1
|
Brennan S, Chen S, Makwana S, Esposito S, McGuinness LR, Alnaimi AIM, Sims MW, Patel M, Aziz Q, Ojake L, Roberts JA, Sharma P, Lodwick D, Tinker A, Barrett-Jolley R, Dart C, Rainbow RD. Identification and characterisation of functional K ir6.1-containing ATP-sensitive potassium channels in the cardiac ventricular sarcolemmal membrane. Br J Pharmacol 2024; 181:3380-3400. [PMID: 38763521 DOI: 10.1111/bph.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The canonical Kir6.2/SUR2A ventricular KATP channel is highly ATP-sensitive and remains closed under normal physiological conditions. These channels activate only when prolonged metabolic compromise causes significant ATP depletion and then shortens the action potential to reduce contractile activity. Pharmacological activation of KATP channels is cardioprotective, but physiologically, it is difficult to understand how these channels protect the heart if they only open under extreme metabolic stress. The presence of a second KATP channel population could help explain this. Here, we characterise the biophysical and pharmacological behaviours of a constitutively active Kir6.1-containing KATP channel in ventricular cardiomyocytes. EXPERIMENTAL APPROACH Patch-clamp recordings from rat ventricular myocytes in combination with well-defined pharmacological modulators was used to characterise these newly identified K+ channels. Action potential recording, calcium (Fluo-4) fluorescence measurements and video edge detection of contractile function were used to assess functional consequences of channel modulation. KEY RESULTS Our data show a ventricular K+ conductance whose biophysical characteristics and response to pharmacological modulation were consistent with Kir6.1-containing channels. These Kir6.1-containing channels lack the ATP-sensitivity of the canonical channels and are constitutively active. CONCLUSION AND IMPLICATIONS We conclude there are two functionally distinct populations of ventricular KATP channels: constitutively active Kir6.1-containing channels that play an important role in fine-tuning the action potential and Kir6.2/SUR2A channels that activate with prolonged ischaemia to impart late-stage protection against catastrophic ATP depletion. Further research is required to determine whether Kir6.1 is an overlooked target in Comprehensive in vitro Proarrhythmia Assay (CiPA) cardiac safety screens.
Collapse
Affiliation(s)
- Sean Brennan
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Shen Chen
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Samir Makwana
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Simona Esposito
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lauren R McGuinness
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Abrar I M Alnaimi
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- Department of Cardiac Technology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mark W Sims
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manish Patel
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Qadeer Aziz
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Leona Ojake
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - James A Roberts
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Parveen Sharma
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - David Lodwick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Andrew Tinker
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, University of Liverpool, Liverpool, UK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, UK
| | - Richard D Rainbow
- Department of Cardiovascular and Metabolic Medicine and Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Driggers CM, Shyng SL. Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 2022; 155:213723. [PMID: 36441147 PMCID: PMC9700523 DOI: 10.1085/jgp.202113046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Gated by intracellular ATP and ADP, ATP-sensitive potassium (KATP) channels couple cell energetics with membrane excitability in many cell types, enabling them to control a wide range of physiological processes based on metabolic demands. The KATP channel is a complex of four potassium channel subunits from the Kir channel family, Kir6.1 or Kir6.2, and four sulfonylurea receptor subunits, SUR1, SUR2A, or SUR2B, from the ATP-binding cassette (ABC) transporter family. Dysfunction of KATP channels underlies several human diseases. The importance of these channels in human health and disease has made them attractive drug targets. How the channel subunits interact with one another and how the ligands interact with the channel to regulate channel activity have been long-standing questions in the field. In the past 5 yr, a steady stream of high-resolution KATP channel structures has been published using single-particle cryo-electron microscopy (cryo-EM). Here, we review the advances these structures bring to our understanding of channel regulation by physiological and pharmacological ligands.
Collapse
Affiliation(s)
- Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR,Correspondence to Show-Ling Shyng:
| |
Collapse
|
4
|
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022; 323:C920-C935. [PMID: 35876283 PMCID: PMC9467476 DOI: 10.1152/ajpcell.00154.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/25/2022]
Abstract
Kir6.1 and SUR2 are subunits of ATP-sensitive potassium (KATP) channels expressed in a wide range of tissues. Extensive study has implicated roles of these channel subunits in diverse physiological functions. Together they generate the predominant KATP conductance in vascular smooth muscle and are the target of vasodilatory drugs. Roles for Kir6.1/SUR2 dysfunction in disease have been suggested based on studies of animal models and human genetic discoveries. In recent years, it has become clear that gain-of-function (GoF) mutations in both genes result in Cantú syndrome (CS)-a complex, multisystem disorder. There is currently no targeted therapy for CS, but studies of mouse models of the disease reveal that pharmacological reversibility of cardiovascular and gastrointestinal pathologies can be achieved by administration of the KATP channel inhibitor, glibenclamide. Here we review the function, structure, and physiological and pathological roles of Kir6.1/SUR2B channels, with a focus on CS. Recent studies have led to much improved understanding of the underlying pathologies and the potential for treatment, but important questions remain: Can the study of genetically defined CS reveal new insights into Kir6.1/SUR2 function? Do these reveal new pathophysiological mechanisms that may be important in more common diseases? And is our pharmacological armory adequately stocked?
Collapse
Affiliation(s)
- Conor McClenaghan
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University, St. Louis, Missouri
| |
Collapse
|
5
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
6
|
Vascular K ATP channel structural dynamics reveal regulatory mechanism by Mg-nucleotides. Proc Natl Acad Sci U S A 2021; 118:2109441118. [PMID: 34711681 PMCID: PMC8694068 DOI: 10.1073/pnas.2109441118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular KATP channels formed by the potassium channel Kir6.1 and its regulatory protein SUR2B maintain blood pressure in the physiological range. Overactivity of the channel due to genetic mutations in either Kir6.1 or SUR2B causes severe cardiovascular pathologies known as Cantú syndrome. The cryogenic electron microscopy structures of the vascular KATP channel reported here show multiple, dynamically related conformations of the regulatory subunit SUR2B. Molecular dynamics simulations reveal the negatively charged ED-domain in SUR2B, a stretch of 15 glutamate (E) and aspartate (D) residues not previously resolved, play a key MgADP-dependent role in mediating interactions at the interface between the SUR2B and Kir6.1 subunits. Our findings provide a mechanistic understanding of how channel activity is regulated by intracellular MgADP. Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational “propeller” and “quatrefoil” geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.
Collapse
|
7
|
Kir6.2-D323 and SUR2A-Q1336: an intersubunit interaction pairing for allosteric information transfer in the KATP channel complex. Biochem J 2020; 477:671-689. [PMID: 31957808 PMCID: PMC7015859 DOI: 10.1042/bcj20190753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are widely expressed and play key roles in many tissues by coupling metabolic state to membrane excitability. The SUR subunits confer drug and enhanced nucleotide sensitivity to the pore-forming Kir6 subunit, and so information transfer between the subunits must occur. In our previous study, we identified an electrostatic interaction between Kir6 and SUR2 subunits that was key for allosteric information transfer between the regulatory and pore-forming subunit. In this study, we demonstrate a second putative interaction between Kir6.2-D323 and SUR2A-Q1336 using patch clamp electrophysiological recording, where charge swap mutation of the residues on either side of the potential interaction compromise normal channel function. The Kir6.2-D323K mutation gave rise to a constitutively active, glibenclamide and ATP-insensitive KATP complex, further confirming the importance of information transfer between the Kir6 and SUR2 subunits. Sensitivity to modulators was restored when Kir6.2-D323K was co-expressed with a reciprocal charge swap mutant, SUR-Q1336E. Importantly, equivalent interactions have been identified in both Kir6.1 and Kir6.2 suggesting this is a second important interaction between Kir6 and the proximal C terminus of SUR.
Collapse
|
8
|
Puljung MC. Cryo-electron microscopy structures and progress toward a dynamic understanding of K ATP channels. J Gen Physiol 2018; 150:653-669. [PMID: 29685928 PMCID: PMC5940251 DOI: 10.1085/jgp.201711978] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Puljung reviews recent cryo-EM KATP channel structures and proposes a mechanism by which ligand binding results in channel opening. Adenosine triphosphate (ATP)–sensitive K+ (KATP) channels are molecular sensors of cell metabolism. These hetero-octameric channels, comprising four inward rectifier K+ channel subunits (Kir6.1 or Kir6.2) and four sulfonylurea receptor (SUR1 or SUR2A/B) subunits, detect metabolic changes via three classes of intracellular adenine nucleotide (ATP/ADP) binding site. One site, located on the Kir subunit, causes inhibition of the channel when ATP or ADP is bound. The other two sites, located on the SUR subunit, excite the channel when bound to Mg nucleotides. In pancreatic β cells, an increase in extracellular glucose causes a change in oxidative metabolism and thus turnover of adenine nucleotides in the cytoplasm. This leads to the closure of KATP channels, which depolarizes the plasma membrane and permits Ca2+ influx and insulin secretion. Many of the molecular details regarding the assembly of the KATP complex, and how changes in nucleotide concentrations affect gating, have recently been uncovered by several single-particle cryo-electron microscopy structures of the pancreatic KATP channel (Kir6.2/SUR1) at near-atomic resolution. Here, the author discusses the detailed picture of excitatory and inhibitory ligand binding to KATP that these structures present and suggests a possible mechanism by which channel activation may proceed from the ligand-binding domains of SUR to the channel pore.
Collapse
Affiliation(s)
- Michael C Puljung
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, England, UK
| |
Collapse
|
9
|
Vedovato N, Ashcroft FM, Puljung MC. The Nucleotide-Binding Sites of SUR1: A Mechanistic Model. Biophys J 2016; 109:2452-2460. [PMID: 26682803 PMCID: PMC4699857 DOI: 10.1016/j.bpj.2015.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 12/19/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Vedovato N, Cliff E, Proks P, Poovazhagi V, Flanagan SE, Ellard S, Hattersley AT, Ashcroft FM. Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia 2016; 59:1430-1436. [PMID: 27118464 PMCID: PMC4901145 DOI: 10.1007/s00125-016-3964-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
AIMS/HYPOTHESIS The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. METHODS A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. RESULTS Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. CONCLUSIONS/INTERPRETATION The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.
Collapse
Affiliation(s)
- Natascia Vedovato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - Edward Cliff
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
11
|
Nelson PT, Jicha GA, Wang WX, Ighodaro E, Artiushin S, Nichols CG, Fardo DW. ABCC9/SUR2 in the brain: Implications for hippocampal sclerosis of aging and a potential therapeutic target. Ageing Res Rev 2015; 24:111-25. [PMID: 26226329 PMCID: PMC4661124 DOI: 10.1016/j.arr.2015.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/24/2015] [Indexed: 01/06/2023]
Abstract
The ABCC9 gene and its polypeptide product, SUR2, are increasingly implicated in human neurologic disease, including prevalent diseases of the aged brain. SUR2 proteins are a component of the ATP-sensitive potassium ("KATP") channel, a metabolic sensor for stress and/or hypoxia that has been shown to change in aging. The KATP channel also helps regulate the neurovascular unit. Most brain cell types express SUR2, including neurons, astrocytes, oligodendrocytes, microglia, vascular smooth muscle, pericytes, and endothelial cells. Thus it is not surprising that ABCC9 gene variants are associated with risk for human brain diseases. For example, Cantu syndrome is a result of ABCC9 mutations; we discuss neurologic manifestations of this genetic syndrome. More common brain disorders linked to ABCC9 gene variants include hippocampal sclerosis of aging (HS-Aging), sleep disorders, and depression. HS-Aging is a prevalent neurological disease with pathologic features of both neurodegenerative (aberrant TDP-43) and cerebrovascular (arteriolosclerosis) disease. As to potential therapeutic intervention, the human pharmacopeia features both SUR2 agonists and antagonists, so ABCC9/SUR2 may provide a "druggable target", relevant perhaps to both HS-Aging and Alzheimer's disease. We conclude that more work is required to better understand the roles of ABCC9/SUR2 in the human brain during health and disease conditions.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Pathology, Lexington, KY 40536, USA.
| | - Gregory A Jicha
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; University of Kentucky, Department of Neurology, Lexington, KY, 40536, USA
| | - Wang-Xia Wang
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Eseosa Ighodaro
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Sergey Artiushin
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David W Fardo
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY 40536, USA; Department of Biostatistics, Lexington, KY, 40536, USA
| |
Collapse
|
12
|
Principalli MA, Dupuis JP, Moreau CJ, Vivaudou M, Revilloud J. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues. Physiol Rep 2015; 3:3/9/e12533. [PMID: 26416970 PMCID: PMC4600379 DOI: 10.14814/phy2.12533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K(+) channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels.
Collapse
Affiliation(s)
- Maria A Principalli
- Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Julien P Dupuis
- Institut Interdisciplinaire de Neurosciences CNRS UMR 5297, Bordeaux, France
| | - Christophe J Moreau
- Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Michel Vivaudou
- Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Jean Revilloud
- Institut de Biologie Structurale (IBS), University of Grenoble Alpes, Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| |
Collapse
|