleaved the glycoside bonds between subsites −2 and + 1 of (GlcN)6. Importantly, the chitosan hydrolysis rate of Csn-SH reached 80.57% within 40 min, which could reduce time and water consumption. The hydrolysates prepared with Csn-SH exhibited a good antifungal activity against Magnaporthe oryzae and Colletotrichum higginsianum. The above results suggested that Csn-SH could be used to produce active chitooligosaccharides efficiently that are biocontrol agents applicable for safe and sustainable agricultural production.
Collapse
Affiliation(s)
- Dandan Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jin Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Bosi Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hong Shen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Wang Y, Li D, Liu M, Xia C, Fan Q, Li X, Lan Z, Shi G, Dong W, Li Z, Cui Z. Preparation of Active Chitooligosaccharides with a Novel Chitosanase AqCoA and Their Application in Fungal Disease Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3351-3361. [PMID: 33688732 DOI: 10.1021/acs.jafc.0c07802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzymes that degrade fungal cell walls and the resulting oligosaccharides are promising weapons to combat plant fungal disease. In this study, we identified a novel endo-chitosanase, AqCoA, from Aquabacterium sp. A7-Y. The enzyme showed a specific activity of 18 U/mg toward 95% deacetylated chitosan at pH 5.0 and 40 °C. AqCoA also showed activity toward sodium carboxymethylcellulose, indicating substrate promiscuity. AqCoA hydrolyzed chitosan into chitooligosaccharides (CoA-COSs) with degrees of polymerization (DPs) of 3-5 but showed no activity toward CoA-COSs with DPs <6, indicating an endo-type activity. At 2.5 μg/mL, AqCoA inhibited appressorium formation of Magnaporthe oryzae; the produced CoA-COSs also inhibited the growth of M. oryzae and Fusarium oxysporum. Furthermore, CoA-COSs acted as immune elicitors in rice by inducing the reactive oxygen species burst and the expression of defense genes. These results demonstrated that AqCoA and its resulting CoA-COSs might be effective tools for protecting plants against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Ding Li
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, P. R. China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095 Nanjing, P. R. China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Qiwen Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zejun Lan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 211800 Nanjing, P. R. China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095 Nanjing, P. R. China
| |
Collapse
|
16
|
Li Y, Gou Y, Liu Z, Xie T, Wang G. Structure-based rational design of chitosanase CsnMY002 for high yields of chitobiose. Colloids Surf B Biointerfaces 2021; 202:111692. [PMID: 33744813 DOI: 10.1016/j.colsurfb.2021.111692] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Chitosan oligosaccharides (COS) are attractive active molecules for biomedical applications. Currently, the prohibitively high cost of producing fully defined COS hampers extensive studies on their biological activity and restricts their use in various industries. Thus, cost-effective production of pure COS is of major importance. In this report, chitosanase from Bacillus subtilis MY002 (CsnMY002) was prepared for COS production. The structure of apo CsnMY002 displayed an unexpected tunnel-like substrate-binding site and the structure of the CsnMY002_E19A/(GlcN)6 complex highlighted the "4 + 2″ splitting of hexaglucosamine even though the "3 + 3″ splitting is also observed in the TLC analysis of the enzyme products for hexaglucosamine. Structure based rational design was performed to generate mutants for chitobiose production. The CsnMY002_G21 K mutant produced chitobiose with a relative content > 87 % from chitosan with a low degree of acetylation, and 50.65 mg chitobiose with a purity > 98 % was prepared from 100 mg chitosan. The results provide insight on the catalytic mechanism of chitosanase and underpin future biomedical applications of pure chitobiose.
Collapse
Affiliation(s)
- Yubin Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Gou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China
| | - Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, 610041, China; The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
Zheng Q, Meng X, Cheng M, Li Y, Liu Y, Chen X. Cloning and Characterization of a New Chitosanase From a Deep-Sea Bacterium Serratia sp. QD07. Front Microbiol 2021; 12:619731. [PMID: 33717008 PMCID: PMC7943732 DOI: 10.3389/fmicb.2021.619731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Chitosanase is a significant chitosan-degrading enzyme involved in industrial applications, which forms chitooligosaccharides (COS) as reaction products that are known to have various biological activities. In this study, the gene csnS was cloned from a deep-sea bacterium Serratia sp. QD07, as well as over-expressed in Escherichia coli, which is a new chitosanase encoding gene. The recombinant strain was cultured in a 5 L fermenter, which yielded 324 U/mL chitosanases. After purification, CsnS is a cold-adapted enzyme with the highest activity at 60°C, showing 37.5% of the maximal activity at 0°C and 42.6% of the maximal activity at 10°C. It exhibited optimum activity at pH 5.8 and was stable at a pH range of 3.4–8.8. Additionally, CsnS exhibited an endo-type cleavage pattern and hydrolyzed chitosan polymers to yield disaccharides and trisaccharides as the primary reaction products. These results make CsnS a potential candidate for the industrial manufacture of COS.
Collapse
Affiliation(s)
- Qiuling Zheng
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Mingyang Cheng
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanfeng Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuanpeng Liu
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xuehong Chen
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Bhuvanachandra B, Sivaramakrishna D, Alim S, Preethiba G, Rambabu S, Swamy MJ, Podile AR. New Class of Chitosanase from Bacillus amyloliquefaciens for the Generation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:78-87. [PMID: 33393308 DOI: 10.1021/acs.jafc.0c05078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chitooligosaccharides (COS) generated from either chitin (chitin oligosaccharides) or chitosan (chitosan oligosaccharides) have a wide range of applications in agriculture, medicine, and other fields. Here, we report the characterization of a chitosanase from Bacillus amyloliquefaciens (BamCsn) and the importance of a tryptophan (Trp), W204, for BamCsn activity. BamCsn hydrolyzed the chitosan polymer by an endo mode. It also hydrolyzed chitin oligosaccharides and interestingly exhibited transglycosylation activity on chitotetraose and chitopentaose. Mutation of W204, a nonconserved amino acid in chitosanases, to W204A abolished the hydrolytic activity of BamCsn, with a change in the structure that resulted in a decreased affinity for the substrate and impaired the catalytic ability. Phylogenetic analysis revealed that BamCsn could belong to a new class of chitosanases that showed unique properties like transglycosylation, cleavage of chitin oligosaccharides, and the presence of W204 residues, which is important for activity. Chitosanases belonging to the BamCsn class showed a high potential to generate COS from chitinous substrates.
Collapse
Affiliation(s)
- Bhoopal Bhuvanachandra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Dokku Sivaramakrishna
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Sk Alim
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Gopi Preethiba
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Samudrala Rambabu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| | - Appa Rao Podile
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telangana, India
| |
Collapse
|
19
|
Wang Y, Qin Z, Fan L, Zhao L. Structure-function analysis of Gynuella sunshinyii chitosanase uncovers the mechanism of substrate binding in GH family 46 members. Int J Biol Macromol 2020; 165:2038-2048. [PMID: 33080262 DOI: 10.1016/j.ijbiomac.2020.10.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
Chitooligosaccharides (COS) is a kind of functional carbohydrates with great application potential as its various biological functions in food, cosmetics, and pharmaceutical fields. Exploring the relationship between structure and function of chitosanase is essential for the controllable preparation of chitooligosaccharides with the specific degree of polymerization (DP). GsCsn46A is a cold-adapted glycosyl hydrolase (GH) family 46 chitosanase with application potential for the controllable preparation of chitooligosaccharides. Here, we present two complex structures with substrate chitopentaose and chitotetraose of GsCsn46A, respectively. The overall structure of GsCsn46A contains nine α-helices and two β-strands that folds into two globular domains with the substrate between them. The unique binding positions of both chitopentaose and chitotetraose revealed two novel sugar residues in the negatively-numbered subsites of GH family 46 chitosanases. The structure-function analysis of GsCsn46A uncovers the substrate binding and catalysis mechanism of GH family 46 chitosanases. Structural basis mutagenesis in GsCsn46A indicated that altering interactions near +3 subsite would help produce hydrolysis products with higher DP. Specifically, the mutant N21W of GsCsn46A nearly eliminated the ability of hydrolyzing chitotetraose after long-time degradation.
Collapse
Affiliation(s)
- Yani Wang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Qin
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
20
|
Li Z, Liu W, Lyu Q. Biochemical Characterization of a Novel Endo-1,3-β-Glucanase from the Scallop Chlamys farreri. Mar Drugs 2020; 18:md18090466. [PMID: 32947865 PMCID: PMC7551256 DOI: 10.3390/md18090466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/05/2023] Open
Abstract
Endo-1,3-β-glucanases derived from marine mollusks have attracted much attention in recent years because of their unique transglycosylation activity. In this study, a novel endo-1,3-β-glucanase from the scallop Chlamys farreri, named Lcf, was biochemically characterized. Unlike in earlier studies on marine mollusk endo-1,3-β-glucanases, Lcf was expressed in vitro first. Enzymatic analysis demonstrated that Lcf preferred to hydrolyze laminarihexaose than to hydrolyze laminarin. Furthermore, Lcf was capable of catalyzing transglycosylation reactions with different kinds of glycosyl acceptors. More interestingly, the transglycosylation specificity of Lcf was different from that of other marine mollusk endo-1,3-β-glucanases, although they share a high sequence identity. This study enhanced our understanding of the diverse enzymatic specificities of marine mollusk endo-1,3-β-glucanases, which facilitated development of a unique endo-1,3-β-glucanase tool in the synthesis of novel glycosides.
Collapse
Affiliation(s)
- Zhijian Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.L.); (W.L.)
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.L.); (W.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.L.); (W.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
- Correspondence:
| |
Collapse
|
21
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Effects of carboxymethyl chitosan oligosaccharide on regulating immunologic function and inhibiting tumor growth. Carbohydr Polym 2020; 250:116994. [PMID: 33049904 DOI: 10.1016/j.carbpol.2020.116994] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
Herein, the effects of carboxymethyl chitosan oligosaccharide (CM-COS) on regulating immunologic function and inhibiting hepatocellular tumor growth were evaluated. Results showed that CM-COS caused dramatic viability loss of hepatocellular carcinoma BEL-7402 with non-toxicity towards normal liver L-02 cells. CM-COS repressed tumor growth of hepatoma-22, and elevated the spleen index and thymus index of tumor-bearing mice. Contents of VEGF and MMP-9 were significantly down-regulated by CM-COS. Histological analyses revealed that CM-COS promoted tumor cell necrosis and produced no significant toxicity to spleen tissues. Moreover, expressions of Caspase-3 in tumor tissues and IL-2 in spleen tissues were significantly activated by CM-COS. Additionally, in vitro cell viability, phagocytic capability and NO production of mouse peritoneal macrophages exposed to CM-COS were significantly higher. CM-COS remarkably increased the in vivo phagocytosing capacity of peritoneal macrophages of Kunming mice. Taken together, our findings suggested that CM-COS might be potentially effective and non-toxic candidate as anti-hepatoma agents.
Collapse
|
23
|
An MD-based systematic study on the mechanical characteristics of a novel hybrid CNT/graphene drug carrier. J Mol Model 2020; 26:241. [PMID: 32814981 DOI: 10.1007/s00894-020-04487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
This paper is aimed to assess the mechanical properties of a hybrid graphene-carbon nanotube carrier embedded with doxorubicin (DOX). Utilizing molecular dynamics simulation, the results reveal that by increasing the temperature from 309 to 313 K, the elastic modulus of the GS/CNT/DOX carrier decreases from 0.8 to 0.74 TPa. Also, it is shown that the presence of chitosan molecules enhances the mechanical characteristics of the proposed nanocarrier. Taking the chirality of the graphene sheet into account, the results indicate that by increasing the size of the graphene sheet, the failure stress is slightly increased for the armchair type. However, this value decreases as the size of the zigzag sample increases. Additionally, the influence of aspect ratio on the elastic modulus, fracture stress, and fracture strain of these systems is systematically examined. It has been shown that the failure stress may change significantly with increasing this parameter, especially for carrier systems having zigzag carbon nanostructures. Moreover considering various voids content in the CNT structure, the weakening effect of defects is systematically explored. Also, the dependence of the mechanical features of the proposed hybrid carrier on the presence of DOX molecules is studied via MD simulations. Finally, we have investigated the role of CNT physical characteristics including its size and chirality on the results. Graphical abstract.
Collapse
|
24
|
Sun H, Yang G, Cao R, Mao X, Liu Q. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome. Int J Biol Macromol 2020; 159:904-910. [PMID: 32446901 DOI: 10.1016/j.ijbiomac.2020.05.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
A novel chitosanase gene, csn4, was identified through function-based screening of a marine mud metagenomic library. The encoded protein, named CSN4, which belonged to glycoside hydrolase family 46, showed its maximum identity (79%) with Methylobacter tundripaludum peptidoglycan-binding protein. CSN4 was expressed in Escherichia coli and purified. It displayed maximal activity at 30 °C and pH 7. A weakly-alkaline solution strongly inhibited the activity. The enzymatic activity was enhanced by addition of Mn2+ or Co2+. CSN4 exhibited strict substrate specificity for chitosan, and the activity was enhanced by increasing the degree of deacetylation. Thin-layer chromatography and electrospray ionization-mass spectrometry showed that CSN4 displayed an endo-type cleavage pattern, hydrolyzing chitosan mainly into (GlcN)2, (GlcN)3 and (GlcN)4. The novel characteristics of the chitosanase CSN4 make it a potential candidate to produce chitooligosaccharides from chitosan in industry.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guosong Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
25
|
Ma C, Li X, Yang K, Li S. Characterization of a New Chitosanase from a Marine Bacillus sp. and the Anti-Oxidant Activity of Its Hydrolysate. Mar Drugs 2020; 18:md18020126. [PMID: 32092959 PMCID: PMC7073567 DOI: 10.3390/md18020126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Chitooligosaccharide (COS) has been recognized to exhibit efficient anti-oxidant activity. Enzymatic hydrolysis using chitosanases can retain all the amino and hydroxyl groups of chitosan, which are necessary for its activity. In this study, a new chitosanase encoding gene, csnQ, was cloned from the marine Bacillus sp. Q1098 and expressed in Escherichia coli. The recombinant chitosanase, CsnQ, showed maximal activity at pH 5.31 and 60 °C. Determination of CsnQ pH-stability showed that CsnQ could retain more than 50% of its activity over a wide pH, from 3.60 to 9.80. CsnQ is an endo-type chitosanase, yielding chitodisaccharide as the main product. Additionally, in vitro and in vivo analyses indicated that chitodisaccharide possesses much more effective anti-oxidant activity than glucosamine and low molecular weight chitosan (LMW-CS) (~5 kDa). Notably, to our knowledge, this is the first evidence that chitodisaccharide is the minimal COS fragment required for free radical scavenging.
Collapse
|
26
|
Qian M, Lyu Q, Liu Y, Hu H, Wang S, Pan C, Duan X, Gao Y, Qi LW, Liu W, Wang L. Chitosan Oligosaccharide Ameliorates Nonalcoholic Fatty Liver Disease (NAFLD) in Diet-Induced Obese Mice. Mar Drugs 2019; 17:md17070391. [PMID: 31269758 PMCID: PMC6669476 DOI: 10.3390/md17070391] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic, and there is no standard and efficient therapy for it. Chitosan oligosaccharide (COS) is widely known to have various biological effects, and in this study we aimed to evaluate the liver-protective effect in diet-induced obese mice for an enzymatically digested product of COS called COS23 which is mainly composed of dimers and trimers. An integrated analysis of the lipidome and gut microbiome were performed to assess the effects of COS23 on lipids in plasma and the liver as well as on intestinal microbiota. Our results revealed that COS23 obviously attenuated hepatic steatosis and ameliorated liver injury in diet-induced obese mice. The hepatic toxic lipids—especially triglycerides (TGs) and free fatty acids (FFAs)—were decreased dramatically after COS23 treatment. COS23 regulated lipid-related pathways, especially inhibiting the expressions of FFA-synthesis-related genes and inflammation-related genes. Furthermore, COS23 could alter lipid profiles in plasma. More importantly, COS23 also decreased the abundance of Mucispirillum and increased the abundance of Coprococcus in gut microbiota and protected the intestinal barrier by up-regulating the expression of tight-junction-related genes. In conclusion, COS23, an enzymatically digested product of COS, might serve as a promising candidate in the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
- College of pharmacy and chemistry, Dali University, Dali 671003, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Yujie Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shilei Wang
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Chuyue Pan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Xubin Duan
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| | - Lirui Wang
- School of Basic Medicine and Clinical Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
27
|
Lyu Q, Zhang K, Shi Y, Li W, Diao X, Liu W. Structural insights into a novel Ca2+-independent PL-6 alginate lyase from Vibrio OU02 identify the possible subsites responsible for product distribution. Biochim Biophys Acta Gen Subj 2019; 1863:1167-1176. [DOI: 10.1016/j.bbagen.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
|
28
|
Potential Analysis and Preparation of Chitosan Oligosaccharides as Oral Nutritional Supplements of Cancer Adjuvant Therapy. Int J Mol Sci 2019; 20:ijms20040920. [PMID: 30791594 PMCID: PMC6412339 DOI: 10.3390/ijms20040920] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered to have an adverse influence on health around the world. Chitosan, a linear polysaccharide that contains copolymers of β-1-4 linked d-glucosamine and N-acetyl-d-glucosamine units, has been widely used in the field of biomedicine, owing to its nontoxicity, biocompatibility, biodegradability, and hemocompatibility. This study was aimed at preparing the chitosan oligosaccharides (COS) and examining its ability on suppressing lung cancer in vitro and in vivo. Human non-small-cell lung cancer A549 cells model and C57BL/6 mice bearing lung cancer model were adopted. COS showed inhibition on the viability and proliferation of lung carcinoma cells (A549) in time-dependent manners, but no cytotoxicity to human liver cell (HL-7702). Moreover, COS could significantly increase Bax expression of A549 cells while decreasing Bcl-2 expression. COS supplementation significantly inhibited the growth of Lewis tissues and promoted necrosis of tumor cells in vivo. After treatment with COS, significantly elevated concentrations of Bax and reduced expression of Bcl-2 in tumor tissues, as well as elevated levels of TNF-α, IL-2, Fas and Fas-L in mice serum were observed (p < 0.05). In conclusion, COS had certain anti-tumor effects and potential application as a synergic functional food ingredient to prevent cancer.
Collapse
|
29
|
Li S, Wang L, Chen X, Sun M, Han Y. Design and Synthesis of a Chitodisaccharide-Based Affinity Resin for Chitosanases Purification. Mar Drugs 2019; 17:md17010068. [PMID: 30669556 PMCID: PMC6356299 DOI: 10.3390/md17010068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/15/2023] Open
Abstract
Chitooligosaccharides (CHOS) have gained increasing attention because of their important biological activities. Enhancing the efficiency of CHOS production essentially requires screening of novel chitosanase with unique characteristics. Therefore, a rapid and efficient one-step affinity purification procedure plays important roles in screening native chitosanases. In this study, we report the design and synthesis of affinity resin for efficient purification of native chitosanases without any tags, using chitodisaccharides (CHDS) as an affinity ligand, to couple with Sepharose 6B via a spacer, cyanuric chloride. Based on the CHDS-modified affinity resin, a one-step affinity purification method was developed and optimized, and then applied to purify three typical glycoside hydrolase (GH) families: 46, 75, and 80 chitosanase. The three purified chitosanases were homogeneous with purities of greater than 95% and bioactivity recovery of more than 40%. Moreover, we also developed a rapid and efficient affinity purification procedure, in which tag-free chitosanase could be directly purified from supernatant of bacterial culture. The purified chitosanases samples using such a procedure had apparent homogeneity, with more than 90% purity and 10⁻50% yield. The novel purification methods established in this work can be applied to purify native chitosanases in various scales, such as laboratory and industrial scales.
Collapse
Affiliation(s)
- Shangyong Li
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Linna Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xuehong Chen
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yantao Han
- Department of Pharmacology, College of basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
30
|
Fukamizo T, Shinya S. Chitin/Chitosan-Active Enzymes Involved in Plant–Microbe Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:253-272. [DOI: 10.1007/978-981-13-7318-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Poshina DN, Raik SV, Poshin AN, Skorik YA. Accessibility of chitin and chitosan in enzymatic hydrolysis: A review. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Qiao J, Liu Y, Jiang Z, Yang Y, Liu W, Han B. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy. Carbohydr Polym 2018; 201:347-356. [PMID: 30241828 DOI: 10.1016/j.carbpol.2018.06.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022]
Abstract
Carboxymethyl chitosan oligosaccharide (CMCOS), the hydrolytic product of carboxymethyl chitosan, is nontoxic, easily absorbable and good antioxidant. In this study, CMCOS was prepared and its properties in adriamycin nephropathy therapy were investigated. Our results showed that CMCOS had good curative effects on renal function and parenchymal injury induced by adriamycin. CMCOS administration significantly relieved symptoms of proteinuria, hypoalbuminemia, hyperlipidemia, renal hyperplasia and histological lesions in rats (P < 0.01). Further exploration for the underlying mechanisms indicated that CMCOS treatment reduced macrophage accumulation, myofibroblast transdifferentiation and podocyte apoptosis. CMCOS treatment could regulate secretions of cytokines (IL-1β, TNF-ɑ and TGF-β1) and improve activities of antioxidative enzymes (SOD, GSH-Px) (P < 0.01). In conclusion, therapeutic effects of CMCOS on renal injury mediated by inflammation, fibrosis and oxidative stress made it a good kidney health product and a promising candidate in clinical treatment of human chronic kidney disease.
Collapse
Affiliation(s)
- Jing Qiao
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yuying Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Yan Yang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao & National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
34
|
Sun H, Mao X, Guo N, Zhao L, Cao R, Liu Q. Discovery and Characterization of a Novel Chitosanase from Paenibacillus dendritiformis by Phylogeny-Based Enzymatic Product Specificity Prediction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4645-4651. [PMID: 29687713 DOI: 10.1021/acs.jafc.7b06067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the process of genome mining for novel chitosanases by phylogeny-based enzymatic product specificity prediction, a gene named Csn-PD from Paenibacillus dendritiformis was discovered. The enzyme was classified as a member of the GH46 family of glycoside hydrolase based on sequence alignment, and it was functionally expressed in Escherichia coli BL21 (DE3). The recombinant chitosanase was purified, and its molecular weight was estimated to be 31 kDa by SDS-PAGE. Csn-PD displayed maximal activity toward colloidal chitosan at pH 7.0 and 45 °C, respectively. A combination of thin-layer chromatography and electrospray ionization-mass spectrometry results showed that Csn-PD exhibited an endotype cleavage pattern and hydrolyzed chitosan to yield (GlcN)2 as the major product. The unique enzymatic properties of this chitosanase may make it a good candidate for (GlcN)2 production.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Na Guo
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Ling Zhao
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Rong Cao
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| | - Qi Liu
- Department of Food Engineering and Nutrition , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , China
| |
Collapse
|
35
|
Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem 2018; 253:139-147. [PMID: 29502814 DOI: 10.1016/j.foodchem.2018.01.137] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/01/2017] [Accepted: 01/22/2018] [Indexed: 01/20/2023]
Abstract
Chitooligosaccharide is widely used as a functional food additive and a valuable pharmacological agent. The transformation of chitinous biomass into valuable bioactive chitooligosaccharides is one of the most exciting applications of chitosanase. A novel glycoside hydrolase (GH) family 46 chitosanase (GsCsn46A) from rhizobacterium Gynuella sunshinyii was cloned and heterologously expressed in Escherichia coli. GsCsn46A showed maximal activity at pH 5.5 and 30 °C. GsCsn46A featured remarkable cold-adapted property, which controllably hydrolyzed chitosan to three types of chitooligosaccharides at the mild reaction condition (reaction condition: pH 5.5 at 30 °C; method for stopping the reaction: 50 °C for 30 min). The yields of three types of chitooligosaccharides products (degree of polymerization (DP): 2-7, 2-5 and 2-3) were 70.9%, 87.1% and 94.6% respectively. This novel cold-adapted chitosanase provides a cleaner production process for the controllable preparation of chitooligosaccharides with the specific DP.
Collapse
|
36
|
Aktuganov GE, Melent’ev AI. Specific features of chitosan depolymerization by chitinases, chitosanases, and nonspecific enzymes in the production of bioactive chitooligosaccharides (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Han Y, Yu R, Gao P, Lu X, Yu W. The hydrogen-bond network around Glu160 contributes to the structural stability of chitosanase CsnA from Renibacterium sp. QD1. Int J Biol Macromol 2017; 109:880-887. [PMID: 29155203 DOI: 10.1016/j.ijbiomac.2017.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/31/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
Abstract
CsnA, a chitosanase from Renibacterium sp. QD1, has great potential for industrial applications due to its high yield and broad pH stability. In this study, a specific Glu160 in CsnA was identified by sequence alignment, and structural analysis and MD simulation predicted that Glu160 formed a hydrogen-bond network with Lys163 and Thr114. To evaluate the effect of the network, we constructed four mutants, including E160A, E160Q, K163A, and T114A, which partially or completely destroy this network. Characterization of these mutants demonstrated that the disruption of the network significantly decreased the enzyme thermostability. The underlying mechanisms responsible for the change of thermostability analyzed by circular dichroism spectroscopy revealed that the hydrogen-bond network conferred the structural stability of CsnA. Moreover, the length of the side chain of residue at 160 impacted conformational stability of the enzyme. Taken together, the hydrogen-bond network around Glu160 plays important roles in stabilization of CsnA.
Collapse
Affiliation(s)
- Yujuan Han
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Peixin Gao
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinzhi Lu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Wengong Yu
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
38
|
Zitouni M, Viens P, Ghinet MG, Brzezinski R. Diversity of family GH46 chitosanases in Kitasatospora setae KM-6054. Appl Microbiol Biotechnol 2017; 101:7877-7888. [PMID: 28924834 PMCID: PMC5635096 DOI: 10.1007/s00253-017-8517-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/18/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
Abstract
The genome of Kitasatospora setae KM-6054, a soil actinomycete, has three genes encoding chitosanases belonging to GH46 family. The genes (csn1-3) were cloned in Streptomyces lividans and the corresponding enzymes were purified from the recombinant cultures. The csn2 clone yielded two proteins (Csn2BH and Csn2H) differing by the presence of a carbohydrate-binding domain. Sequence analysis showed that Csn1 and Csn2H were canonical GH46 chitosanases, while Csn3 resembled chitosanases from bacilli. The activity of the four chitosanases was tested in a variety of conditions and on diverse chitosan forms, including highly N-deacetylated chitosan or chitosan complexed with humic or polyphosphoric acid. Kinetic parameters were also determined. These tests unveiled the biochemical diversity among these chitosanases and the peculiarity of Csn3 compared with the other three enzymes. The observed biochemical diversity is discussed based on structural 3D models and sequence alignment. This is a first study of all the GH46 chitosanases produced by a single microbial strain.
Collapse
Affiliation(s)
- Mina Zitouni
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
| | - Pascal Viens
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
- Innomalt Inc, Sherbrooke, Québec, Canada
| | - Mariana G Ghinet
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada
- Département de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ryszard Brzezinski
- Centre d'Étude et de Valorisation de la Diversité Microbienne; Département de Biologie; Faculté des Sciences, Université de Sherbrooke, 2500, boul.de l'Université, Sherbrooke, Québec, J1K 2R1, Canada.
| |
Collapse
|
39
|
Shinya S, Fukamizo T. Interaction between chitosan and its related enzymes: A review. Int J Biol Macromol 2017; 104:1422-1435. [PMID: 28223213 DOI: 10.1016/j.ijbiomac.2017.02.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/17/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Chitosan-related enzymes including chitosanases, exo-β-glucosaminidases, and enzymes having chitosan-binding modules recognize ligands through electrostatic interactions between the acidic amino acids in proteins and amino groups of chitosan polysaccharides. However, in GH8 chitosanases, several aromatic residues are also involved in substrate recognition through stacking interactions, and these enzymes consequently hydrolyze β-1,4-glucan as well as chitosan. The binding grooves of these chitosanases are extended and opened at both ends of the grooves, so that the enzymes can clamp a long chitosan polysaccharide. The association/dissociation of positively charged glucosamine residues to/from the binding pocket of a GH2 exo-β-glucosaminidase controls the p Ka of the catalytic acid, thereby maintaining the high catalytic potency of the enzyme. In contrast to chitosanases, chitosan-binding modules only accommodate a couple of glucosamine residues, predominantly recognizing the non-reducing end glucosamine residue of chitosan by electrostatic interactions and a hydrogen-bonding network. These structural findings on chitosan-related enzymes may contribute to future applications for the efficient conversion of the chitin/chitosan biomass.
Collapse
Affiliation(s)
- Shoko Shinya
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tamo Fukamizo
- Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
40
|
Yorinaga Y, Kumasaka T, Yamamoto M, Hamada K, Kawamukai M. Crystal structure of a family 80 chitosanase fromMitsuaria chitosanitabida. FEBS Lett 2017; 591:540-547. [DOI: 10.1002/1873-3468.12557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yutaka Yorinaga
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI); Sayo Hyogo Japan
| | | | - Kensaku Hamada
- X-ray Research Laboratory; Rigaku Co.; Akishima Tokyo Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| |
Collapse
|
41
|
A highly Conserved Aspartic Acid Residue of the Chitosanase from Bacillus Sp. TS Is Involved in the Substrate Binding. Appl Biochem Biotechnol 2016; 180:1167-1179. [PMID: 27318711 DOI: 10.1007/s12010-016-2159-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023]
Abstract
The chitosanase from Bacillus sp. TS (CsnTS) is an enzyme belonging to the glycoside hydrolase family 8. The sequence of CsnTS shares 98 % identity with the chitosanase from Bacillus sp. K17. Crystallography analysis and site-direct mutagenesis of the chitosanase from Bacillus sp. K17 identified the important residues involved in the catalytic interaction and substrate binding. However, despite progress in understanding the catalytic mechanism of the chitosanase from the family GH8, the functional roles of some residues that are highly conserved throughout this family have not been fully elucidated. This study focused on one of these residues, i.e., the aspartic acid residue at position 318. We found that apart from asparagine, mutation of Asp318 resulted in significant loss of enzyme activity. In-depth investigations showed that mutation of this residue not only impaired enzymatic activity but also affected substrate binding. Taken together, our results showed that Asp318 plays an important role in CsnTS activity.
Collapse
|
42
|
Zhou SH, Liu Y, Zhao YJ, Chi Z, Chi ZM, Liu GL. Enhanced exo-inulinase activity and stability by fusion of an inulin-binding module. Appl Microbiol Biotechnol 2016; 100:8063-74. [DOI: 10.1007/s00253-016-7587-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 01/14/2023]
|
43
|
Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes. Mar Drugs 2015; 13:6566-87. [PMID: 26516868 PMCID: PMC4663542 DOI: 10.3390/md13116566] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 11/17/2022] Open
Abstract
Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.
Collapse
|
44
|
Substrate-binding specificity of chitinase and chitosanase as revealed by active-site architecture analysis. Carbohydr Res 2015; 418:50-56. [PMID: 26545262 DOI: 10.1016/j.carres.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/03/2015] [Accepted: 10/06/2015] [Indexed: 11/21/2022]
Abstract
Chitinases and chitosanases, referred to as chitinolytic enzymes, are two important categories of glycoside hydrolases (GH) that play a key role in degrading chitin and chitosan, two naturally abundant polysaccharides. Here, we investigate the active site architecture of the major chitosanase (GH8, GH46) and chitinase families (GH18, GH19). Both charged (Glu, His, Arg, Asp) and aromatic amino acids (Tyr, Trp, Phe) are observed with higher frequency within chitinolytic active sites as compared to elsewhere in the enzyme structure, indicating significant roles related to enzyme function. Hydrogen bonds between chitinolytic enzymes and the substrate C2 functional groups, i.e. amino groups and N-acetyl groups, drive substrate recognition, while non-specific CH-π interactions between aromatic residues and substrate mainly contribute to tighter binding and enhanced processivity evident in GH8 and GH18 enzymes. For different families of chitinolytic enzymes, the number, type, and position of substrate atoms bound in the active site vary, resulting in different substrate-binding specificities. The data presented here explain the synergistic action of multiple enzyme families at a molecular level and provide a more reasonable method for functional annotation, which can be further applied toward the practical engineering of chitinases and chitosanases.
Collapse
|
45
|
Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochim Biophys Acta Gen Subj 2015; 1850:1953-61. [DOI: 10.1016/j.bbagen.2015.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 01/02/2023]
|