1
|
Çınaroğlu SS, Biggin PC. The role of loop dynamics in the prediction of ligand-protein binding enthalpy. Chem Sci 2023; 14:6792-6805. [PMID: 37350814 PMCID: PMC10284145 DOI: 10.1039/d2sc06471e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
The enthalpic and entropic components of ligand-protein binding free energy reflect the interactions and dynamics between ligand and protein. Despite decades of study, our understanding and hence our ability to predict these individual components remains poor. In recent years, there has been substantial effort and success in the prediction of relative and absolute binding free energies, but the prediction of the enthalpic (and entropic) contributions in biomolecular systems remains challenging. Indeed, it is not even clear what kind of performance in terms of accuracy could currently be obtained for such systems. It is, however, relatively straight-forward to compute the enthalpy of binding. We thus evaluated the performance of absolute enthalpy of binding calculations using molecular dynamics simulation for ten inhibitors against a member of the bromodomain family, BRD4-1, against isothermal titration calorimetry data. Initial calculations, with the AMBER force-field showed good agreement with experiment (R2 = 0.60) and surprisingly good accuracy with an average of root-mean-square error (RMSE) = 2.49 kcal mol-1. Of the ten predictions, three were obvious outliers that were all over-predicted compared to experiment. Analysis of various simulation factors, including parameterization, buffer concentration and conformational dynamics, revealed that the behaviour of a loop (the ZA loop on the periphery of the binding site) strongly dictates the enthalpic prediction. Consistent with previous observations, the loop exists in two distinct conformational states and by considering one or the other or both states, the prediction for the three outliers can be improved dramatically to the point where the R2 = 0.95 and the accuracy in terms of RMSE improves to 0.90 kcal mol-1. However, performance across force-fields is not consistent: if OPLS and CHARMM are used, different outliers are observed and the correlation with the ZA loop behaviour is not recapitulated, likely reflecting parameterization as a confounding problem. The results provide a benchmark standard for future study and comparison.
Collapse
Affiliation(s)
- Süleyman Selim Çınaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford South Parks Road Oxford OX1 3QU UK +44 (0)1865 613238 +44 (0)1865 613305
| |
Collapse
|
2
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
3
|
Evans CM, Phillips M, Malone KL, Tonelli M, Cornilescu G, Cornilescu C, Holton SJ, Gorjánácz M, Wang L, Carlson S, Gay JC, Nix JC, Demeler B, Markley JL, Glass KC. Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. Int J Mol Sci 2021; 22:9128. [PMID: 34502039 PMCID: PMC8430952 DOI: 10.3390/ijms22179128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.
Collapse
Affiliation(s)
- Chiara M. Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kiera L. Malone
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Claudia Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Simon J. Holton
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Mátyás Gorjánácz
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jamie C. Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA;
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
6
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
7
|
Raich L, Meier K, Günther J, Christ CD, Noé F, Olsson S. Discovery of a hidden transient state in all bromodomain families. Proc Natl Acad Sci U S A 2021; 118:e2017427118. [PMID: 33468647 PMCID: PMC7848705 DOI: 10.1073/pnas.2017427118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bromodomains (BDs) are small protein modules that interact with acetylated marks in histones. These posttranslational modifications are pivotal to regulate gene expression, making BDs promising targets to treat several diseases. While the general structure of BDs is well known, their dynamical features and their interplay with other macromolecules are poorly understood, hampering the rational design of potent and selective inhibitors. Here, we combine extensive molecular dynamics simulations, Markov state modeling, and available structural data to reveal a transiently formed state that is conserved across all BD families. It involves the breaking of two backbone hydrogen bonds that anchor the ZA-loop with the αA helix, opening a cryptic pocket that partially occludes the one associated to histone binding. By analyzing more than 1,900 experimental structures, we unveil just two adopting the hidden state, explaining why it has been previously unnoticed and providing direct structural evidence for its existence. Our results suggest that this state is an allosteric regulatory switch for BDs, potentially related to a recently unveiled BD-DNA-binding mode.
Collapse
Affiliation(s)
- Lluís Raich
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katharina Meier
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 42096 Wuppertal, Germany
| | - Judith Günther
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Clara D Christ
- Computational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Rice University, Houston, TX 77005
| | - Simon Olsson
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany;
| |
Collapse
|
8
|
Zhu X, Liao Y, Tang L. Targeting BRD9 for Cancer Treatment: A New Strategy. Onco Targets Ther 2020; 13:13191-13200. [PMID: 33380808 PMCID: PMC7769155 DOI: 10.2147/ott.s286867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 01/01/2023] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a newly identified subunit of the non-canonical barrier-to-autointegration factor (ncBAF) complex and a member of the bromodomain family IV. Studies have confirmed that BRD9 plays an oncogenic role in multiple cancer types, by regulating tumor cell growth. The tumor biological functions of BRD9 are mainly due to epigenetic modification mediated by its bromodomain. The bromodomain recruits the ncBAF complex to the promoter to regulate gene transcription. This review summarizes the potential mechanisms of action of BRD9 in carcinogenesis and the emerging strategies for targeting BRD9 for cancer therapeutics. Although the therapeutic potential of BRD9 has been exploited to some extent, research on the detailed biological mechanisms of BRD9 is still in its infancy. Therefore, targeting BRD9 to study its biological roles will be an attractive tool for cancer diagnosis and treatment, but it remains a great challenge.
Collapse
Affiliation(s)
- Xiuzuo Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, People's Republic of China
| | - Liling Tang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|
9
|
Lloyd JT, McLaughlin K, Lubula MY, Gay JC, Dest A, Gao C, Phillips M, Tonelli M, Cornilescu G, Marunde MR, Evans CM, Boyson SP, Carlson S, Keogh MC, Markley JL, Frietze S, Glass KC. Structural Insights into the Recognition of Mono- and Diacetylated Histones by the ATAD2B Bromodomain. J Med Chem 2020; 63:12799-12813. [PMID: 33084328 DOI: 10.1021/acs.jmedchem.0c01178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bromodomains exhibit preferences for specific patterns of post-translational modifications on core and variant histone proteins. We examined the ligand specificity of the ATAD2B bromodomain and compared it to its closely related paralogue in ATAD2. We show that the ATAD2B bromodomain recognizes mono- and diacetyllysine modifications on histones H4 and H2A. A structure-function approach was used to identify key residues in the acetyllysine-binding pocket that dictate the molecular recognition process, and we examined the binding of an ATAD2 bromodomain inhibitor by ATAD2B. Our analysis demonstrated that critical contacts required for bromodomain inhibitor coordination are conserved between the ATAD2/B bromodomains, with many residues playing a dual role in acetyllysine recognition. We further characterized an alternative splice variant of ATAD2B that results in a loss of function. Our results outline the structural and functional features of the ATAD2B bromodomain and identify a novel mechanism regulating the interaction of the ATAD2B protein with chromatin.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Kyle McLaughlin
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Mulu Y Lubula
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Andrea Dest
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | | | - John L Markley
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| |
Collapse
|
10
|
Abstract
Bromodomain-containing proteins are often part of chromatin-modifying complexes, and their activity can lead to altered expression of genes that drive cancer, inflammation and neurological disorders in humans. Bromodomain-PHD finger protein 1 (BRPF1) is part of the MOZ (monocytic leukemic zinc-finger protein) HAT (histone acetyltransferase) complex, which is associated with chromosomal translocations known to contribute to the development of acute myeloid leukemia (AML). BRPF1 contains a unique combination of chromatin reader domains including two plant homeodomain (PHD) fingers separated by a zinc knuckle (PZP domain), a bromodomain, and a proline-tryptophan-tryptophan-proline (PWWP) domain. BRPF1 is known to recruit the MOZ HAT complex to chromatin by recognizing acetylated lysine residues on the N-terminal histone tail region through its bromodomain. However, histone proteins can contain several acetylation modifications on their N-terminus, and it is unknown how additional marks influence bromodomain recruitment to chromatin. Here, we identify the BRPF1 bromodomain as a selective reader of di-acetyllysine modifications on histone H4. We used ITC assays to characterize the binding of di-acetylated histone ligands to the BRPF1 bromodomain and found that the domain binds preferentially to histone peptides H4K5acK8ac and H4K5acK12ac. Analytical ultracentrifugation (AUC) experiments revealed that the monomeric state of the BRPF1 bromodomain coordinates di-acetylated histone ligands. NMR chemical shift perturbation studies, along with binding and mutational analyses, revealed non-canonical regions of the bromodomain-binding pocket that are important for histone tail recognition. Together, our findings provide critical information on how the combinatorial action of post-translational modifications can modulate BRPF1 bromodomain binding and specificity.
Collapse
|
11
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
12
|
TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun 2019; 10:4273. [PMID: 31537782 PMCID: PMC6753139 DOI: 10.1038/s41467-019-12126-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Recognition of specific chromatin modifications by distinct structural domains within “reader” proteins plays a critical role in the maintenance of genomic stability. However, the specific mechanisms involved in this process remain unclear. Here we report that the PHD-Bromo tandem domain of tripartite motif-containing 66 (TRIM66) recognizes the unmodified H3R2-H3K4 and acetylated H3K56. The aberrant deletion of Trim66 results in severe DNA damage and genomic instability in embryonic stem cells (ESCs). Moreover, we find that the recognition of histone modification by TRIM66 is critical for DNA damage repair (DDR) in ESCs. TRIM66 recruits Sirt6 to deacetylate H3K56ac, negatively regulating the level of H3K56ac and facilitating the initiation of DDR. Importantly, Trim66-deficient blastocysts also exhibit higher levels of H3K56ac and DNA damage. Collectively, the present findings indicate the vital role of TRIM66 in DDR in ESCs, establishing the relationship between histone readers and maintenance of genomic stability. TRIM66 protein has an N-terminal tripartite motif and a C-terminal PHD Bromodomain. Here the authors show the specific histone modification recognition of TRIM66-PHD-Bromodomain through crystallography and biochemistry assay, and further reveal that TRIM66 recognition of certain histone modification is important for DNA damage repair in ESCs.
Collapse
|
13
|
Han HJ, Huang QY, Huang LJ, Chang F, Diao QZ. Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17180. [PMID: 31574824 PMCID: PMC6775384 DOI: 10.1097/md.0000000000017180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND ATPase family, AAA+ domain containing 2 (ATAD2) is also known as AAA+ nuclear coregulator cancer-associated protein or PRO2000. ATAD2 has been reported as a prognostic factor in different cancer types, but the association between ATAD2 high expression and survival is still unclear. Thereby, this meta-analysis was performed to evaluate the prognostic value of ATAD2 high expression in human cancers. METHODS All of the studies included were retrieved from PubMed, EMBASE, and Cochrane Library electronic databases. The clinical outcomes were evaluated by calculating hazard ratio (HR) with their 95% confidence interval (CI). RESULTS Thirteen studies including 2689 patients were eligible for this analysis. The pooled results showed that ATAD2 over-expression was significantly associated with shorter overall survival (OS) (HR = 2.32, 95% CI = 1.77-3.02), as well as shorter recurrence-free survival (RFS), disease-free survival (DFS), and disease-specific survival (DSS) (HR = 1.83, 95% CI = 1.51-2.23) among human cancers. Subgroup analyses for OS were implemented in terms of region, tumor type, and sample size and the results were coincident with overall pooled results. Begg funnel plot and Egger test showed the presence of publication bias for OS. Sensitivity analysis indicated that both results were not affected for removing any study. CONCLUSION ATAD2 would be likely to act as a prognostic biomarker for the patients of different cancer types and provide a guide on clinical treatment. Prospective clinical studies are needed to support these findings.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Zhi Diao
- The Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing, China
| |
Collapse
|
14
|
Bamborough P, Chung CW, Demont EH, Bridges AM, Craggs PD, Dixon DP, Francis P, Furze RC, Grandi P, Jones EJ, Karamshi B, Locke K, Lucas SCC, Michon AM, Mitchell DJ, Pogány P, Prinjha RK, Rau C, Roa AM, Roberts AD, Sheppard RJ, Watson RJ. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J Med Chem 2019; 62:7506-7525. [PMID: 31398032 DOI: 10.1021/acs.jmedchem.9b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paola Grandi
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | | | | | | | | | | | | | | | | | - Christina Rau
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | - Ana Maria Roa
- GlaxoSmithKline Tres Cantos , 28760 Tres Cantos , Madrid , Spain
| | | | | | | |
Collapse
|
15
|
Gay JC, Eckenroth BE, Evans CM, Langini C, Carlson S, Lloyd JT, Caflisch A, Glass KC. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain. Proteins 2018; 87:157-167. [PMID: 30520161 DOI: 10.1002/prot.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.
Collapse
Affiliation(s)
- Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Cassiano Langini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
16
|
Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018; 9:827. [PMID: 29511166 PMCID: PMC5840419 DOI: 10.1038/s41467-018-03202-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. Individuals with different genotypes may respond differently to environmental variation. Here, Favé et al. find substantial impacts of different environment exposures on the transcriptome and clinical endophenotypes when controlling for genetic ancestry by analyzing data from ∼1000 individuals from a founder population in Quebec.
Collapse
|
17
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Zhou Y, Hussain M, Kuang G, Zhang J, Tu Y. Mechanistic insights into peptide and ligand binding of the ATAD2-bromodomain via atomistic simulations disclosing a role of induced fit and conformational selection. Phys Chem Chem Phys 2018; 20:23222-23232. [DOI: 10.1039/c8cp03860k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atomistic simulations of the ATAD2-bromodomain disclose a role of induced fit and conformational selection upon ligand and peptide binding.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Theoretical Chemistry and Biology
- KTH Royal Institute of Technology
- AlbaNova University Center
- Stockholm
- Sweden
| | - Muzammal Hussain
- Guangdong Provincial Key Laboratory of Biocomputing
- Institute of Chemical Biology
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Guanglin Kuang
- Department of Theoretical Chemistry and Biology
- KTH Royal Institute of Technology
- AlbaNova University Center
- Stockholm
- Sweden
| | - Jiancun Zhang
- Guangdong Provincial Key Laboratory of Biocomputing
- Institute of Chemical Biology
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology
- KTH Royal Institute of Technology
- AlbaNova University Center
- Stockholm
- Sweden
| |
Collapse
|
19
|
Hussain M, Zhou Y, Song Y, Hameed HMA, Jiang H, Tu Y, Zhang J. ATAD2 in cancer: a pharmacologically challenging but tractable target. Expert Opin Ther Targets 2017; 22:85-96. [PMID: 29148850 DOI: 10.1080/14728222.2018.1406921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION ATAD2 protein is an emerging oncogene that has strongly been linked to the etiology of multiple advanced human cancers. Therapeutically, despite the fact that genetic suppression/knockdown studies have validated it as a compelling drug target for future therapeutic development, recent druggability assessment data suggest that direct targeting of ATAD2's bromodomain (BRD) may be a very challenging task. ATAD2's BRD has been predicted as a 'difficult to drug' or 'least druggable' target due to the concern that its binding pocket, and the areas around it, seem to be unfeasible for ligand binding. Areas covered: In this review, after shedding light on the multifaceted roles of ATAD2 in normal physiology as well as in cancer-etiology, we discuss technical challenges rendered by ATAD2's BRD active site and the recent drug discovery efforts to find small molecule inhibitors against it. Expert opinion: The identification of a novel low-nanomolar semi-permeable chemical probe against ATAD2's BRD by recent drug discovery campaign has demonstrated it to be a pharmacologically tractable target. Nevertheless, the development of high quality bioavailable inhibitors against ATAD2 is still a pending task. Moreover, ATAD2 may also potentially be utilized as a promising target for future development of RNAi-based therapy to treat cancers.
Collapse
Affiliation(s)
- Muzammal Hussain
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Yang Zhou
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Yu Song
- e Basic Medical College of Beihua University , Jilin , China
| | - H M Adnan Hameed
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Hao Jiang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| | - Yaoquan Tu
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Jiancun Zhang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| |
Collapse
|
20
|
Zhang X, Chen K, Wu YD, Wiest O. Protein dynamics and structural waters in bromodomains. PLoS One 2017; 12:e0186570. [PMID: 29077715 PMCID: PMC5659604 DOI: 10.1371/journal.pone.0186570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Bromodomains are epigenetic readers of acetylated lysines that are integral parts of histone tails. The 61 bromodomains in humans are structurally highly conserved but specifically bind to widely varying recognition motifs, suggesting that dynamic rather than static factors are responsible for recognition selectivity. To test this hypothesis, the dynamics of the binding sites and structural water molecules of four bromodomains (ATAD2, BAZ2B, BRD2(1) and CREBBP) representing four different subtypes is studied with 1 μs MD simulations using the RSFF2 force field. The different dynamics of the ZA-loops and BC-loops between the four bromodomains leads to distinct patterns for the opening and closing of the binding pocket. This in turn determines the structural and energetic properties of the structural waters in the binding pocket, suggesting that these waters are not only important for the recognition itself, as has been proposed previously, but also contribute to the selectivity of different bromodomains.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kai Chen
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Olaf Wiest
- Lab of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Foley DJ, Craven PGE, Collins PM, Doveston RG, Aimon A, Talon R, Churcher I, von Delft F, Marsden SP, Nelson A. Synthesis and Demonstration of the Biological Relevance of sp 3 -rich Scaffolds Distantly Related to Natural Product Frameworks. Chemistry 2017; 23:15227-15232. [PMID: 28983993 PMCID: PMC5703167 DOI: 10.1002/chem.201704169] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/18/2022]
Abstract
The productive exploration of chemical space is an enduring challenge in chemical biology and medicinal chemistry. Natural products are biologically relevant, and their frameworks have facilitated chemical tool and drug discovery. A "top-down" synthetic approach is described that enabled a range of complex bridged intermediates to be converted with high step efficiency into 26 diverse sp3 -rich scaffolds. The scaffolds have local natural product-like features, but are only distantly related to specific natural product frameworks. To assess biological relevance, a set of 52 fragments was prepared, and screened by high-throughput crystallography against three targets from two protein families (ATAD2, BRD1 and JMJD2D). In each case, 3D fragment hits were identified that would serve as distinctive starting points for ligand discovery. This demonstrates that frameworks that are distantly related to natural products can facilitate discovery of new biologically relevant regions within chemical space.
Collapse
Affiliation(s)
- Daniel J. Foley
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Philip G. E. Craven
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Patrick M. Collins
- Diamond Light Source LtdHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Richard G. Doveston
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Anthony Aimon
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| | - Romain Talon
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of Oxford, Roosevelt DriveOxfordOX3 7DQUK
| | - Ian Churcher
- GlaxoSmithKline Medicines Research CentreStevenageSG1 2NYUK,BenevolentBio, ChurchwayLondonNW1 1LWUK
| | - Frank von Delft
- Diamond Light Source LtdHarwell Science and Innovation CampusDidcotOX11 0QXUK
- Structural Genomics Consortium, Nuffield Department of MedicineUniversity of Oxford, Roosevelt DriveOxfordOX3 7DQUK
| | | | - Adam Nelson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
22
|
Langini C, Caflisch A, Vitalis A. The ATAD2 bromodomain binds different acetylation marks on the histone H4 in similar fuzzy complexes. J Biol Chem 2017; 292:16734-16745. [PMID: 28798233 DOI: 10.1074/jbc.m117.786350] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/21/2017] [Indexed: 12/22/2022] Open
Abstract
Bromodomains are protein modules adopting conserved helix bundle folds. Some bromodomain-containing proteins, such as ATPase family AAA domain-containing protein 2 (ATAD2), isoform A, have attracted much interest because they are overexpressed in many types of cancer. Bromodomains bind to acetylated lysine residues on histone tails and thereby facilitate the reading of the histone code. Epigenetic regulators in general have been implicated as indicators, mediators, or causes of a large number of diseases and disorders. To interfere with or modulate these processes, it is therefore of fundamental interest to understand the molecular mechanisms by which epigenetic regulation occurs. Here, we present results from molecular dynamics simulations of a doubly acetylated histone H4 peptide bound to the bromodomain of ATAD2 (hereafter referred to as ATAD2A). These simulations revealed how the flexibility of ATAD2A's major loop, the so-called ZA loop, creates an adaptable interface that preserves the disorder of both peptide and loop in the bound state. We further demonstrate that the binding involves an almost identical average pattern of interactions irrespective of which acetyl mark is inserted into the pocket. In conjunction with a likely mechanism of electrostatically driven recruitment, our simulation results highlight how the bromodomain is built toward promiscuous binding with low specificity. In conclusion, the simulations indicate that disorder and electrostatic steering function jointly to recruit ATAD2A to the histone core and that these fuzzy interactions may promote cooperativity between nearby epigenetic marks.
Collapse
Affiliation(s)
- Cassiano Langini
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Amedeo Caflisch
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Andreas Vitalis
- From the Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
23
|
Lloyd JT, Glass KC. Biological function and histone recognition of family IV bromodomain-containing proteins. J Cell Physiol 2017; 233:1877-1886. [PMID: 28500727 DOI: 10.1002/jcp.26010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of target genes. There are approximately 60 known human bromodomains, which are divided into eight sub-families based on structural conservation. The bromodomain-containing proteins in family IV include seven members (BRPF1, BRPF2, BRPF3, BRD7, BRD9, ATAD2, and ATAD2b). The bromodomains of each of these proteins recognize and bind acetyllysine residues on histone tails protruding from the nucleosome. However, the histone marks recognized by each bromodomain protein can be very different. The BRPF1 subunit of the MOZ histone acetyltransferase (HAT) recognizes acetylated histones H2AK5ac, H4K12ac, H3K14ac, H4K8ac, and H4K5ac. While the bromodomain of BRD7, a member of the SWI/SNF complex, was shown to preferentially recognize acetylated histones H3K9ac, H3K14ac, H4K8ac, H4K12ac, and H4K16ac. The bromodomains of BRPF2 and BRPF3 have similar sequences, and function as part of the HBO1 HAT complex, but there is limited data on which histone ligands they bind. Similarly, there is little known about the histone targets of the BRD9 and ATAD2b bromodomain proteins. Interestingly, the ATAD2 bromodomain was recently shown to preferentially bind to the di-acetylated H4K5acK12ac mark found in newly synthesized histones following DNA replication. However, despite the physiological importance of the family IV bromodomains, little is known about how they function at the molecular or atomic level. In this review, we summarize our understanding of how family IV bromodomains recognize and select for acetyllysine marks and discuss the importance of acetylated histone recognition for their biological functions.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
24
|
Zhan Y, Kost-Alimova M, Shi X, Leo E, Bardenhagen JP, Shepard HE, Appikonda S, Vangamudi B, Zhao S, Tieu TN, Jiang S, Heffernan TP, Marszalek JR, Toniatti C, Draetta G, Tyler J, Barton M, Jones P, Palmer WS, Geck Do MK, Andersen JN. Development of novel cellular histone-binding and chromatin-displacement assays for bromodomain drug discovery. Epigenetics Chromatin 2015; 8:37. [PMID: 26396593 PMCID: PMC4578755 DOI: 10.1186/s13072-015-0026-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Background Proteins that ‘read’ the histone code are central elements in epigenetic control and bromodomains, which bind acetyl-lysine motifs, are increasingly recognized as potential mediators of disease states. Notably, the first BET bromodomain-based therapies have entered clinical trials and there is a broad interest in dissecting the therapeutic relevance of other bromodomain-containing proteins in human disease. Typically, drug development is facilitated and expedited by high-throughput screening, where assays need to be sensitive, robust, cost-effective and scalable. However, for bromodomains, which lack catalytic activity that otherwise can be monitored (using classical enzymology), the development of cell-based, drug-target engagement assays has been challenging. Consequently, cell biochemical assays have lagged behind compared to other protein families (e.g., histone deacetylases and methyltransferases). Results Here, we present a suite of novel chromatin and histone-binding assays using AlphaLISA, in situ cell extraction and fluorescence-based, high-content imaging. First, using TRIM24 as an example, the homogenous, bead-based AlphaScreen technology was modified from a biochemical peptide-competition assay to measure binding of the TRIM24 bromodomain to endogenous histone H3 in cells (AlphaLISA). Second, a target agnostic, high-throughput imaging platform was developed to quantify the ability of chemical probes to dissociate endogenous proteins from chromatin/nuclear structures. While overall nuclear morphology is maintained, the procedure extracts soluble, non-chromatin-bound proteins from cells with drug-target displacement visualized by immunofluorescence (IF) or microscopy of fluorescent proteins. Pharmacological evaluation of these assays cross-validated their utility, sensitivity and robustness. Finally, using genetic and pharmacological approaches, we dissect domain contribution of TRIM24, BRD4, ATAD2 and SMARCA2 to chromatin binding illustrating the versatility/utility of the in situ cell extraction platform. Conclusions In summary, we have developed two novel complementary and cell-based drug-target engagement assays, expanding the repertoire of pharmacodynamic assays for bromodomain tool compound development. These assays have been validated through a successful TRIM24 bromodomain inhibitor program, where a micromolar lead molecule (IACS-6558) was optimized using cell-based assays to yield the first single-digit nanomolar TRIM24 inhibitor (IACS-9571). Altogether, the assay platforms described herein are poised to accelerate the discovery and development of novel chemical probes to deliver on the promise of epigenetic-based therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0026-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanai Zhan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Maria Kost-Alimova
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Xi Shi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Elisabetta Leo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jennifer P Bardenhagen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Hannah E Shepard
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Srikanth Appikonda
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Bhavatarini Vangamudi
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Shuping Zhao
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Trang N Tieu
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Shiming Jiang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Carlo Toniatti
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Giulio Draetta
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jessica Tyler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Michelle Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Philip Jones
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Wylie S Palmer
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Mary K Geck Do
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA
| | - Jannik N Andersen
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77230 USA.,XTuit Pharmaceuticals, 700 Main Street, Cambridge, MA 02139 USA
| |
Collapse
|
25
|
Bamborough P, Chung CW, Furze RC, Grandi P, Michon AM, Sheppard RJ, Barnett H, Diallo H, Dixon DP, Douault C, Jones EJ, Karamshi B, Mitchell DJ, Prinjha RK, Rau C, Watson RJ, Werner T, Demont EH. Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors. J Med Chem 2015; 58:6151-78. [PMID: 26230603 DOI: 10.1021/acs.jmedchem.5b00773] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ATAD2 is a bromodomain-containing protein whose overexpression is linked to poor outcomes in a number of different cancer types. To date, no potent and selective inhibitors of the bromodomain have been reported. This article describes the structure-based optimization of a series of naphthyridones from micromolar leads with no selectivity over the BET bromodomains to inhibitors with sub-100 nM ATAD2 potency and 100-fold BET selectivity.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- ∥Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne-Marie Michon
- ∥Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | - Christina Rau
- ∥Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Thilo Werner
- ∥Cellzome GmbH, Molecular Discovery Research, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
26
|
Demont EH, Chung CW, Furze RC, Grandi P, Michon AM, Wellaway C, Barrett N, Bridges AM, Craggs PD, Diallo H, Dixon DP, Douault C, Emmons AJ, Jones EJ, Karamshi BV, Locke K, Mitchell DJ, Mouzon BH, Prinjha RK, Roberts AD, Sheppard RJ, Watson RJ, Bamborough P. Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors. J Med Chem 2015; 58:5649-73. [PMID: 26155854 DOI: 10.1021/acs.jmedchem.5b00772] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain. Here, we describe the discovery of a hit from a fragment-based targeted array. Optimization of this produced the first known micromolar inhibitors of the ATAD2 bromodomain.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- §Molecular Discovery Research, Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne-Marie Michon
- §Molecular Discovery Research, Cellzome GmbH, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andy D Roberts
- ∥Drug Metabolism and Pharmacokinetics (DMPK), GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, United Kingdom
| | | | | | | |
Collapse
|
27
|
Palmer WS, Poncet-Montange G, Liu G, Petrocchi A, Reyna N, Subramanian G, Theroff J, Yau A, Kost-Alimova M, Bardenhagen JP, Leo E, Shepard HE, Tieu TN, Shi X, Zhan Y, Zhao S, Barton MC, Draetta G, Toniatti C, Jones P, Geck Do M, Andersen JN. Structure-Guided Design of IACS-9571, a Selective High-Affinity Dual TRIM24-BRPF1 Bromodomain Inhibitor. J Med Chem 2015; 59:1440-54. [PMID: 26061247 DOI: 10.1021/acs.jmedchem.5b00405] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bromodomain containing proteins TRIM24 (tripartite motif containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are involved in the epigenetic regulation of gene expression and have been implicated in human cancer. Overexpression of TRIM24 correlates with poor patient prognosis, and BRPF1 is a scaffolding protein required for the assembly of histone acetyltransferase complexes, where the gene of MOZ (monocytic leukemia zinc finger protein) was first identified as a recurrent fusion partner in leukemia patients (8p11 chromosomal rearrangements). Here, we present the structure guided development of a series of N,N-dimethylbenzimidazolone bromodomain inhibitors through the iterative use of X-ray cocrystal structures. A unique binding mode enabled the design of a potent and selective inhibitor 8i (IACS-9571) with low nanomolar affinities for TRIM24 and BRPF1 (ITC Kd = 31 nM and ITC Kd = 14 nM, respectively). With its excellent cellular potency (EC50 = 50 nM) and favorable pharmacokinetic properties (F = 29%), 8i is a high-quality chemical probe for the evaluation of TRIM24 and/or BRPF1 bromodomain function in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center , 1515 Holcombe Boulevard , Houston, Texas 77030, United States
| | | | | | | | | | | |
Collapse
|
28
|
Marchand JR, Caflisch A. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif. ChemMedChem 2015; 10:1327-33. [PMID: 26033856 DOI: 10.1002/cmdc.201500141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/09/2022]
Abstract
Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription.
Collapse
Affiliation(s)
- Jean-Rémy Marchand
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland)
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland).
| |
Collapse
|
29
|
Abstract
A review of fragment-based approaches to finding and optimising bromodomain inhibitors. Early successes against the BET subfamily are now being extended to other members of the target class.
Collapse
Affiliation(s)
- Paul Bamborough
- Molecular Discovery Research
- GlaxoSmithKline Medicines Research Centre
- UK
| | - Chun-wa Chung
- Molecular Discovery Research
- GlaxoSmithKline Medicines Research Centre
- UK
| |
Collapse
|