1
|
Bunz M, Ritter M, Schindler M. HCV egress - unconventional secretion of assembled viral particles. Trends Microbiol 2021; 30:364-378. [PMID: 34483048 DOI: 10.1016/j.tim.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
It is believed that hepatitis C virus (HCV) particles are released through the canonical secretory route: from the endoplasmic reticulum (ER), via the Golgi, to the plasma membrane. While the Golgi is important for HCV release per se, its direct involvement in the trafficking of assembled virions has not yet been established. In fact, data from studies analyzing HCV egress are compatible with several potential pathways of HCV secretion. Here, we summarize and discuss the current knowledge related to the HCV export pathway. Apart from the prototypical anterograde transport, possible routes of HCV release include ER-to-endosomal transport, secretory autophagy, and poorly described mechanisms of unconventional protein secretion. Studying HCV egress promises to shed light on unconventional cellular trafficking and secretory routes.
Collapse
Affiliation(s)
- Maximilian Bunz
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Section Molecular Virology, Institute for Medical Virology and Epidemiology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Whole Lotta Lipids-from HCV RNA Replication to the Mature Viral Particle. Int J Mol Sci 2020; 21:ijms21082888. [PMID: 32326151 PMCID: PMC7215355 DOI: 10.3390/ijms21082888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Replication of the hepatitis C virus (HCV) strongly relies on various lipid metabolic processes in different steps of the viral life cycle. In general, HCV changes the cells' lipidomic profile by differentially regulating key pathways of lipid synthesis, remodeling, and utilization. In this review, we sum up the latest data mainly from the past five years, emphasizing the role of lipids in HCV RNA replication, assembly, and egress. In detail, we highlight changes in the fatty acid content as well as alterations of the membrane lipid composition during replication vesicle formation. We address the role of lipid droplets as a lipid provider during replication and as an essential hub for HCV assembly. Finally, we depict different ideas of HCV maturation and egress including lipoprotein association and potential secretory routes.
Collapse
|
3
|
Haberger V, Elgner F, Roos J, Bender D, Hildt E. Regulation of the Transferrin Receptor Recycling in Hepatitis C Virus-Replicating Cells. Front Cell Dev Biol 2020; 8:44. [PMID: 32117974 PMCID: PMC7026371 DOI: 10.3389/fcell.2020.00044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
After binding of its ligand transferrin, the transferrin receptor (TfR) is internalized via early endosomes. Ligand and receptor can be recycled. α-Taxilin was identified as an essential factor for TfR recycling. Apart from its role for iron uptake, TfR is a coreceptor for hepatitis C virus (HCV) infection. In HCV-replicating cells, the amount of a-taxilin is decreased. This study aims to investigate the effect of decreased α-taxilin levels in HCV-replicating cells on recycling of TfR, its amount on the cell surface, on iron uptake, and the impact of a disturbed TfR recycling on HCV superinfection exclusion. TfR amount and localization were determined by CLSM and surface biotinylation. α-taxilin expression was modulated by CRISPR-Cas9 knockout, siRNA, and stable or transient overexpression. For analysis of HCV superinfection fluorophor-tagged reporter viruses were used. The amount of α-taxilin is decreased in HCV-infected cells. In accordance to this, the protein amount of TfR is significant lower in HCV-positve cells as compared to the control, while TfR expression is not affected. Due to the impaired recycling, internalized TfR is degraded by the endosomal/lysosomal system. The significant lower number of TfR molecules on the cell surface is reflected by reduced transferrin binding/internalization and strong reduction of intracellular iron level. Overexpression of α-taxilin in HCV-replicating cells rescues TfR recycling, augments TfR on the cell surface, and restores transferrin binding. The block of superinfection in HCV-replicating cells could be overcome by overexpression of α-taxilin. Taken together, the diminished level of α-taxilin in HCV-replicating cells prevents recycling of TfR leading to decreased transferrin binding and iron uptake. Disappearance of TfR from the cell surface could be a factor contributing to the exclusion of superinfection by HCV.
Collapse
Affiliation(s)
| | - Fabian Elgner
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Jessica Roos
- Division of Safety of Medical Products and Devices, Paul Ehrlich Institute, Langen, Germany
| | - Daniela Bender
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
4
|
Assembly-hub function of ER-localized SNARE proteins in biogenesis of tombusvirus replication compartment. PLoS Pathog 2018; 14:e1007028. [PMID: 29746582 PMCID: PMC5963807 DOI: 10.1371/journal.ppat.1007028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/22/2018] [Accepted: 04/13/2018] [Indexed: 01/28/2023] Open
Abstract
Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER arrival site) subdomain, in yeast resulted in greatly reduced tombusvirus accumulation. Over-expression of a dominant-negative mutant of either the yeast Ufe1 or the orthologous plant Syp81 syntaxin greatly interferes with tombusvirus replication in yeast and plants, thus further supporting the role of this host protein in tombusvirus replication. Moreover, tombusvirus RNA replication was low in cell-free extracts from yeast with repressed Ufe1 or Use1 expression. We also present evidence for the mislocalization of the tombusviral p33 replication protein to the ER membrane in Ufe1p-depleted yeast cells. The viral p33 replication protein interacts with both Ufe1p and Use1p and co-opts them into the TBSV replication compartment in yeast and plant cells. The co-opted Ufe1 affects the virus-driven membrane contact site formation, sterol-enrichment at replication sites, recruitment of several pro-viral host factors and subversion of the Rab5-positive PE-rich endosomes needed for robust TBSV replication. In summary, we demonstrate a critical role for Ufe1 and Use1 SNARE proteins in TBSV replication and propose that the pro-viral functions of Ufe1 and Use1 are to serve as assembly hubs for the formation of the extensive TBSV replication compartments in cells. Altogether, these findings point clearly at the ERAS subdomain of ER as a critical site for the biogenesis of the TBSV replication compartment. Viral replication organelles are formed in subcellular compartments during positive-strand RNA virus infections to support robust virus replication. TBSV induces multivesicular body-like structures consisting of aggregated peroxisomes. However, endoplasmic reticulum (ER) and early endosomal proteins and membranes also contribute to the biogenesis of the replication compartment. The authors show that the syntaxin 18-like Ufe1 and Use1 ER SNARE proteins, which are present in ER subdomains called ERAS (ER arrival site), are necessary for the formation of the viral replication organelles. By binding to the p33 replication protein of TBSV, Ufe1 and Use1 serve as an assembly hub for biogenesis of the replication compartment and facilitating the transfer of phospholipids and sterols to the growing sites of viral replication. The advantage of co-opting ER resident SNAREs could be that these proteins constitute very active ER subdomains (ERAS), which might be especially suitable for generation of the extensive membranous viral replication compartment.
Collapse
|
5
|
Abstract
The release of membrane-bound vesicles from cells is being increasingly recognized as a mechanism of intercellular communication. Extracellular vesicles (EVs) or exosomes are produced by virus-infected cells and are thought to be involved in intercellular communication between infected and uninfected cells. Viruses, in particular oncogenic viruses and viruses that establish chronic infections, have been shown to modulate the production and content of EVs. Viral microRNAs, proteins and even entire virions can be incorporated into EVs, which can affect the immune recognition of viruses or modulate neighbouring cells. In this Review, we discuss the roles that EVs have during viral infection to either promote or restrict viral replication in target cells. We will also discuss our current understanding of the molecular mechanisms that underlie these roles, the potential consequences for the infected host and possible future diagnostic applications.
Collapse
|
6
|
Ren H, Elgner F, Himmelsbach K, Akhras S, Jiang B, Medvedev R, Ploen D, Hildt E. Identification of syntaxin 4 as an essential factor for the hepatitis C virus life cycle. Eur J Cell Biol 2017. [PMID: 28624237 DOI: 10.1016/j.ejcb.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although there is evidence that multivesicular bodies (MVBs) are involved in the release of hepatitis C virus (HCV), many aspects of HCV release are still not fully understood. The amount of α-taxilin that prevents SNARE (soluble N-ethylmaleimidesensitive factor attachment protein receptor) complex formation by binding to free syntaxin 4 is reduced in HCV-positive cells. Therefore, it was analyzed whether the t-SNARE protein syntaxin 4 which mediates vesicles fusion is involved in the HCV life cycle. HCV-positive cells possess an increased amount of syntaxin 4 protein, although the amount of syntaxin 4-specific transcripts is decreased in HCV-positive Huh7.5 cells and in HCV-infected primary human hepatocytes. In HCV-positive cells a significant longer half-life of syntaxin 4 was found that overcompensates for the decreased expression and leads to the elevated level of syntaxin 4. Overexpression of syntaxin 4 reduces the intracellular amount of infectious viral particles by facilitating viral release, while silencing of syntaxin 4 expression using specific siRNAs inhibits the release of HCV particles and so leads to an increase in the intracellular amount of infectious viral particles. This indicates that HCV uses a SNARE-dependent pathway for viral release. Confocal immunofluorescence microscopy revealed a colocalization of syntaxin 4 with a MVB-specific marker, exosomes and HCV core, which suggests a fraction of syntaxin 4 is associated with exosomes loaded with HCV. Altogether, it is assumed that syntaxin 4 is a novel essential cellular factor for the release of HCV.
Collapse
Affiliation(s)
- Huimei Ren
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Sami Akhras
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Bingfu Jiang
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Regina Medvedev
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Daniela Ploen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany; DZIF-German Center for Infection Research, Braunschweig, Germany.
| |
Collapse
|
7
|
Medvedev R, Hildt E, Ploen D. Look who's talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol 2016; 33:211-231. [PMID: 27987184 DOI: 10.1007/s10565-016-9376-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.
Collapse
Affiliation(s)
- Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen, Marburg, Langen, Germany
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| |
Collapse
|
8
|
Elgner F, Ren H, Medvedev R, Ploen D, Himmelsbach K, Boller K, Hildt E. The Intracellular Cholesterol Transport Inhibitor U18666A Inhibits the Exosome-Dependent Release of Mature Hepatitis C Virus. J Virol 2016; 90:11181-11196. [PMID: 27707921 PMCID: PMC5126375 DOI: 10.1128/jvi.01053-16] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis C virus (HCV) particles are described as lipoviroparticles which are released similarly to very-low-density lipoproteins (VLDLs). However, the release mechanism is still poorly understood; the canonical endoplasmic reticulum-Golgi intermediate compartment (ERGIC) pathway as well as endosome-dependent release has been proposed. Recently, the role of exosomes in the transmission of HCV has been reported. Only a minor fraction of the de novo-synthesized lipoviroparticles is released by the infected cell. To investigate the relevance of multivesicular bodies (MVBs) for viral morphogenesis and release, the MVB inhibitor U18666A was used. Intracellular trafficking was analyzed by confocal microscopy and electron microscopy. Moreover, an mCherry-tagged HCV variant was used. Conditions were established that enable U18666A-dependent inhibition of MVBs without affecting viral replication. Under these conditions, significant inhibition of the HCV release was observed. The assembly of viral particles is not affected. In U18666A-treated cells, intact infectious viral particles accumulate in CD63-positive exosomal structures and large dysfunctional lysosomal structures (multilamellar bodies). These retained particles possess a lower density, reflecting a misloading with lipids. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway. Endosomes facilitate the sorting of HCV particles for release or degradation. IMPORTANCE There are still a variety of open questions regarding morphogenesis and release of hepatitis C virus. The HCV-infected cell produces significant more viral particles that are released, raising the question about the fate of the nonreleased particles. Moreover, the relevance of the endosomal pathway for the release of HCV is under debate. Use of the MVB (multivesicular body) inhibitor U18666A enabled a detailed analysis of the impact of MVBs for viral morphogenesis and release. It was revealed that infectious, fully assembled HCV particles are either MVB-dependently released or intracellularly degraded by the lysosome. Our data indicate that at least a fraction of HCV particles leaves the cell via the endosomal pathway independent from the constitutive secretory pathway. Our study describes a so-far-unprecedented cross talk between two pathways regulating on the one hand the release of infectious viral particles and on the other hand the intracellular degradation of nonreleased particles.
Collapse
Affiliation(s)
- Fabian Elgner
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Huimei Ren
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Regina Medvedev
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Daniela Ploen
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | | | - Klaus Boller
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
| | - Eberhard Hildt
- Paul-Ehrlich-Institut, Department of Virology, Langen, Germany
- Deutsches Zentrum für Infektionsforschung, Braunschweig, Germany
| |
Collapse
|
9
|
The Autophagosomal SNARE Protein Syntaxin 17 Is an Essential Factor for the Hepatitis C Virus Life Cycle. J Virol 2016; 90:5989-6000. [PMID: 27099307 DOI: 10.1128/jvi.00551-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Syntaxin 17 is an autophagosomal SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein required for the fusion of autophagosomes with lysosomes to form autolysosomes and thereby to deliver the enclosed contents for degradation. Hepatitis C virus (HCV) induces autophagy. In light of the observation that the number of viral particles formed by HCV-infected cells is much greater than the number of infectious viral particles finally released by HCV-infected cells, the regulation of fusion between autophagosomes and lysosomes might fulfill a key function controlling the number of released virions. HCV-replicating cells possess a decreased amount of syntaxin 17 due to impaired expression and increased turnover of syntaxin 17. Overexpression of syntaxin 17 in HCV-replicating cells diminishes the number of released infectious viral particles and decreases the amount of intracellular retained viral particles by favoring the formation of autolysosomes, in which HCV particles are degraded. Inhibition of lysosomal acidification by bafilomycin rescues the decreased release of virions from syntaxin 17-overexpressing cells, while induction of autophagy by rapamycin enforces the impairment of release under these conditions. Vice versa, inhibition of syntaxin 17 expression by specific small interfering RNAs results in an elevated amount of intracellular retained viral particles and facilitates the release of HCV virions by impairment of autophagosome-lysosome fusion. HCV genome replication, however, is not affected by modulation of syntaxin 17 expression. These data identify syntaxin 17 to be a novel factor controlling the release of HCV. This is achieved by regulation of autophagosome-lysosome fusion, which affects the equilibrium between the release of infectious viral particles and lysosomal degradation of intracellular retained viral particles. IMPORTANCE Hepatitis C virus (HCV) induces autophagy. Syntaxin 17 is an autophagosomal SNARE protein required for the fusion of autophagosomes with lysosomes. In HCV-infected cells, a major fraction of the de novo-synthesized viral particles is not released but is intracellularly degraded. In this context, the effect of HCV on the amount and distribution of syntaxin 17 and the relevance of syntaxin 17 for the viral life cycle were investigated. This study demonstrates that the amount of syntaxin 17 decreased in HCV-replicating cells. In addition, syntaxin 17 is identified to be a novel factor controlling the release of HCV, and the relevance of autophagosome-lysosome fusion as a regulator of the amount of released viral particles is revealed. Taken together, these findings indicate that syntaxin 17 is involved in the regulation of autophagosome-lysosome fusion and thereby affects the equilibrium between the release of infectious viral particles and the lysosomal degradation of intracellularly retained viral particles.
Collapse
|
10
|
HCV and Oxidative Stress: Implications for HCV Life Cycle and HCV-Associated Pathogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9012580. [PMID: 26955431 PMCID: PMC4756209 DOI: 10.1155/2016/9012580] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/14/2016] [Indexed: 12/15/2022]
Abstract
HCV (hepatitis C virus) is a member of the Flaviviridae family that contains a single-stranded positive-sense RNA genome of approximately 9600 bases. HCV is a major causative agent for chronic liver diseases such as steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma which are caused by multifactorial processes. Elevated levels of reactive oxygen species (ROS) are considered as a major factor contributing to HCV-associated pathogenesis. This review summarizes the mechanisms involved in formation of ROS in HCV replicating cells and describes the interference of HCV with ROS detoxifying systems. The relevance of ROS for HCV-associated pathogenesis is reviewed with a focus on the interference of elevated ROS levels with processes controlling liver regeneration. The overview about the impact of ROS for the viral life cycle is focused on the relevance of autophagy for the HCV life cycle and the crosstalk between HCV, elevated ROS levels, and the induction of autophagy.
Collapse
|